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Massachusetts Institute of Technology and Hungarian Academy of Sciences

Abstract

A topological graph is a graph drawn in the plane so that its vertices are represented by points,
and its edges are represented by Jordan curves connecting the corresponding points, with the
property that any two curves have at most one point in common. We define two canonical
classes of topological complete graphs, and prove that every topological complete graph with
n vertices has a canonical subgraph of size at least c log1/8 n, which belongs to one of these
classes. We also show that every complete topological graph with n vertices has a non-crossing
subgraph isomorphic to any fixed tree with at most c log1/6 n vertices.

1 Introduction, results

A topological graph G is a graph drawn in the plane by Jordan curves, any two of which have at
most one point in common. That is, it is defined as a pair {V (G), E(G)}, where V (G) is a set
of points in the plane and E(G) is a set of simple continuous arcs connecting them so that they
satisfy the following conditions:

1. no arc passes through any other element of V (G) different from its endpoints;

2. any two arcs have at most one point in common, which is either a common endpoint or a
proper crossing.
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V (G) and E(G) are the vertex-set and edge set of G, respectively. We say that H is a (topological)
subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Two topological graphs, G and H, are
called weakly isomorphic if there is an incidence preserving one-to-one correspondence between
{V (G), E(G)} and {V (H), E(H)} such that two edges of G intersect if and only if the corresponding
edges of H do (see [C81]). If all edges of a topological graph are straight-line segments, then it is
called a geometric graph. A geometric graph, whose vertices are in convex position, is called convex.
Obviously, any two complete convex geometric graphs with m vertices are weakly isomorphic to
each other, and to the convex geometric graph Cm, whose edge set consists of all sides and chords
of a regular m-gon (see Fig. 1.).
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Fig. 1: The convex geometric graph Cm.

The fairly extensive literature on topological graphs focuses on very few special questions,
and there is no standard terminology. For topological graphs, Erdős and Guy [EG73] (see also
[AR88]) use the term “good drawings”, while Gronau, Harborth, Mengersen, and Thürmann
[GH90], [HM74], [HM90], [HT94] simply call them “drawings”. For a complete topological graph,
Ringel [R64] and Mengersen [M78] use the term “immersion”. The most popular problems in this
field are Turán’s Brick Factory Problem [T77] (Zarankiewicz’s Conjecture [G69] and other prob-
lems about crossing numbers, i.e., about the minimum number of crossings in certain drawings of
a graph [PT98]) and Conway’s Thrackle Conjecture [W71], [LPS97], [CN00] (and other problems
about the maximum number of crossings in certain drawings of a graph [HM92]).

The systematic study of geometric graphs was initiated by Erdős, Avital–Hanani [AH66], Kupitz
[K79], and Perles. (See [P99] and [PA95], Chapter 14, for the most recent surveys on the subject.)
It is not hard to see that every complete geometric graph Kn of n vertices has a non-crossing
subgraph isomorphic to any triangulation of a cycle of length n (cf. [GMPP91]). Consequently,
Kn has a non-crossing subtree isomorphic to any fixed tree of n vertices. In particular, Kn has a
non-crossing path of n vertices and a non-crossing matching of size bn/2c. On the other hand, it
is known that Kn has at least constant times

√
n pairwise crossing edges [AEG94]. Our aim is to
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establish analogous results for topological graphs.

Theorem 1. Every topological complete graph of n vertices has a non-crossing subgraph isomorphic
to any fixed tree T with at most c log1/6 n vertices. In particular, it contains a non-crossing path
with at least c log1/6 n vertices.

According to a wellknown theorem of Erdős and Szekeres [ES35],[ES60], any set of n points in
general position in the plane contains a subset with at least c log n elements which form the vertex
set of a convex polygon. (Throughout this note, the letter c appearing in different assertions denote
unrelated positive constants. The best known bound in the last statement is due Tóth and Valtr
[TV98].) The Erdős-Szekeres Theorem can be reformulated, as follows.

Erdős-Szekeres Theorem. Every complete geometric graph with n vertices has a complete geo-
metric subgraph, weakly isomorphic to a convex complete graph Cm with m ≥ c log n vertices.

The situation is more complicated for topological graphs. In their study of topological complete
graphs with m vertices and with the maximum possible number,

(m
4

)

, of edge crossings, Harborth
and Mengersen [HM92] found a drawing which contains no subgraph weakly isomorphic to C5. We
call this drawing, depicted in Figure 2, twisted, and denote it by Tm.

1v v2 v3 v4 v5 v6

Fig. 2: The twisted drawing Tm.

We show that one cannot avoid both Cm and Tm in a sufficiently large complete topological
graph.

Theorem 2. Every complete topological graph with n vertices has a complete topological subgraph
with m ≥ c log1/8 n vertices, which is weakly isomorphic either to a convex complete graph Cm or
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to a twisted complete graph Tm.

The arguments in the next section show that Theorem 2 easily implies a somewhat weaker
version of Theorem 1, where log1/6 n is replaced by log1/8 n.

2 Proofs

Before we turn to the proofs, we rephrase the definitions of convex and twisted complete topological
graphs.

Definition 2.1. Let Km be a complete topological graph on m vertices. If there is an enumeration
of the vertices, {u1, u2, . . . , um}, such that

(i) two edges, uiuj (i < j) and ukul (k < l), cross each other if and only if i < k < j < l or
k < i < l < j, then Km is called convex;

(ii) two edges, uiuj (i < j) and ukul (k < l), cross each other if and only if i < k < l < j or
k < i < j < l, then Km is called twisted.

Let K be a fixed complete topological graph with n + 1 vertices. The edges of K divide the
plane into several cells, precisely one of which is unbounded. Without loss of generality, we can
assume that there is a vertex v0 ∈ V (K) on the boundary of the unbounded cell. Otherwise, we
can apply a stereographic projection to transform K into a drawing on a sphere, and then, by
another projection, we can turn it into a topological graph weakly isomorphic to K, which satisfies
the required property.

Consider all edges emanating from v0, and denote their other endpoints by v1, v2, . . . , vn, in
clockwise order. Color the triples vivjvk, 1 ≤ i < j < k ≤ n with eight different colors, according
to the following rules. Each color is represented by a zero-one sequence abc of length 3. For any
i < j < k,

1. set a = 0 if the edges vivj , v0vk ∈ E(K) do not cross, and let a = 1 otherwise;

2. set b = 0 if the edges vivk, v0vj ∈ E(K) do not cross, and let b = 1 otherwise;

3. set c = 0 if the edges vjvk, v0vi ∈ E(K) do not cross, and let c = 1 otherwise.

It is easy to see that the complete topological subgraph of K induced by the vertices v0, vi, vj , vk

(as any other complete topological graph with 4 vertices) has at most one pair of crossing edges.
Therefore, we have

Claim 2.2. None of the colors 011, 101, 110, or 111 can occur.
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Fig. 3: All triples are of type 000, 010, 001, and 100, respectively.

Proof of Theorem 1: Let G be a topological complete graph with an (n + 1)-element vertex
set V . Use the same numbering, v0, v1, . . . , vn, of the vertices as in the previous section. For
any 0 < i < j, we say that vi precedes vj (in notation, vi ≺ vj). As before, color the triples
vivjvk (1 ≤ i < j < k ≤ n) with four colors, 000, 100, 010, and 001.

Claim 2.3. There exists an r-element subset U := {u1, u2, . . . , ur} ⊂ {v1, v2, . . . , vn}, r ≥
√

log4 (n + 1) such that the triples uiujuk and uiujul have the same color for any i < j < k < l.

Proof: The construction is recursive. Let U2 := {v1, v2} and V2 := V \ {v1, v2}. Suppose that, for
some 2 ≤ p < m, we have already found two subsets Up = {u1, u2, . . . , up} and Vp ⊂ V with the
properties

1. u1 ≺ u2 ≺ · · · ≺ up,

2. every element of Up precedes all elements of Vp,

3. |Vp| ≥ |Vp−1|−1

4p .

Let up+1 be the smallest element of Vp with respect to the ordering ‘≺.’ Since we used four colors for
coloring the triples, there is a subset W ⊂ Vp \ {up+1} with |W | ≥ (|Vp| − 1) /4p such that, for each
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1 ≤ i ≤ p, all triples uiup+1w (w ∈ W ) have the same color. Let Up+1 := Up ∪ {up+1} and Vp+1 :=
W . An easy computation shows that this procedure can be repeated at least d

√

log4 (n + 1)e times.
2

Define the type of an edge uiuj (i < j < m) as the color of a triple uiujuk for any k > j. The
type of uiur can be defined arbitrarily.

Let G(100) and G(001) denote the topological subgraphs of G consisting of all edges of type
100 and 001, resp., whose both endpoints belong to U = {u1, u2, . . . , ur}. The topological subgraph
consisting of all other edges of G induced by U (of types 000 and 010) is denoted by G ′.

Claim 2.4. Let i < j < k < m.
(i) If uiuj and ujuk belong to G(100), then so does uiuk.
(ii) If uiuj and uiuk belong to G(001), then so does ujuk.

Proof: If uiuj is of type 100, it must cross both v0uk and v0ur. If the type of ujuk is also 100, it
must cross v0um, too. Using the assumption that two edges that share an endpoint cannot have
any other point in common, we obtain that uiuk must cross v0um, which implies that its type is
also 100 (see Fig. 3). This proves part (i). Part (ii) can be established similarly. 2

u u u u
i j

k r

v0

Fig. 4: uiuk must cross v0ur.

Claim 2.5. If G(100), G(001), or G′ contains a complete subgraph of size m := dr1/3e, then G has
a non-crossing subgraph isomorphic to any tree of m vertices.

Proof: Suppose that w1 ≺ w2 ≺ . . . ≺ wm induce a complete (topological) subgraph in G(100). It
is easy to see that this subgraph is twisted, i.e., it is weakly isomorphic to Tm. Take an arbitrary
tree T with m vertices. Starting at any vertex z1 ∈ V (T ), explore all other vertices of T using
breadth-first search. Let z1, z2, . . . , zm be a numbering of the elements of V (T ), in the order in
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which they are encountered by the algorithm. Then the embedding f(zi) = wi (1 ≤ i ≤ r) maps T
into a non-crossing copy of T in G(100), and we are done.

The case when G(001) contains a complete subgraph of size m can be treated similarly.
Assume now that G′ has a complete subgraph with m vertices, w1 ≺ w2 ≺ . . . ≺ wr. It is easy

to see that if two edges, wiwj (i < j) and wkwl (k < l), cross each other, then we have i < k < j < l
or k < i < l < j. In other words, if two edges of this subgraph cross each other, the corresponding
edges also cross in a drawing on the same vertex set, weakly isomorphic to the convex drawing Cm.
Clearly, Cm contains a non-crossing copy of every tree with m vertices, so the same is true for G ′.
2

In view of the last claim, it remains to prove that at least one of G(100), G(001), and G ′ has a
complete subgraph of size m = dr1/3e. Suppose, in order to obtain a contradiction, that this is not
the case.

If some element u ∈ U = {u1, u2, . . . , ur} had at least m − 1 larger neighbors in G(001) with
respect to the ordering ≺, then, by Claim 2.4 (ii), these neighbors together with u would induce a
complete subgraph in G(001), a contradiction.

Now we recursively construct a sequence w1 ≺ w2 ≺ . . . consisting of at least r2/3 elements of
U , which form an independent set in G(001) (i.e., they induce a complete subgraph in G(100)∪G ′).

Let W0 := ∅ and U0 := {u1, u2, . . . , ur}. Suppose that, for some p < m2/3, we have already
found two subsets Wp = {w1, w2, . . . , wp} and Up ⊂ {u1, u2, . . . , ur}, such that

1. Wp is an independent set in G(001),

2. every element of Wp precedes every element of Up,

3. there is no edge between Wp and Up,

4. |Up| ≥ r − p(m − 1).

If Up 6= ∅, let wp+1 be the smallest element of Up with respect to the ordering ≺, and set Wp+1 :=
Wp ∪ {wp+1}. Let Up+1 denote the set obtained from Up by the deletion of wp+1 and its larger
neighbors. Clearly, we have |Up+1| ≥ |Up| − m + 1, so that this procedure can be repeated at least
dr2/3e times.

Define the rank of any element w ∈ W := {w1, w2, . . .}, as the number of vertices of the longest
monotone path (with respect to ≺) which ends at w in the subgraph of G(100) induced by W .
There is no element whose rank is at least r1/3, otherwise, by Claim 2.4 (i), the vertices of the
corresponding path would induce a complete subgraph of size at least m in G(100), contradicting
our assumptions.

Therefore, we can suppose that at least r1/3 elements of W have the same rank. According to
the definitions, these elements form an independent set in G(100) as well as in G(001). Thus, they
induce a complete subgraph in G′, again a contradiction. This proves Theorem 1.
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Proof of Theorem 2: Let m = dr1/4e now. Just like in the proof of Theorem 1, one can show
that either one of G(100) and G(001) has a complete subgraph of size m, or G′ has a complete
subgraph of size s = dr1/2e. In cases when G(100) or G(001) has a complete subgraph of size m, we
are done because that subgraphs are twisted (See Claim 2.2). Assume now that G ′ has a complete
subgraph G′′ of size s.

Define the rank of any vertex w of G′′ as the length of the longest path w1 ≺ w2 ≺ . . . ≺ wk = w
in G′′ with all edges wiwi+1 of type 000.

Suppose first that all vertices have rank less than m. Since m ≥ √
s, there are m vertices of

G′′ of the same rank, so all edges among them are of type 010, therefore they induce a complete
convex topological graph of m vertices.

So, we can assume that there is a vertex of rank m, that is, there are vertices of G ′′ w1 ≺ w2 ≺
. . . ≺ wm with all edges wiwi+1 of type 000.

v0

iz z+
i

zk
zj

Fig. 5: z+
i zj is also of type 010.

Suppose that there is a triple zi ≺ zj ≺ zk ⊂ w1 ≺ w2 ≺ . . . ≺ wm of color 010. Then zizj

is of type 010. Choose a closest pair zi ≺ zj of type 010 on the path w1 ≺ w2 ≺ . . . ≺ wm. The
vertex next to zi in the path is denoted by z+

i . Clearly z+
i 6= zj and z+

i v0 has no crossing with
the edge zizk, because ziz

+
i has type 000. But then z+

i ≺ zj ≺ zk should have color 010 too, so
z+
i zj is also of type 010 contradicting the “minimality” of zi ≺ zj . Consequently, all edges among

w1 ≺ w2 ≺ . . . ≺ wm are of type 000, therefore they induce a complete convex topological graph of
m vertices.

3 Concluding remarks

I. The following statement is a direct corollary of the first result in [PSS96].
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Theorem 3.1. Every complete topological graph of n vertices contains at least c log n/ log log n
pairwise crossing edges.

II. Both Cm and Tm, the convex and the twisted topological graphs with m vertices, respectively,
determine precisely

(m
4

)

edge crossings. Therefore, the following theorem of Harborth, Mengersen,
and Schelp [HMS95] is an immediate consequence of Theorem 2.

Corollary 3.2 For any positive integer m, there exists a smallest number n(m) such that every
complete topological graph with at least n(m) vertices has a complete subgraph with m vertices and
with

(m
4

)

crossings between its edges.

In fact, for large values of m, Theorem 2 implies a better bound on the function n(m) than the
proof given in [HMS95].

III. Let F denote the graph obtained from a complete graph of 5 vertices by subdividing each
of its edges with an extra vertex. Given a complete topological graph Kn of n vertices, define an
abstract graph G. Let the vertex set of G consist of bn/2c edges of Kn, no two of which share an
endpoint. Let two vertices, e, e′ ∈ E(Kn), be joined by an edge of G if and only if e and e′ cross
each other. It is easy to see that G does not contain F as an induced subgraph (see e.g. [EET76]).

It follows from a theorem of Erdős and Hajnal [EH89] that, if a graph with m vertices does not
contain some fixed induced subgraph F , then it must have either an empty or a complete subgraph

with at least ec
√

log m vertices, where c > 0 is a constant depending on F . Putting these two facts
together, we obtain

Corollary 3.3. Any topological complete graph with n vertices has at least ec
√

log n edges that are
either pairwise disjoint or pairwise crossing.

This suggests that the bounds in Theorems 1 and 3.2 are far from being optimal. We conjecture
that both estimates can be replaced by nδ, for some δ > 0. As was pointed out in the Introduction,
this holds for geometric graphs.

IV. In the case of geometric graphs, one can introduce several partial orderings on the set
of edges (cf. [PT94], [PA95]). This allows us to apply Dilworth’s Theorem in place of Ramsey’s
Theorem, to find much larger homogeneous substructures.
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geteilten Graphen (German), Math. Nachr. 85 (1978), 131–139.

[P99] J. Pach: Geometric graph theory, in: Surveys in Combinatorics, 1999 (Canterbury), London Math.
Soc. Lecture Note Ser. 267, Cambridge Univ. Press, Cambridge, 1999, 167–200.

[PA95] J. Pach and P. K. Agarwal: Combinatorial Geometry, Wiley-Interscience, New York, 1995.

[PSS96] J. Pach, F. Shahrokhi, and M. Szegedy: Applications of crossing numbers, Algorithmica 16 (1996),
111–117.
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