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December 18, 2008

Abstract

Let G be a graph without loops or multiple edges drawn in the plane. It is shown that, for any
k, if G has at least Ckn edges and n vertices, then it contains three sets of k edges, such that every
edge in any of the sets crosses all edges in the other two sets. Furthermore, two of the three sets
can be chosen such that all k edges in the set have a common vertex.

1 Introduction

A topological graph is a graph drawn in the plane with no loops or multiple edges so that its vertices
are represented by points, and its edges by Jordan curves connecting the corresponding points. We
do not distinguish these points and curves of the topological graph from the vertices and edges of the
underlying abstract graph they represent. We assume that (i) the edges of a topological graph do not
pass through any vertex, (ii) two edges share a finite number of interior points and they properly cross
each other, and (iii) no three edges cross at the same point. Conditions (ii) and (iii) are simplifying
assumptions only, graph drawings violating them can be modified to satisfy them without effecting
which pairs of edges cross. A topological graph is called simple if any pair of its edges have at most
one point in common (either a common endpoint or a crossing).

It is well known that every planar graph with n vertices has at most 3n − 6 edges. Equivalently,
every topological graph G with n vertices and more than 3n − 6 edges has a pair of crossing edges.
This simple statement was generalized in several directions.

Pach et al. [PT97], [PRTT04] proved that a topological graph of n vertices and more than (k +
2)(n − 2) edges must have k edges that cross the same edge. This bound is tight for k = 1, 2, 3, but
can be substantially improved for large values of k.

For k ≥ 2, let fk(n) (resp. f s
k(n)) be the maximum number of edges of a topological graph (resp.

simple topological graph) on n vertices and no k pairwise crossing edges. Agarwal et al. [AAPPS97]
proved (for simple topological graphs) and then, with a shorter and more general argument, Pach et al.
[PRT03] proved that for some c > 0, every topological graph with n vertices and more than cn edges

∗A preliminary version appeared in [TT05]
†School of Computing Science, Simon Fraser University and Rényi Institute, Hungarian Academy of Sciences, Bu-
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has three pairwise crossing edges. That is, f s
3 (n) ≤ f3(n) ≤ cn. Very recently, Ackerman and Tardos

[AT07] proved that 7n − O(1) ≤ f3(n) ≤ 8n, and f s
3 (n) = 6.5n + Θ(1). Moreover, Ackerman [A06]

managed to prove that f4(n) ≤ 36n. For m ≥ 5 the best known upper bounds are f s
m(n) ≤ cn log2m−8

and fm(n) ≤ c′n log4m−16 n (see [PSS96], [PT05], [A06]), while the best known lower bounds are all
linear functions of n and they are conjectured to be much closer to the truth.

Conjecture 1. For every k ≥ 3 there is a ck > 0 such that every topological graph with n vertices and
Ckn edges contains k pairwise crossing edges.

In [PRT04], the results about three pairwise crossing edges were further generalized: for every
integer k > 0, there exists a constant ck > 0, such that every topological graph with n vertices and
more than ckn edges has k + 2 edges such that the first two cross each other and both of them cross
the remaining k edges (see Fig. 1a).

In [PPST05] another generalization was shown. For any k and l there is a constant ck,l with the
following property. Every topological graph with n vertices and more than ck,ln edges has k + l edges
such that the first k have a common vertex, and each of them cross all of the remaining l edges (see
Fig. 1b).

(a) (b)

Figure 1: A topological graph without either configuration has only a linear number of edges.

In this paper we prove a common generalization of the above results.

Let k be a positive integer. The edges A∪B∪X of a topological graph form a k-star grid if A is a
set of k edges incident to a common endpoint x, B is a set of k edges incident to a common endpoint
y and any edge from A crosses any edge from B, furthermore X also contains k edges and any edge
in X crosses all edges in A ∪ B. See Figure 2. In this definition we allow the case x = y and we also
allow the edges of X to be incident to x or y. These pathological cases are not possible in a simple
topological graph.

Theorem 1. For any k ≥ 1, there is a constant Ck such that every topological graph with n vertices
and at least Ckn edges contains a k-star grid.

We did not attempt to optimize our proof for Ck but note that this proof gives Ck that is triply
exponential in k. The condition that all edges in the set A (resp. B) have a common endpoint is
essential; our proof does not work if we want to have independent edges in the set A (or B). The
situation is very similar with the previous results [PRT04], [PPST05], and we cannot even prove the
following well-established conjecture:
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Conjecture 2. For every k ≥ 2 there is a Ck > 0 such that every topological graph with n vertices
and Ckn edges contains k + 2 independent edges such that the first two of them cross each of the last
k.

y

x

Figure 2: A 4-star grid.

2 Proof of the Theorem

The proof of Theorem 1 is rather technical and consists of several steps. We give an overview first and
indicate which steps of the proofs can be eliminated if we only consider simple topological graphs. Note
that we do not strive for absolute preciosity in this overview. The reader finds the precise definitions
later in the proof.

For the proof we fix k, take an arbitrary topological graph F . We let C = |E(F )|/|V (F )|. Our
goal is to prove that if C is large enough (as a function of k), then we find a k-star grid in F . This
clearly establishes Theorem 1.

First we take a densest subgraph F0 of F and concentrate on F0 only.

Next we redraw F0, i. e., we take another topological graph G0 which has the same underlying
abstract graph as F0 but eliminates certain unnecessary crossings. This step of the proof is not needed
if F is a simple topological graph, i. e., we may take G0 = F0.

We then use subdivisions, i. e., we introduce vertices at certain edge-crossings. We obtain a subdi-
vision G1 of G0 with a crossing-free spanning tree T . This step is taken from [PRT04] and [PPST05].

We further subdivide G1 to obtain G2 and its crossing-free spanning subgraph H with no proper
cut. This means that any two consecutive crossing points of any edge e in G2 \ H with H are with
“close-by” edges of H. This step is taken from [PPST05]. In this and the previous step we make sure
that the size (number of vertices) of the graph increases by a constant factor only. Note also that
subdivisions in these two steps can create k-star grids. This does not happen for simple topological
graphs for k > 2.
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The next step represents the new idea in this paper. For many vertices we find a large number of
edges emanating from that vertex with the property that they go “parallel” (with respect to H) for a
long time and then one by one they “depart” from the rest of the edges. All these “departures” take
place in separate cells of H. We call these sets of edges bundles.

Using that C is large enough we find a cross-track configuration in G2, i. e., k edges of a bundle,
another k edges of a (perhaps different) bundle such that these 2k edges go parallel through l− 1 cells
of H but still, eventually the first k edges cross the second k edges. For simple topological graphs we
can choose l = k and the proof ends here. Indeed, the 2k edges in the cross-track configuration plus
k edges of H form a k-star grid. In the general case however, some of the edges of H crossed by the
edges in the cross-track configuration may coincide or may be parts of the same edge of G0 separated
only by our subdivision process. We take l to be an exponential function of k and use the following
result of Schaefer and Stefankovič [SS04] to take care of the technical difficulilities mentioned above.

Theorem A. (Schaefer and Stefankovič, [SS04]) Let T be a topological graph. Redraw T so that the
resulting topological graph T ′ satisfies the following two conditions:

(i) If two edges of T ′ cross each other, then the corresponding edges also cross in T ;

(ii) T ′ has the minimum number of crossings among all drawings with property (i).

Now for any i > 0 and any edge e, any 2i consecutive crossings on e arise from at least i different
edges.

By an appication of Theorem A, we show that if l is large enough, then out of the l edges of H
crossed by the parallel track of the edges of the cross-track configuration at least k must come from
distinct edges of G0.

We continue with the detailed execution of the above plan.

Let k ≥ 1 fixed, and let F be a topological graph with n′ vertices and Cn′ edges. Our goal is to
prove that F contains a k-star grid if C is large enough. The bound on C depends on k but not on
n′. This will establish the validity of Theorem 1.

Let F0 be the densest non-empty connected subgraph of F that is, F0 ⊆ F connected and
|E(F0)|/|V (F0)| is maximal. Clearly, the requirement that F0 has to be connected does not change
the value of the maximum, so we have |E(F0)|/|V (F0)| ≥ |E(F )|/|V (F )| = C. Removing a vertex of
F0 of degree d increases the ratio if d < C, therefore each vertex in F0 has degree at least C. Let n
denote the number of vertices of F0. Clearly, n > C so we may assume n ≥ 5.

Redraw F0 so that the resulting topological graph G0 satisfies the following two conditions:

(i) If two edges of G0 cross each other, then the corresponding edges also cross in F0;

(ii) G0 has the minimum number of crossings among all drawings with property (i).

It is enough to find a k-star grid in G0 as property (i) shows that the corresponding edges form a
k-star grid in F0 and thus in F too.

We will apply a subdivision to G0, i. e., we declare a certain intersection point of two edges as a
new vertex and replace each of the two edges by their two segments up to and from that new vertex.
Notice that this way we may create two edges connecting the same pair of vertices, thus we have to
extend our definition of topological graph to allow for this. No pair of vertices will ever be connected
by more than two edges. The graph obtained from G0 by several subdivisions is called a subdivision
of G0. To distinguish from the new vertices of the subdivision, vertices of G0 are called old vertices.
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Notice that for k > 2, subdivision does not introduce a k-star grid in a simple topological graph,
so if G0 is simple it is enough to find a k-star grid in a subdivision of G0. The situation is somewhat
more complex if G0 is not simple. If G0 contains two k-edge stars A and B such that each edge of A is
crossed by each edge of B and another edge e0 crosses every edge in A∪B k times, then the repeated
subdivision of e0 may result in a k-star grid.

Obviously, no edge of G0 intersects itself, otherwise we could reduce the number of crossings
by removing the loop. Suppose that G0 has two distinct edges, e and f , that meet at least twice
(including their common endpoints, in the case they have). A simply connected region whose boundary
is composed of an arc of e and an arc of f is called a lens.

Claim 1. Every lens in G0 has a vertex in its interior.

Proof. Suppose, for a contradiction, that there is a lens ℓ that contains no vertex of G in its interior.
Consider a minimal lens ℓ′ ⊆ ℓ, by containment. Notice that by swapping the two sides of ℓ′, we
could reduce the number of crossings without creating any new pair of crossing edges, contradicting
property (ii) above.

Clearly, the property of having no self-intersecting edge and the property stated in Claim 1 are
both inherited from G0 to its subdivisions.

Let G be a topological graph, H a subgraph of G. Let e be an edge of G not contained in H. We
always consider e with an orientation. Each edge can be considered with either orientation. The edge
e has a finite number of intersection points with edges of H, these points split the Jordan curve e into
a finite number of shorter curves. We call these shorter curves the segments of the edge e determined
by H and denote them by s1(e), s2(e), . . . in the order they appear on e. The dependence on H is not
explicit in the notation but H will always be clear from the context. If e does not cross the edges of
H the entire edge is a single segment.

We consider a crossing-free subgraph H of a topological graph G that is connected and contains
all vertices. Such a graph H subdivides the plane into cells. The boundary of a cell is closed walk in
H that may visit vertices several times and may even pass through an edge twice. The size of a cell is
the length of the corresponding walk, that is, the the number of edges in the walk, with multiplicity.
A segments s of an edge e not in H inherits its orientation from e. It is contained in single cell α, the
endpoints of s are on the boundary of α. We call the cell α and the vertex or edge of the boundary
walk of α where s starts the origin of s. Similarly, α and the vertex or edge of this walk where s ends
is destination of s. Notice that in case the boundary of α visits the relevant vertex or edge more than
once the origin or destination of e contains more information than the vertex or edge itself, it tells us
“which side” of the vertex or edge is involved. If two segments have the same origin and the same
destination we call them parallel and say that their type is the same. If two segments s and s′ have
the same origin but different destinations, then they are contained in the same cell. We say that s
turns left from s′ if the common origin, the destination of s, and the destination of s′ appear in this
order in the clockwise tour of the boundary of the cell. Notice that the common origin must differ
from either of the destinations. A segment with equal origin and destination would define an “empty
lens” contradicting Claim 1. As a consequence, for segments s and s′ with a common origin, either s
and s′ are parallel, or s turns left from s′, or s′ turns left from s.

As in [PRT04] and [PPST05], first we construct a subdivision G1 of G0 that contains a crossing-free
spanning tree T .

Since the abstract underlying graph of G0 is connected, we can choose a sequence of edges
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e1, e2, . . . , en−1 ∈ E(G0) such that e1, e2, . . . , ei form a tree Ti, for every 1 ≤ i ≤ n − 1. In par-
ticular, e1, e2, . . . , en−1 form a spanning tree Tn−1 of G.

Construct the crossing-free topological graphs T̃1, T̃2, . . . , T̃n−1, as follows. Each is a subtree of a
subdivision of G0. Let T̃1 be defined as a topological graph of two vertices, consisting of the single edge
e1. Suppose that T̃i has already been defined for some 1 ≤ i < n− 1, and let v denote the endpoint of
ei+1 that does not belong to Ti. Then we define T̃i+1 as follows. Add to T̃i the piece of ei+1 between
v and its first crossing with T̃i. More precisely, follow the edge ei+1 from v up to the point v′ where
it hits T̃i for the first time. If this is a vertex of T̃i simply add ei+1 to T̃i to get T̃i+1. If v′ is in the
interior of an edge e then we apply subdivision: we introduce v′ as a new vertex. We replace the edge
e of T̃i with the two resulting parts and add the segment of ei+1 between v and v′ to obtain T̃i+1.

We let T = T̃n−1 and G1 be the subdivision of G0 obtained in the process. Note that G1 has n old
and at most n − 2 new vertices.

e

e

T

e5e
e

T

1 2

4

3

~
5 5

Figure 3: Constructing T̃5 from T5.

Next, just like in [PPST05], we further subdivide G1 to obtain G2 and a crossing-free subgraph H
of G2.

Start with H0 = T and G̃0 = G1. Define H1, . . . ,Hu and G̃1, . . . , G̃u recursively, maintaining that
Hi is a crossing-free connected subgraph of a subdivision G̃i of G0. Furthermore Hi is connected, it
contains all vertices of G̃i and all the cells of Hi are of size at least 8. This clearly holds for H0 and
G̃0 if n ≥ 5.

Having defined Hi and G̃i consider the segments of the edges of G̃i as determined by Hi. Let s
be such a segment. By adding s to Hi we mean constructing a subdivision of G̃i by inserting new
vertices for the endpoints of s if necessary, and defining a subgraph Hs

i of it by adding s to Hi. More
precisely, we also have to replace any edge of Hi that contains in its interior an endpoint of s by the
two new edges resulting from the subdivision. Notice that s itself is an edge after the subdivision.
The resulting graph Hs

i is a crossing-free connected spanning subgraph of the resulting subdivision of
G̃i. The cell of Hi containing s is now subdivided into two cells, the other cells remain intact (but
their size may increase). We call s a proper cut of Hi if both new cells of Hs

i are of size at least 8.

If there exists a proper cut of Hi, then we choose one such segment s and set Hi+1 = Hs
i and let

G̃i+1 be the resulting subdivision of G̃i. If there is no proper cut of Hi we set u = i, H = Hu and
G2 = G̃u.

The number of cells starts at 1 cell, at H0 = T , and increases by 1 in every step, so Hi contains
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Figure 4: A proper cut.

i + 1 cells. Each of these cells are of size at least 8, so we have at least 4i + 4 edges in Hi. From the
Euler formula, the number of vertices vi of Hi is at least 3i + 5. As H0 = T contains at most 2n − 2
vertices and we introduce at most 2 new vertices in every step, so we also have vi ≤ 2i + 2n − 2. The
upper and lower bounds on vi imply i ≤ 2n− 7. So the above process terminates in u ≤ 2n− 7 steps.
This proves the following

Claim 2. G2 is a subdivision of G0 with at most 6n − 16 vertices. H is a connected, spanning,
crossing-free subgraph of G2 with no proper cut. H has at most 8n − 24 edges.

We call an old vertex of G2 important if its degree in H is less than 32. By Claim 2, H has less than
n/2 vertices of degree 32 or more. Out of the n old vertices we must have more than n/2 important
vertices.

Let l = 2k+1k2 + 1. Consider an edge e of G2 not in H. Call any l consecutive of the segments
s1(e), s2(e), . . . a track of e. The type of a track is simply the sequence of the types of the l segments,
si(e), . . . , si+l−1(e). Tracks (of possibly different edges) of the same type are called parallel. Consider
two edges e and f of G2 that are not in H. Let d(e, f) be the largest index i ≥ 1 such that for all
1 ≤ j < i the segments sj(e) and sj(f) exist and are parallel. For example, if e and f start at different
vertices or in different cells we have d(e, f) = 1.

Notice that for any origin of a segment at most 24 destinations are possible. For large cells of H
more choices would be possible but they yield proper cuts of H which do not exist by Claim 2. By
the same claim there are less than 32n possible origins and therefore less than 768n types of segments.
The destination of a segment determines the origin of the next segment, therefore there are less than
32 · 24ln different types of tracks.

Let m = 300k · 24l. We call the sequence e1, . . . , e2m of 2m edges of G2 but not in H a bundle
if l ≤ d(e1, e2m) < d(e2, e2m) < . . . < d(e2m−1, e2m). Notice that the edges of a bundle start at a
common vertex. We say that the bundle emanates from this common starting vertex.

Claim 3. If C ≥ Ck := 31 · 242m+l + 31, then there exists a bundle emanating from every important
vertex.
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Proof. Consider an important vertex x. Let S0 be the set of edges of G2 not in H that start at x.
The vertex x has degree at least C in G0 and it has the same degree in its subdivision G2. Its degree
in H is at most 31, so |S0| ≥ C − 31. For i ≥ 1 we define Si to be a subset of maximal size of Si−1

with si(e) existing and having equal type for each e ∈ Si. The number of possible origins for the type
of segment s1(e) of an edge e ∈ S0 is the degree of x in H. Since x is important, at most 31 origins
and at most 744 types of s1(e) may exist for e ∈ S0. Thus, |S1| ≥ |S0|/744. Notice that the type of
si(e) determines if e ends with the segment si(e) and if so, then it determines the ending vertex. So
if one of the edges e ∈ Si ends with its i’th segment, then all does, and they all connect the same
pair of vertices. Thus, as long as |Si| > 2, si+1(e) exists for all e ∈ Si. Furthermore, the type of si(e)
determines the origin of si+1(e). So if |Si| > 2 then |Si+1| ≥ |Si|/24.

The finiteness of the entire topological graph G2 implies that Si = ∅ for large enough i. Let
l ≤ d1 < d2 < . . . < dv be all the indices d ≥ l such that |Sd+1| < |Sd|. The above calculations yield
that |Sd1

| ≥ 242m and Sdi+1 = Sdi+1
≥ 242m−i for i ≤ 2m. We choose ei to be an arbitrary element

of Sdi
\ Sdi+1. We have d(ei, e2m) = di + 1 for i < 2m. This establishes that (e1, . . . , e2m) form a

bundle.

Fix a bundle Bx = {ex
1 , . . . , ex

2m} from every important vertex x. The existence is given by Claim 3.
These will be all the bundles, and in fact all the edges of G2 \ H we consider from now on.

The segments s1(e
x
2m), s2(e

x
2m) . . . , sdx(ex

2m) for dx = d(ex
m, ex

2m) form the backbone of the bundle
Bx. The tracks of ex

2m contained in the backbone are called the vertebras. We denote the vertebra
starting with the segment si(e

x
2m) by txi . Notice that the vertebras interleave: the last l − 1 segments

of a vertebra are the first l − 1 segments of the next vertebra. With any vertebra txi we find m − 1
parallel tracks: the tracks starting with the segments si(e

x
m+1), . . . , si(e

x
2m−1).

Let e = txi and f = tyj be two distinct parallel vertebras. Notice that i > 1 and j > 1 must
hold, since we only consider a single bundle from any (important) vertex. Let e′ and f ′ be the inverse
orientation of the “previous” segments si−1(e

x
2m) and sj−1(e

y
2m), respectively. Notice that e′ and f ′

have the same origin. We say that e < f if e′ turns left from f ′. We also say that e < f if txi−1
and

tyj−1
are parallel, and txi−1

< tyj−1
. Notice that the recursive definition is well founded and it defines

a linear order among parallel vertebras. We call a vertebra extremal if it is smallest or largest among
the vertebras of its type. If e is a non-extremal vertebra we let e+ stand for the next larger vertebra
of the same type, while e− stands for the next smaller vertebra. We say that a vertebra e is special if
it is either extremal or one of e+ or e− is the last vertebra in a backbone.

Claim 4. The number of special vertebras is at most 65 · 24ln.

Proof. We have at most two extremal vertebras for every type, that is at most 64 · 24ln extremal
vertebras. We have one last vertebra in every backbone, that is at most n last vertebras. Each last
vertebra makes its at most two neighbors special, so the claimed bound holds.

We define a cross-track configuration as two sets of k edges such that every edge from the first set
crosses every edge from the second set, and all 2k edges go parallel for a long time. More precisely,
let A and B both be sets of k edges. We say that A ∪ B is a cross-track configuration if the following
conditions are satisfied.

(i) Every a ∈ A crosses every b ∈ B.

(ii) Every a ∈ A is incident to an old vertex x and every b ∈ B is incident to an old vertex y.

(iii) There is α, β > 0 such that for every a ∈ A, b ∈ B, and 0 ≤ i < l − 1, sα+i(a) and sβ+i(b)
exist and are parallel.
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Notice that for simple topological graphs a cross-track configuration A∪B can be appended with
the set X ⊆ E(H) consisting of k of the origins of the the segments in the parallel tracks of the edges
in A∪B. These edges cross every edge in A∪B, therefore A∪B∪X form a k-star grid. Unfortunately,
if G2 is not simple, then X may contain fewer than k edges, in extreme situations X might consist
of a single edge (the edges in A ∪ B go round and round crossing this single edge many times). Also,
finding k-star grid in G2 is not enough in this case.

Our immediate goal is to find a cross-track configuration in G2, see Claim 6. As explained above
this leads immediately to a k-star grid in G2, and also in G0 if G0 is simple. For non-simple topological
graphs we will also use the cross-track configuration to find k-star grids in G0, but the argument is
more involved.

The following claim is based on a similar observation in [AAPPS97].

Claim 5. Let e and f be two consecutive vertebras of the bundle Bx, neither special. Then e+ and
f+ are also consecutive vertebras of a backbone or there exists a cross-track configuration in G2. The
same holds for e− and f−.

Proof. Assume f follows e in Bx and let e+ = tyi . We have to show that f+ = tyi+1
. Suppose that

f+ = tzj .

Since e is not special, e∗ = si+l(e
y
2m) is still in the backbone of By. Let f∗ be the last segment of

f . These two segments have a common origin. We distinguish three cases. See Fig. 5.

Case 1: e∗ and f∗ are parallel. Then, by the definition of the order of vertebras tyi+1
must be f+.

Case 2: f∗ turns left from e∗. In this case all edges ex
a intersect all edges ey

b for m < a, b ≤ 2m.
This provides a cross-track configuration. See Fig 5 (a).

Case 3: e∗ turns left from f∗. Now the edges ey
a and ez

b must cross for m < a, b ≤ 2m, and this
also provides a cross-track configuration. See Fig 5 (b).

The proof for e− and f− is similar.

We considered at least n/2 bundles. By Claim 4 we have at most 65 · 24ln special vertebras, so
the pigeonhole principle gives the existence of a bundle Bx with at most 130 · 24l special vertebras.
We fix such a bundle Bx and let ei stand for the ith segment in the backbone of Bx: ei = si(e

x
2m)

for 1 ≤ i ≤ d(ex
m, ex

2m). We call ei a departure point if i = d(ex
j , ex

2m) for some 1 ≤ j ≤ m. We
look for an interval of the backbone of Bx without special vertebras but with the largest number
of departure points. There are m departure points, so at least ⌊m/(130 · 24l + 1)⌋ of them are in
an interval that has no special vertebra. Formally, we have 1 ≤ i < j ≤ d(ex

m, ex
2m) − l + 1, such

that none of the vertebras txi , txi+1, . . . , t
x
j are special, but for some indices 1 ≤ i′ < j′ ≤ m we have

i + l ≤ d(ex
i′ , e

x
2m) < d(ex

j′ , e
x
2m) ≤ j + l − 1 and j′ − i′ + 1 ≥ ⌊m/(130 · 24l + 1)⌋.

By Claim 5 we either have a cross-track configuration or the vertebras (txi )+, (txi+1
)+, . . . , (txj )+

are consecutive tracks of some bundle By, while (txi )−, (txi+1
)−, . . . , (txj )− are also consecutive tracks

of some bundle Bz. In the latter case for any i′ ≤ v ≤ j′ the edge ex
v crosses all edges ey

w with
m < w ≤ 2m or it crosses all edges ez

w with m < w ≤ 2m. One of the options must occur with at
least ⌊m/(260 · 24l + 2)⌋ ≥ k edges. This provides us a set A of k edges of the bundle Bx, another set
B of k edges of a bundle such that the properties of cross-track configuration are satisfied. Thus, a
cross-tack configuration must exist. See Figure 6. This proves the following

Claim 6. For C ≥ Ck there exists a cross-track configuration in G2.
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Figure 5: e+ and f+ are consecutive vertebras.

Let A ∪ B be a cross-track configuration in G2. We use it to find a k-star grid in G0.

There are α, β > 0 such that for every a ∈ A, b ∈ B and 0 ≤ i < l − 1, the segments sα+i(a)
and sβ+i(b) are parallel. Let s∗i (e) = sα+i(e) for e ∈ A and s∗i (e) = sβ+i(e) for e ∈ B. We say that
0 ≤ i < l − 1 is bad if two distinct segments from the set {s∗i (e) | e ∈ A ∪ B} intersect.

Observe that we counted at most one crossing for each pair of edges in A∪B, otherwise we would
get an “empty lens”. Therefore, there are at most

(

2k
2

)

bad values of i. So there are 0 ≤ i0 < i1 ≤ l−1,

with i1 − i0 + 2 > l/(
(

2k
2

)

+ 1) > 2k + 1 such that there is no bad i with i0 ≤ i ≤ i1. For i0 ≤ i ≤ i1,
let hi be the edge of H that is the common origin of the segments s∗i (e) for e ∈ A ∪ B. Order the
edges e ∈ A ∪ B according to the order the starting points of s∗i (e) appear on hi. Notice that we
get the same order for each i. Let a and b be the first and last edges in this order. Let pi and qi be
the starting points of s∗i (a) and s∗i (b), respectively. Let a∗ be “relevant” part of a, that is, a∗ is the
interval of a between pi0 and pi1 .

At this point we shift attention from G2 and H to the original graph G0 and modify its drawing in
the plane. Let S be the set of edges of G0 containing the edges A∪B of G2. Note that the edges in A
are incident to the same old vertex, therefore they cannot be different segments of an edge of G0. The
same holds for the edges in B. Moreover, any edge of A and any edge of B intersect, so they are not
different segments of the same edge. Consequently, S contains 2k distinct edges. We do not redraw
the edge containing a but redraw some segments of other edges making sure that conditions (i) and
(ii) of the definition of G0 are maintained and furthermore every edge that intersects a∗ intersects also
all edges in S.

Let i0 ≤ i < i1 and consider the following four intervals: (1) the interval of hi between pi and
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Figure 7: Procedure Redraw.

qi, (2) s∗i (a), (3) the interval of hi+1 between pi+1 and qi+1, and (4) s∗i (b). These segments bound a
quadrilateral shaped region Ri, with “vertices” pi, qi, pi+1, and qi+1. See Figure 7. We cannot rule
out that some of the regions Ri are not disjoint and, in fact, we cannot even rule out that hi = hi+1

(see Fig. 8.) but it does not effect the argument to be presented.

The region Ri does not contain vertices, therefore no edge of G0 entering Ri through s∗i (a) may
leave Ri through s∗i (a) again, as that would contradict Claim 1. We distinguish three types of edges of
G0 entering Ri through s∗i (a). Note that an edge can cross s∗i (a) several times, in this case we consider
all the segments of e inside Ri separately.

Type 1: The edge e enters Ri through s∗i (a) and leaves Ri through s∗i (b). In this case, e crosses
each edge in S.

Type 2: The edge e enters Ri through s∗i (a) and leaves Ri through hi.
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Figure 8: We cannot even rule out that hi = hi+1.

Type 3: The edge e enters Ri through s∗i (a) and leaves Ri through hi+1.

We describe procedure Redraw. If there exists i0 ≤ i < i1 with an edge of type 2 crossing s∗i (a),
then we choose an arbitrary such i and the edge e of type 2 crossing s∗i (a) closest to pi. Let ea be the
point of e where it enters Ri and eh be the point where it leaves Ri. Let e′a and e′h be points on e
outside Ri but close to ea and eh, respectively. Replace the interval e′ae

′
h of e by a curve outside Ri,

which follows very closely the interval of a between ea and pi, and then the interval of hi between pi

and eh. In case hi = hi+1 the the new curve is drawn similarly, but it does not go outside the region
Ri. It is easy to verify that if the new segment of e follows the boundary of Ri close enough, then no
new crossings are created and therefore the modified topological graph satisfies properties (i) and (ii).
See Figure 7.

If there exists i0 ≤ i < i1 and an edge of type 3 crossing s∗i (a), then we proceed analogously. We
choose such an i arbitrarily, we choose a type 3 edge that crosses s∗i (a) closest to pi+1 and redraw the
segment of the edge in Ri taking a detour around pi+1.

As long as there is an i, i0 ≤ i < i1 with a type 2 or type 3 edge, execute Redraw.

If a∗ enters the region Ri (we cannot rule out this possibility), then Redraw choosing this i effects
other regions Rj . In the extreme case when pi+1 is on hi between pi and qi, by redrawing edges of
type 2 we create another crossing with s∗i (a) itself, possibly another type 2 crossing. Nevertheless, it
can be shown that the procedure terminates after finitely many steps. To see this, consider an edge e.
The set ∪i1−1

i=i0
Ri divides e into several intervals. Let e∗ be one of them. For each crossing p of e∗ and

a∗ let r(p) = i if and only if p is on s∗i (a). Let r(e∗, a∗) be the sum of all r(p) over all crossings. This
sum will either always decrease or always increase when we execute Redraw involving e∗, therefore e∗

is involved in finitely many steps only. To see this “monotonicity condition” notice that each segment
of a∗ entering Ri has the “same orientation”, that is, it enters Ri through hi and leaves through hi+1.

Let G′
0 be the topological graph obtained in the process. All edges of G′

0 crossing the curve a∗

cross all edges in S. We did not create any additional crossing, so the graph G′
0 satisfies properties

(i) and (ii) in the definition of G0. These properties and a result of Schaefer and Stefankovič [SS04]
imply the following.
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Claim 7. For any edge e of G′
0 and for any i > 0, any 2i consecutive crossings on e arise from at

least i different edges.

The interval a∗ of a crosses H at least 2k times and we did not “redraw” these segments of edges
of G0. We can therefore take 2k consecutive crossings of a∗ in G′

0 and by Claim 7 they are from at
least k edges. Let X be a set of k edges of G′

0 crossing a∗. Clearly, S ∪ X is a k-star grid in G′
0.

Clearly, the corresponding edges form a k-star grid in F too. This finishes our proof of Theorem 1.
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