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Abstract

We prove that among n points in the plane in general position, the
shortest distance can occur at most (2 + 2)n times.
We also give a construction where the shortest distance occurs more

than (2 + 5)n — 10 [/n] times.

1 Introduction

The following well known result of Harborth [H74] settles a conjecture of
Reutter [R72] (see also [PA95]).

Theorem 1. (Harborth) Let f(n) denote the mazimum number of
times the minimum distance can occur among n points in the plane. Then

f(n) = [3n—\/12n—3J.

The extremal configuration for Theorem 1 is a hexagonal piece of a
regular triangular lattice.
Definition A set of n points is said to be in general position if no three of
them are on the same line.

Peter Brass [B94] raised the following question: At most how many times
can the minimum distance occur among n points in general position.

Theorem 2. Let g(n) denote the mazimum number of times the min-
imum distance can occur among n points in general position in the plane.
Then



2+ )n 10 [Vit] <gln) < 2+ 2)n.

2 Proof of Theorem 2.

1. First we prove that g(n) < (2 + %)n

Let P be a set of n points in the plane in general position. Suppose
without loss of generality that the smallest distance occuring among these
points is 1. Consider the graph G(P) whose vertices are the points of P and
two vertices are connected iff their distance is 1.

For any O € P let d(O) denote the degree of O in G(P). Clearly,
d(O) < 5. We prove that any point of degree 5 has a neighbor of degree at
most 4, except of one special case.

In the sequel, let O be fixed, d(O) = 5, let Aj, As... A5 denote its
neighbors listed in clockwise order.

We will have two cases according to the subgraph Gp of G(P) induced
by O and its five neighbors.

e Case 1: At least one of the neighbors of O, say, As, has degree 1 in Go.
e Case 2: All five neighbors of O have degree at least two in Go.

Since the points are in general position, G(P) cannot have the graph
shown on Figure 0.0 as a subgraph. Thus, in Case 2, G is isomorphic to
the graph shown on Figure 0.2.

Forbidden subgraph Case 1 Case 2
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e Case 1: We prove by contradiction that As has degree at most four.
Suppose d(As) = 5. The neighbors of A5 are O, By, By, By and By.
Since 1 is the smallest distance, /B;AsB;11 > 7/3, /A;jA5A;11 > 7/3,
(’i = 1,2, 3), so /A1OA4 > w. But ‘BlA4| > 1, |B4A1| >1,s0 LALOA; >
ZB1A5B4 Z .
Hence, /A1OA4 = m, a contradiction, because then A;, O and A4 are
on the same line. (Fig. 1)



Fig. 1

Case 2 has two subcases.

e Case 2.a: G is the graph shown on Figure 0.2, A; and As, have only one
common neighbor, O. See Fig 2.a.

Suppose that all neighbors of O have degree five.

Let B; be the neighbor of A; preceding As in the clockwise order; let By
and Bjs be neighbors of As; let By be the neighbor of A3 following As in the
clockwise order. Extend the triangle A3A440 to a rhombus by adding the
point Bs. Let Bg be the be the neighbor of A4 preceding As in clockwise
order, B7 be the neighbor of A5 following A4 in the clockwise order. Finally,
extend the triangle A5A4,0 to a rhombus by adding the point Bg.

|BlB2‘,|B3B4| and |B6B7| > 1,80 /B1A1As + /A1 A3 By, / B3Ag A3 +
LAyA3By and /BgA A5 + LAy AsB7 > .

By easy calculations we get

/BgA1By + /ByA9sBs + /ByA3Bs + /BsA4Bg + /B7 A5 Bg < 3.

But if all A; had degree 5, then
ZBgAlBl, ZB4A3B5, ZB5A4B6 and ZB7A5Bg > 27{'/3, ZBQAQBg > 7'('/3,
thus,

/BgA1By + /ByAsBs + /ByA3Bs + /BsAy4Bg + /By A5Bg > 3.

Consequently,

/BgA1B1 + /By AyB3s + /B4 A3Bs + /B5sAyBg + / B7AsBg = 3,

ZBgAlBl, ZB4A3B5, ZB5A4BG and ZB7A5B$ = 27!'/3, ZBQAQB?, = 7!'/3,
/B1A1As+ /A1 AsBy, / BgAs A3+ /Ay A3By, and / BgAysAs+ / AyAsBr =,
but then |BlBQ|, |B3B4| and |BGB7| =1.

It follows, that BoAsy || OA4, A20O || A4Bg and since all these four seg-
ments are of length 1, By, O and Bg are on the same line, a contradiction.

Up to this point we know that if O is of types 1 or 2.a, then it has a
neighbor of degree at most 4.

Definition Two vertices of G(P), A and B are called special second neigh-
bors if there are two other vertices, C' and D such that AC, AD,CD,CB,
and DB are all edges of G(P), i. e. |AC|,|AD|,|CD|,|CB| and |DB| = 1.
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e Case 2.b: G is the graph shown on Figure 0.2, A4 and As have two
common neighbors, O and By (so O and By are special second neighbors).
See Fig 2.b.

Suppose that all neighbors of O have degree five, and the degree of By,
the special second neighbor of O, is also five.

The points By, By, B3, By, and Bs are defined as in Case 5.b. Let Bg be
the be the neighbor of A4 preceding B7 in the clockwise order; let Bg be
the neighbor of A5 following By in the clockwise order. Extend the triangle
As0OA; to a thombus by adding the point By. Finally, let C; be the neighbor
of By following A4 in the clockwise order, and let C5 be the neighbor of By
preceding As in the clockwise order. Observe that Bg # C1 and Bg # Cs.

Since |BgC1|, |CeBs|, |B1B2| and |B3By| > 1, we have that

[ AyB7;C1 + /BsAyBy, /CyB7As + / B7AsBg, / B1A1 Ay + /A1 Ay By, and

ZBgAQAg, + ZA2A3B4 Z .

So, by simple calculations,

[C1B7Cy+ /BgAsBg+ /ByA1B1+ /By AsBs+ /ByA3Bs+ /B5 A4 Bg < 3.

By the assumption that all A; and B; has degree five,

ZBgA5Bg, ZBQAQB?, and ZB5A4B6 Z 7T/3,

1013702, ZBgAlBl and ZB4A3B5 Z 27‘(’/3,
therefore,

{C1B7Co+ /BgAsBg+ /BgA1B1+ /By AsBs + / B4A3Bs + / B5s Ay Bg > 3.

Again we obtain a regular configuration:

ZB8A5B9, ZB2A2B3, ZB5A4B6 = 7'('/3, ZClB7CQ, ZBgAlBl, ZB4AgB5 = 27’!’/3,
|B601|, |CQBS|, |BlB2|, and |BgB4‘ =1.

It follows, that B1A; || OA4 and A0 || A4Bg, and that all of them are
unit segments. Therefore B, O, and Bg are on the same line, contradiction.

To sum up, if a vertex of G(P) had degree 5, one of its neighbors or
special second neighbors has degree at most 4.



Assign each 5-degree vertex of G(P) to one of its neighbors or special
second neighbors of degree at most 4. Since the points are in general po-
sition, any vertex has at most two special second neighbors. So to each
vertex of degree at most 4, there will be assigned at most six vertices—four
neighbors and two special second neighbors. Therefore the average degree
of the vertices of G(P) is at most (6 -5+ 4)/7 = 34/7, i. e., G(P) has at
most 1% = n(2 + 2) edges.

2. Next we prove by a construction that g(n) > (24 )n — 10 [/n].
Let a be a unit vector.

Definition For any vector z, let arg(z) denote the anticlockwise angle from
a to x.

Let € > 0 small; b,c and d be unit vectors, arg(b) = —7/6 + ¢, arg(c) =
w/3, arg(d) = ©/2 + €. Let p and ¢ be positive integers. Finally, let
UL, U, ..., Up—1 and v1,v2,...,V,—1 be unit vectors, ugi1 = a,usiy2 =
b, v2i+1 = ¢, vair2 = d,0 > arg(ug;) > —7/6 + €, 7/3 < arg(vs) < /2 + €.

We choose the exact values of arg(us;) and arg(vs;) later. Define a
configuration P, of pq points, as follows.

Py ={pi;|0<i<p,0<j<q}

where
pij=uv1+...+tvi1+ur+...+uj

This configuration is similar to a deformed square lattice, where the
“horizontal” edges are the vectors a, b, or uy4;, and the “vertical” edges are
¢,d or vy. So the sqares are deformed into rhombuses whose angles are
between /3 and 27/3. Therefore the shortest distance between the points
is the edge length of the rhombuses, which is 1. Define the graph G(P,,) as
before.

In this “lattice” of pq points there are p(q — 1) “vertical” and (p — 1)q
“horizontal” edges. Notice that /ac = 7/3, /bd = 27 /3, so in the rhombuses
where one of the sides is a the other one is ¢ or one of the sides is b the other
one is d, one of the diagonals is also of distance 1. Since ug;+1 = @, v2;41 = ¢,
there are [£| - |4] rhombuses of sides a and ¢, and |%| - |4] rhombuses of
sides b and d. Each of these rhombuses mean one additional edge in G(Py,),
so for the edges of G(P,,) we have
|E(G(Ppg))l 2plg—1)+(—1)g+ 5] - [4] + [§]- 4] >

7
Z

2pg—p—q+ 5 53+ T 5§ =2+ p-



Fig. 3

Configuration Py4

Claim: For any positive integers, p and ¢, we can choose the values of
arg(us;) and arg(vs;) such that P,, is in general position.

Proof: Tt is enough to prove the Claim in the case when both p and ¢
are divisible by 4, i. e., when p = 4r and q = 4s.

We prove the Claim by induction on r and s. In the repeated pattern
on Fig. 3, which is actually the configuration P4, easy to see, that there
are no three points on a line.

Suppose, we could choose the values arg(us;) and arg(vs;) such that in
the configuration Pj(;,_1)4; the points are in general position.

Construct Py 45 by choosing the value of arg(us; 1))

For any value of arg(uy(—1), the point set we try to add to Py;,_1) 4, is

R = {pij|4(r —1) <i <4r,0 < j < 4s}
a translate of the configuration
{pijld(r —2) <i <4(r—1),0 <j < 4s}

which is in general position by assumption. The change of arg(us(—1))
results a translation of R. If for a certain value of arg(us,_1)) the con-
figutation P4, 45 happens to be not in general position, then either a line
determined by the points Py,_1) 4, contains a point of R, or conversely, a
line determined by the points of R contains a point of Py, _1)4,. But both
events can occur for only finite many values of arg(uy(,—1)), therefore there
is a value 0 > arg(uy(,—_1)) > —7/6 + ¢, such that the configuration Py 45 is
in general position. By the same argument, we can step from s —1 to s. So
for any pair r, s, there exists a configuration of points in general position,
P, 4r,4s- o



Finally for any n > 3, construct the configuration C,.

Let p = ¢ = |\/n]. Take the configuration Py, of |_\/7_7,J2 points, put the
remaining points far from this configuration so that the points are still in gen-
eral position. The smallest distance among the points is 1, and |E(G(Cy,))| >

C+H Vel - Ilval >+ En— @+ 3 vnl —2- % - lval >
@+ &)m—B+1)val—2- 5 > @+ &)n—10[yn] .0

Remarks:
1.) It is not hard to see that for points in general position the upper bound
cannot be achieved. That is, it is impossible, that there are six points of
degree five assigned to each point of degree four.
2.) In the construction of C),, we put the remaining points far from the

configuration P, (p,q = |[/n]). Placing them more carefully, we could
create a few more unit distances, but this would improve the lower bound

by O(y/n) only.
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