Publications



[1] G. Csizmadia, G. Tóth: Note on a Ramsey-Type problem in Geometry, Journal of Combinatorial Theory, Series A 65 (1994), 302-306. pdf

[2] M. Bóna, G. Tóth: A Ramsey-type problem on right-angled triangles in space, Discrete Mathematics 150 (1996), 61-67. pdf

[3] J. Pach, G. Tóth: On the Independence Number of Coin Graphs, Geombinatorics 6, Issue 1 (1996), 30-33. pdf

[4] G. Tóth: A Ramsey-type bound for rectangles, Journal of Graph Theory 23 (1996), 53-56. pdf

[5] G. Tóth: The shortest distance among points in general position, Computational Geometry: Theory and Applications 8/1 (1997), 33-38. pdf

[6] G. Károlyi, J. Pach, G. Tóth: Ramsey-Type Results for Geometric Graphs. I, Discrete and Computational Geometry 18 (1997), 247-255. Also in: Proceedings of the 12th Annual ACM Symposium on Computational Geometry 1996, 359-365. pdf

[7] G. Károlyi, J. Pach, G. Tardos, G. Tóth: An algorithm for finding many disjoint monochromatic edges in a complete 2-colored geometric graph, in: Intuitive Geometry, (I. Bárány, K. Böröczky, eds.), Bolyai Soc. Math. Studies 6, J. Bolyai Math. Society, Budapest, 1997, 367-372. pdf

[8] J. Pach, G. Tóth: Graphs drawn with few crossings per edge, Lecture Notes in Computer Science 1190, Springer-Verlag, 1997, 345--354. Also in: Combinatorica 17 (1997), 427-439. pdf

[9] G. Károlyi, J. Pach, G. Tóth, P. Valtr: Ramsey-Type Results for Geometric Graphs. II, Discrete and Computational Geometry 20 (1998), 375-388. Also in: Proceedings of the 13th Annual ACM Symposium on Computational Geometry 1997, 94-103. pdf

[10] G. Csizmadia, G. Tóth: Note on an Art Gallery Problem, Computational Geometry: Theory and Applications 10/1 (1998), 47-55. pdf

[11] J. Pach, T. Thiele, G. Tóth: Three-dimensional grid drawings of graphs, Lecture Notes in Computer Science 1353, Spinger-Verlag, 1998, 47-51. Also in: Advances in Discrete and Computational Geometry (B. Chazelle, J. E. Goodman, R. Pollack, eds.), Contemporary Mathematics 233, AMS, Providence 1999, 251-255. pdf

[12] J. Pach, G. Tóth: A generalization of the Erdős-Szekeres theorem to disjoint convex sets, Discrete and Computational Geometry 19 (1998), 437-445. pdf

[13] G. Tóth, P. Valtr: Note on the Erdős-Szekeres theorem, Discrete and Computational Geometry 19 (1998), 457-459. pdf

[14] G. Tóth, P. Valtr: Geometric graphs with few disjoint edges, Proceedings of the 14th Annual ACM Symposium on Computational Geometry 1998, 184-191. Also in: Discrete and Computational Geometry 22 (1999), 633-642. pdf

[15] J. Pach, G. Tóth: Erdős-Szekeres-type theorems for segments and non-crossing convex sets, Geometriae Dedicata 81 (2000), 1-12. pdf

[16] G. Tóth: Finding convex sets in convex position, Combinatorica 20 (2000), 589-596. pdf

[17] J. Pach, G. Tóth: Which crossing number is it anyway? Proceedings of the 39th Annual Symposium on Foundation of Computer Science 1998, 617-626. Also in: Journal of Combinatorial Theory B 80 (2000), 225-246. pdf

[18] J. Pach, J. Spencer, G. Tóth: New bounds for crossing numbers, Proceedings of the 15th Annual ACM Symposium on Computational Geometry 1999, 124-133. Also in: Discrete and Computational Geometry 24 (2000), 623-644. pdf

[19] G. Tóth: Note on geometric graphs, Journal of Combinatorial Theory, Series A 89 (2000), 126-132. pdf

[20] A. Dumitrescu, G. Tóth: Ramsey-type results for unions of comparability graphs, Proceedings of the 11th Canadian Conference on Computational Geometry 1999, 178-181. Also in: Graphs and Combinatorics 18 (2002), 245-251. pdf

[21] G. Tóth: Point sets with many k-sets, Proceedings of the 16th Annual ACM Symposium on Computational Geometry 2000, 37-42. Also in: Discrete and Computational Geometry 26 (2001), 187-194. pdf

[22] D. J. Kleitman, A. Gyárfás, G. Tóth: Convex sets in the plane with three of every four meeting, Combinatorica 21 (2001), 221-232. pdf

[23] J. Pach, G. Tóth: Thirteen problems on crossing numbers, Geombinatorics 9 (2000), 194-207. pdf

[24] G. Károlyi, G. Tóth: An Erdős-Szekeres-type problem in the plane , Periodica Mathematica Hungarica 39 (1999), 153-159. pdf

[25] G. Károlyi, J. Pach, G. Tóth: A modular version of the Erdős-Szekeres theorem, Studia Mathematica Hungarica 38 (2001), 245-259. pdf

[26] J. Pach, J. Solymosi, G. Tóth: Unavoidable configurations in complete topological graphs, , Lecture Notes in Computer Science 1984 Springer-Verlag, 2001, 328-337. Also in: Discrete and Computational Geometry 30 (2003), 311-320. pdf

[27] R. Radoičić, G. Tóth: Monotone paths in line arrangements, Proceedings of the 17th Annual ACM Symposium on Computational Geometry 2001, 312-314. Also in: Computational Geometry: Theory and Applications 264 (20013, 129-134. pdf

[28] J. Pach, G. Tóth: The string graph problem is decidable, Lecture Notes in Computer Science 2265 Spinger-Verlag, Berlin 2001, 247-260. Also in: Discrete and Computational Geometry 28 (2002), 593-606. pdf

[29] R. Radoičić, G. Tóth: Note on the chromatic number of the space, Algorithms and Combinatorics, 25 Springer-Verlag, Berlin 2003, 695-698. pdf

[30] J. Spencer, G. Tóth: Crossing numbers of random graphs, Random Structures and Algorithms 21 (2002), 347-358. pdf

[31] J. Pach, G. Tóth: How many ways one can draw a graph? Combinatorica 26 (2006), 559-576. Also in: Graph Drawing (G. Liotta, ed.), Lecture Notes in Computer Science 2919 Springer-Verlag, Berlin, 2004, 47-58. pdf

[32] J. Pach, G. Tóth: Monotone drawings of planar graphs, Algorithms and Computation (P. Bose, P. Morin, eds.) Lecture Notes in Computer Science 2518 Springer-Verlag, Berlin, 2002, 647-653. Also in: Journal of Graph Theory 46, (2004), 39-47. pdf

[33] J. Pach, R. Pinchasi, G. Tardos, G. Tóth: Geometric graphs with no crossing path of length three, Graph Drawing (M. T. Goodrich, S. G. Kobourov, eds.), Lecture Notes in Computer Science 2528 Springer-Verlag, Berlin, 2002, 295-311. Also in: European Journal of Combinatorics 25, (2004), 793-811. pdf

[34] G. Tóth: Ramsey-type theorems and exercises (in Hungarian), in: New Mathematical Mosaic (A. Hraskó, ed.), Typotex, Budapest, 2002, 211-221. pdf

[35] J. Pach, R. Radoičić, G. Tardos, G. Tóth: Improving the Crossing Lemma by finding more crossings in sparse graphs, Proceedings of the 19th Annual ACM Symposium on Computational Geometry 2004, 68-75. Also in: Discrete and Computational Geometry 36, (2006), 527-552. pdf

[36] J. Pach, G. Tóth: Note on conflict-free colorings, in: Discrete and Computational Geometry (S. Basu et al. eds.), Algorithms and Combinatorics 25, Springer-Verlag, Berlin, 2003, 665-672. pdf

[37] J. Pach, R. Radoičić, G. Tóth: Relaxing planarity for topological graphs, Discrete and Computational Geometry (J. Akiyama, M. Kano, eds.), Lecture Notes in Computer Science 2866 Springer-Verlag, Berlin, 2003, 221-232. pdf

[38] J. Pach, R. Pinchasi, M. Sharir, G. Tóth: Topological graphs with no large grids, Special Issue dedicated to Victor Neumann-Lara, Graphs and Combinatorics 21, (2005), 355-364. pdf

[39] J. Pach, R. Radoičić, G. Tóth: A generalization of quasi-planarity, Towards a Theory of Geometric Graphs, (J. Pach, ed.), Contamporary Mathematics 342, AMS, 2004, 177-183. pdf

[40] J. Pach, G. Tóth: Disjoint edges in topological graphs, Lecture Notes in Computer Science 3330 Springer-Verlag, Berlin, 2005, 133-140. pdf

[41] G. Tóth, P. Valtr: The Erdős-Szekeres theorem, upper bounds and generalizations, Discrete and Computational Geometry - Papers from the MSRI Special Program (J. E. Goodman et al. eds.), MSRI Publications 52 Cambridge University Press, Cambridge (2005), 557-568. pdf

[42] G. Tardos, G. Tóth: Crossing stars in topological graphs, Japan Conference on Discrete and Computational Geometry 2004, Lecture Notes in Computer Science 3742 Springer-Verlag, Berlin, 184-197. pdf

[43] J. Kynčl, J. Pach, G. Tóth: Long alternating paths in bicolored point sets, Graph Drawing 2004, (J, Pach, ed.), Lecture Notes in Computer Science 3383, Springer-Verlag, Berlin, 2005, 340-348. Also in: Special Volume of Discrete Mathematics Honouring the 60th birthday of M. Simonovits 308 (2008), 4315-4322. pdf

[44] J. Pach, G. Tóth: Crossing numbers of toroidal graphs, Graph Drawing 2005, Lecture Notes in Computer Science 3843 Springer-Verlag, Berlin, 2006, 334-342. Also in: Topics in discrete mathematics, Algorithms and Combinatorics, 26, Springer, Berlin, 2006, 581-590. pdf

[45] G. Tardos, G. Tóth: Multiple coverings of the plane with triangles, Discrete and Computational Geometry 38 (2007), 443-450. Special issue dedicated to the memory of Laszló Fejes Tóth (I. Bárány, J. Pach, eds.) pdf

[46] A. Dumitrescu, J. Pach, G. Tóth: The maximum number of empty congruent triangles determined by a point set, Revue Roumaine de Mathématiques Pures et Appliquées, 50 (2005), 613-618. pdf

[47] J. Pach, Tóth: Degenerate crossing numbers, Discrete and Computational Geometry 41 (2009), 376-384. Also in: Proceedings of the 22nd Annual ACM Symposium on Computational Geometry 2006, 255-258. pdf

[48] J. Pach, G. Tardos, G. Tóth: Indecomposable coverings, In: The China--Japan Joint Conference on Discrete Geometry, Combinatorics and Graph Theory (CJCDGCGT 2005), Lecture Notes in Computer Science, Springer, 4381, Springer-Verlag, Berlin, 2007, 135-148. Also in: Canadian Mathematical Bulletin, submitted pdf

[49] J. Pach, G. Tóth: Comment on Fox News, Geombinatorics 15 (2006), 150-154. pdf

[50] K. Böröczky, J. Pach, G. Tóth: Crossing number of graphs embeddable in another surface, International Journal of Foundations of Computer Science, Special Issue on Graph Drawing 17 (2006), 1005-1017. pdf

[51] B. Keszegh, J. Pach, D. Pálvölgyi, G. Tóth: Drawing cubic graphs with at most five slopes, Computational Geometry: Theory and Applications 40, (2008), 138-147. Also in: Graph Drawing 2006, Lecture Notes in Computer Science 4372 Springer-Verlag, Berlin, 2007, 114-125. pdf

[52] G. Tóth: Note on the pair-crossing number and the odd-crossing number, Discrete and Computational Geometry 39 (2008), 791-799. Also in: Proceedings of the 19th Canadian Conference on Computational Geometry, Ottawa, Canada, 2007. pdf

[53] J. Pach, G. Tóth: Decomposition of multiple coverings into many parts, Computational Geometry: Theory and Applications 42 (2009), 127-133. Also in: Proceedings of the 23rd Annual Symposium on Computational Geometry, Gyeongju, South-Korea, 2007, 133-137, ACM Press, New York. pdf

[54] J. Cerny, J. Kynčl, G. Tóth: Improvement on the decay of crossing numbers, Graphs and Combinatorics 29 (2013), 365-371. Also in: Graph Drawing 2007, Lecture Notes in Computer Science 4875 Springer-Verlag, Berlin, 2008, 25-30. pdf

[55] J. Pach, G. Tóth: Families of convex sets not representable by points, Indian Statistical Institute Platinum Jubilee Commemorative Volume--Architecture and Algorithms 3, World Scientific, Singapore, 2009, 43-53. pdf

[56] R. Radoičić, G. Tóth: The discharging method in combinatorial geometry and the Pach--Sharir conjecture Proceedings of the Joint Summer Research Conference on Discrete and Computational Geometry, (J. E. Goodman, J. Pach, J. Pollack, eds.), Contemporary Mathematics, AMS, 453 (2008), 319-342. pdf

[57] J. Pach, G. Tóth: Monochromatic empty triangles in two-colored point sets Geometry, Games, Graphs and Education: the Joe Malkevitch Festschrift (S. Garfunkel, R. Nath, eds.), COMAP, Bedford, MA, 2008, 195-198. Also in: Discrete and Applied Mathematics 161 (2013), 1259-1261. pdf

[58] B. Keszegh, J. Pach, D. Pálvölgyi, G. Tóth: Cubic graphs have bounded slope parameter Journal of Graph Algorithms and Applications 14 (2010), 5-17. Also in: Graph Drawing 2008, Lecture Notes in Computer Science 5417 (2009), 50-60. pdf

[59] D. Pálvölgyi, G. Tóth: Convex polygons are cover-decomposable Discrete and Computational Geometry, 43 (2010), 483-496. pdf

[60] A. Dumitrescu, J. Pach, G. Tóth: Drawing Hamiltonian path with no large angles Graph Drawing 2009, Lecture Notes in Computer Science 5849 Springer-Verlag, Berlin, 2010, 3-14. Also in: Electronic Journal of Combinatorics 19/2 (2012), P31, 13 pp. pdf

[61] A. Dumitrescu, J. Pach, G. Tóth: A note on blocking visibilities between points Geombinatorics 19 (2009), 67-73. pdf

[62] J. Barát, G. Tóth: Towards the Albertson conjecture Electronic Journal of Combinatorics 17 (1) R73 pdf

[63] P. Cheilaris, G. Tóth: Graph unique-maximum and conflict-free colorings In: Proceedings of the 7th International Conference on Algorithms and Complexity (CIAC), Lecture Notes in Computer Science 6078 Springer-Verlag, Berlin, 2010, 143-154. Also in: Journal of Discrete Algorithms 9 (2011), 241-251. pdf

[64] J. Pach, G. Tóth: Monotone crossing number Graph Drawing 11, Lecture Notes in Computer Science 7034 (2012), 278-289, Also in: Moscow Journal of Combinatorics and Number Theory 2 (2012), 18-33. pdf

[65] G. Tóth: A better bound for the pair-crossing number Proceedings of the Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, Kyoto 2011, 473-477. Also in: 30 Essays in Geometric Graph Theory (J. Pach, ed.), Springer, New York, 2013, 563-567. pdf

[66] Gy. Károlyi, G. Tóth: Erdős-Szekeres theorem for point sets with forbidden subconfigurations Discrete and Computational Geometry 48 (2012), 441-452. pdf

[67] J. Pach, D. Pálvölgyi, G. Tóth: Survey on the decomposition of of multiple coverings Geometry--Intuitive, Discrete and Convex, Bolyai Math. Soc. Studies, I. B\'ar\'any et al, eds. pdf

[68] J. Pach, R. Radoičić, G. Tóth: Tangled thrackles XIV Spanish Meeting on Computational Geometry, EGC 2011, Dedicated to Ferran Huratado's 60th Birthday, Lecture Notes in Computer Science 7579 (2012), 45-53. Also in: Geombinatorics 21 (2012), no. 4. pdf

[69] D. Gerbner, G. Tóth: Separating families of convex sets Computational Geometry: Theory and Applications 46 (2013), 1056-1058. pdf