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Abstract

Let f(k,n), n > k > 3, denote the smallest positive integer such that any set of
f(k,n) points, in general position in the plane, contains n points whose convex hull has
at least k vertices. We give lower and upper estimates on f(k,n), both in the form

O (kn) + 204,

1 Introduction

A classical result of Erdds and Szekeres [ES1] states that, for every integer n > 3 there is a
smallest positive integer g(n) such that among any g(n) points, in general position in the
plane, there exist n points in convex position. The best known bounds for g(n) are the

following.

Theorem 1.1. [ES2, TV]
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The following generalization was motivated in [K]. For integers n > k > 3, let f(k,n) be
the smallest number with the property that among any f(k,n) points in general position
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in the plane, there exist n points whose convex hull has at least k vertices. Clearly f(k,n)
exists and satisfies g(k) < f(k,n) < g(n).

It follows from a canonical version of the Erdds-Szekeres theorem (see [BV, PS]) that,
for any fixed k, f(k,n) is a linear function of n. The coefficient of n however is of order
20U(k?)

In this note we obtain the following improvements.

Theorem 1.2. For arbitrary integers n > k > 3,

W +2F24 < f(k,n) < 2kn + 2% .

Better results are available for small values of k.
Theorem 1.3. f(4,n) = [3n/2] — 1.
Theorem 1.4. 2n — 1 < f(5,n) < 7n — 23.

We prove these results in Sections 2 and 3, respectively. Section 4 contains the proof of
the upper bound in Theorem 1.2, while the lower bound is proved in Section 5.

2 The case k = 4

Proof of Theorem 1.3. The lower bound follows from Theorem 1.2. To prove the
upper bound, let P denote any set of at least [3n/2] — 1 points, in general position in the
plane. If conv(P) has at least 4 vertices, then we are done. Therefore we may assume that
conv(P) has only 3 vertices which we denote, in counter-clockwise order, by p1, p2, ps. Let
q1 = p1. We define the points gy, ..., q[, 2] recursively as follows. Suppose that, for some
i < [n/2] —1 the convex hull of P\ {qi,...,q;} has at least 4 vertices. In this case we have
found at least [3n/2] —1—¢ > n points whose convex hull has at least 4 vertices, and we are
done. Thus, we may assume that the convex hull of P\ {q1,...,¢;} is a triangle pop3q; 1.
This way we have obtained points g1 = p1,q2, ... ,q[n/2) such that

P' =P\ {qu,...,4q[n/2),P2, 3} C Apap3qin/a) C Dpapsqina)-1 C - .. C Apapsqr -

Consider the points ga, . . . , q[, /27, in counter-clockwise order of visibility from p;, and denote
by r1 and r the first and the last points, respectively. Let s; (i = 1,2) denote the intersection
point of line p;r; with segment pops. Note that |P'| > n — 3. Thus, we may assume,
without any loss of generality, that the convex quadrilateral porirsse contains at least
[(n — 3)/2] points of P'. Denote the set of these points by P”. In this case p;,ps and



ro9 are extremal points of the set P* = P" U {ql,qg,...,q{n/g],pg}, which has at least
[(n —3)/2] + [n/2] + 1 = n elements. Moreover, every point of P’ lies inside triangle
paTap3, consequently, every point of P” lies inside triangle psrosy. Thus, P* has at least
one more extremal point. This completes the proof of the theorem.

3 The method of convex and concave chains

Theorem 3.1. For arbitrary integers n > k > 3,
2k —5
f(k,m) < (k—2>n'

Proof. Fix k an n. Let P denote a set of points, in general position in the plane, whose
cardinality IV is large enough. Let p denote one of its extremal points, and number the
other points of P as p1,p2,...,pN_1, in clockwise order of visibility from p. A convex chain
of length £ with left (resp. right) endpoint p;, (resp. p;,) is any sequence of £’ > £ points
DiysPigs -+ Piy (11 < iz < ... <ig), such that pp; i, ...p;, is a convex (¢ + 1)-gon which
contains at least n — k — #' + £ points of P in its interior. Similarly, a concave chain of
length ¢ with left (resp. right) endpoint p;, (resp. p;,) is any sequence of £' > £ points
DiysPigs - -+ Pip (11 <id2 <...<igp), such that the region bounded by the segments p;, p;; .,
(1 <j <£—1) and the rays starting at point p and incident to points p; and py, respectively,
is an unbounded convex region which contains at least n—k—#'+/ points of P in its interior.

For i,j > 2, let gi (7, j) denote the smallest integer such that, for an arbitrary set P with
N large enough, and for an arbitrary choice of its extremal point p, any g (7, j)-element
subset of {p1,p2,...,pn—_1} contains either a concave chain of length 7 or a convex chain of
length j. When it does not cause any ambiguity, we simply write g(¢, j) for gi n(¢,7). It is
immediate, that gx ,(2,7) = gkn(3,2) =n — k + 2 for any 4,5 > 2.

Lemma 3.2. Fori,j > 3, we have gy n(%,7) < gkpn(t — 1,7) + grn(é, 5 —1) — 1.

Proof. The proof is analogous to one of the original proofs of the Erdds-Szekeres theorem
[ES1]. Suppose that N is large enough, and let S C {p1,p2,...,o8v-1}, |S| =9(i — 1,j) +
g(i,j —1) — 1. If S contains a concave chain of length i, we are done. Otherwise, since
|S| > g(i,7 — 1), it contains a convex chain of length j — 1. Delete its left endpoint from S.
Since we still have at least g(%,j — 1) points, there is another convex chain of length j — 1.
Delete its left endpoint from S again and continue as long as the remaining set has at least
g(i,7 — 1) points. We deleted g(i — 1,3) points of S, all of them are left endpoints of a
convex chain of length j — 1. By definition of g(i — 1, j), the set of deleted points contains
either a convex chain of size j or a concave chain of size 1 — 1. In the first case we are done.
In the second case, let ¢ be the right endpoint of that concave chain and let r be its second



point from the right. ¢ is also the left endpoint of some convex chain of length j — 1, let s
be its second point from the left. Now it is easy to see that depending on the angle Zrgs,
either the concave chain can be extended by s or the convex chain can be extended by 7,
concluding the proof of the lemma.

Figure 1.

Since gk (%,2) = gkn(2,5) < n, it follows by induction that gy ,(i,j) < (“:154)7&, in

particular, gg,(k,k — 1) < (2,:“:25)n — 1. Consequently, if N > (2f:25)n, then either P
contains a concave chain of length k, or it contains a convex chain of length k — 1, and the
result follows.

Proof of Theorem 1.4. The lower bound follows from Theorem 1.2. To prove the upper
bound, notice first that g ,(3,3) = n — k + 3. By repeated application of Lemma 3.2 we

obtain
gk,n(5a4) = 9(574) < 9(4-7 4) +g(57 3) -1
< 9(374) +2g(473) +g(572) -3
S 9(274) +3g(3a3) + 29(47 2) +g(57 2) -6
=3n—k+3)+4n—k+2)—6
=Tn—Tk+11.
Consequently, f(5,n) < g5,(5,4) +1 < 7n —23.

4 The upper bound

Proof of Theorem 1.2 (upper bound). Obviously, f(3,n) = n. Thus, in the sequel we
assume k > 4. We prove the following estimate:

f(k,n) < max{(k —1)(2n — 8k + 19),0} + max{n — k + 1, g(4k — 10)} .
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Combining this with Theorem 1.1 the upper bound in Theorem 1.2 follows.

Let P be any set of N > max{(k—1)(2n—8k+19),0}+max{n—k+1, g(4k—10)} points,
in general position in the plane. Peel off convex layers from P as follows. Let Py = P and
Qo be the vertices of the convex hull of P. If we already have P; and Q;, let P11 = P\ Q;
and let ;11 be the set of vertices of the convex hull of P;1. If there is a smallest integer
i < 2n — 8k + 19 such that |@Q;| > k, then it is easy to check that |P;| > n. That is, we
found at least n points whose convex hull has at least k vertices, and we are done.

We can therefore assume that |Q;| < k—1 for 1 <7 <t = max{2n—8k+19,0}, implying
that P! = P,;; has at least g(4k — 10) points. Consequently, P’ contains the vertex set of a
convex polygon K = p1,po, ..., Pik—10, in counter-clockwise order. The segments py_opr_1
and p3i_7p3k_g are opposite sides of the polygon K, and we may assume, without any loss
of generality, that rays r1, starting at py_o and passing through px_1, and ro, starting at
p3k—e and passing through ps;_7, do not intersect each other.

Figure 2.

Consider any open half plane H whose supporting line is incident to p; such that H
contains points po, ps,...psx_10- The polygonal chains (Uf;f’pipiﬂ) Ury and p1pag—_10 U
(U?ﬁg,?_(ipipiﬂ) Ury divide H into 3 open regions Hy, Hy, Hs, of which the middle one, H>,
contains vertices pg, Pg+1,- - - ,P3x—s of K (see the Figure). Thus, |P N Hy| > 2k — 7.

It follows from the construction of the convex layers ; that HNQ; # @ fori =1,2,...,t.
Consequently, |P N H| >t + 4k — 11. Define

Ry = (PN (HyUH3))U{p2,p3,...,pk-1}



and

Ry = (PN (H3U Ha)) U{p3k—7,P3k6:---,Pak—10} »
then we have |R;|+|Ra| = |PNH|+|PNHy| > t+6k—18 > 2n—2k+1. If |[Ry| > n—k+1,
then Ry U {p1,p2,...,pk_1} contains at least n points, and has at least k extremal points,
including p1,p2,...,pk—1. We argue similarly if |Ry| > n —k + 1.

5 The construction

Proof of Theorem 1.2 (lower bound). In fact, we prove that [WJ +ay < f(k,n),
where a; = 2lk/2]=3 4 1if k > 6 and a; = 1 otherwise. First, for any n > k > 4 we obtain

a set Py, of [WJ points, in general position in the plane, which does not contain
n points whose convex hull has at least k vertices. Let vi,vs,...,v5_1 denote, in this
order, the vertices of a regular (k — 1)-gon. Write vy = vg_1, vy = v1 and vg1 = vo.
For every 1 < i < k — 1, construct points vj; = v;, v, ..., vy, where t; = |[(n — 1)/2]
if 4 is odd, and t; = [(n — 1)/2] if i is even, such that v;vjov;3...vi;Vi41 IS a convex
polygon lying in the intersection of triangles v;_1v;v; 41 and v;v;41v;42 and, with the notation
K; = {vi,vio, ..., vit, }, every line v;;v;;, separates K; 1 from v;_;.
LI

N
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Figure 3.
Claim 5.1. Suppose u1,us,...,u, € Py, are vertices of a conver polygon K.

o (i) If three of the u, are vertices of some K;, then K lies in the triangle v;v;+1vit2,
with vertex v;1o omitted.

e (i) If two of the uy are vertices of some K; and K does not lie in triangle v;v;11v;+o9,
with vertex viyo omitted, then none of the uq is of the form v 1);.



It follows that if a subset of Py, does not lie in triangle v;v;{1v;12, with vertex v;;2
omitted, then its convex hull may have at most £ —1 vertices. On the other hand if a subset
of Py, does lie in triangle v;v;11v;42, with vertex v; o omitted, then it has at most n — 1
points. Thus, Py , does not contain n points whose convex hull has at least k vertices, as
we claimed above. This proves the lower bound in the case k < 6.

If £ > 6 we can extend Py, with 21k/2]=3 points as follows. The segments v;v; divide
the convex polygon v1vs ... v, 1 into finitely many regions. Denote by S the region which
contains the centre of the polygon if £ — 1 is odd. If £ — 1 is even, then there are several
regions which have the centre of the polygon on their boundary, let in this case S be one of
these regions.

Claim 5.2. Any line through an inner point of S which is not incident to any v; separates
k/2 of the v; from the others if k is even; and separates either |k/2| or [k/2] of the v; from
the others if k is odd.

In view of Theorem 1.1, there is a set Ej, of 21¥/2/=3 points, in general position in the
plane, which does not contain |k/2]| — 1 points in convex position. Let Sy denote the image
of Ej under a suitable similarity such that Sy lies inside the region S and P,éyn = Py nUSg
is in general position. We claim that Pj , does not contain n points whose convex hull has
at least k vertices. ,

Notice first that S, and so Sk, too, is disjoint from any triangle v;v;11v;40. Thus, if
the vertex set of the convex hull of some subset of P,é,n is disjoint from S, then either the
convex hull has at most k£ — 1 vertices or the subset itself has less than n points. On the
other hand, if the vertex set of the convex hull of some subset of P,é,n is not disjoint from
Sk, then the convex hull has at most |k/2] — 2 vertices in S;. Moreover, it follows from
Claims 5.2 and 5.1(ii) that the convex hull cannot have more than [k/2] 4+ 1 vertices in
Py, ;.. Altogether, it cannot have more than k — 1 vertices in P,;,n.

This completes the proof of the theorem.

Remark. Most likely Sy can be replaced by a larger set, maybe even of the size ¢2?*, but
any essential improvement would certainly require a lot of technical details.

Acknowledgments. Part of this research has been done while the first author visited the
Institute for Theoretical Computer Science at the ETH Zurich. He is very grateful for the
stimulating atmosphere and the hospitality of the Institute.



References

[BV]

[ES1]

[ES2]

K]

[PS]

[TV]

I. Barany and P. Valtr, A positive fraction Erdés-Szekeres theorem, Discrete and
Computational Geometry 19 (1998), 335-342.

P. Erd6s and G. Szekeres, A combinatorial problem in geometry, Compositio Math-
ematica 2 (1935), 463-470.

P. Erd6és and G. Szekeres, On some extremum problems in elementary geometry,
Ann. Universitatis Scientiarum Budapestinensis, Eétvos, Sectio Mathematica 3/4
(1960-61), 53-62.

Gy. Kérolyi, Ramsey-remainder for convex sets and the Erdds-Szekeres theorem,
Discrete Applied Mathematics, to appear.

J. Pach and J. Solymosi, Canonical theorems for convex sets, Discrete and Compu-
tational Geometry 19 (1998), 427-435.

G. Téth and P. Valtr, Note on the Erdés-Szekeres theorem, Discrete and Computa-
tional Geometry 19 (1998), 457-459.



