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Géza Tóth

Abstract

The chromatic number of the space is the minimum number of colors needed

to color the points of the space so that every two points unit distance apart

have different colors. We show that this number is at most 15, improving the

best known previous bound of 18.

1 Introduction

The unit distance graph Gd of the space <d is the graph whose vertices
correspond to the points of <d and two vertices are connected if and only
if the corresponding points have distance 1. The classical Hadwiger-Nelson
problem asks for the chromatic number of the plane, or more precisely the
chromatic number of the unit distance graph of the plane. The best known
bounds are four and seven, due to Nelson and Isbell, respectively.

In three dimensions, Raiskii [R70] proved that χ(G3) ≥ 5 which was re-
cently improved by Nechushtan [N00] to 6. For the upper bound, Székely and
Wormald [SW89] (see also [BT96]) proved χ(G3) ≤ 21 which was improved
to χ(G3) ≤ 18 by Coulson [C97].

Theorem. The chromatic number of the space <3 is at most 15.

In higher dimensions, the best known bounds are

(1 + o(1)) · 1.2d ≤ χ(Gn) ≤ (3 + o(1))d

due to Frankl and Wilson [FW81] and Larman and Rogers [LR72] respec-
tively. For a survey on this problem see [S91] and [C93].

2 Proof of the Theorem

Let Π3 be the convex hull of all vectors that are obtained by permuting the
coordinates of the vector (1, 2, 3, 4). This is a three dimensional polytope,
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2 Note on the chromatic number of the space

called the permutahedron (see [Z98]). It has 24 vertices and 14 facets, 8
regular hexagons and 6 squares (see Figure). Our 15-coloring of the space is
based on a tiling of the space with copies of Π3.
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Figure. The permutahedron Π3

Let T be isometric to Π3, with center at the origin, and edge length√
10

10
. The vertices of T are all vectors that are obtained by permuting the

coordinates of the vectors
(

±
√

20

20
,±

√
20

10
, 0

)

.

It is easy to check that T has diameter 1, the distance between any pair of

opposite vertices. Remove those vertices of T which have −
√

20

20
as a coordi-

nate. For simplicity, we still call the resulting body T . Now the distance 1
is not realized within T .

Let Λ be the lattice generated by

~a =

(√
20

5
, 0, 0

)

, ~b =

(

0,

√
20

5
, 0

)

, ~c =

(√
20

10
,

√
20

10
,

√
20

10

)

.

Then {T + ~u | ~u ∈ Λ} is a tiling of <3. Let Ti,j,k = T + i~a + j~b + k~c for any
i, j, k integers. Note that the boundary points of any Ti,j,k are covered twice.

Now we define a coloring of the space, using colors 0, 1, . . . 14. For any
point p ∈ Ti,j,k let the color of p be 5i + 3j + k (mod 15). For multiply
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covered points choose any of the resulting colors. We show that it is a proper
coloring, that is, the unit distance is not realized between points of the same
color.

A triple (i, j, k) is called dangerous if there are two points, p ∈ T0,0,0 and
q ∈ Ti,j,k at unit distance.

Claim. If (i, j, k) is dangerous, then 5i + 3j + k 6≡ 0 (mod 15).

Proof of Claim. Clearly, (i, j, k) is dangerous if and only if (−i,−j,−k)
is. And 5i + 3j + k ≡ 0 (mod 15) if and only if 5(−i) + 3(−j) − k ≡ 0
(mod 15). Therefore, it is enough to check check those triples where k ≥ 0.

Here is the list of all such dangerous triples:

(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0), (1, 1, 0), (−1, 1, 0),
(−1,−1, 0), (1,−1, 0), (2, 0, 0), (0, 2, 0), (−2, 0, 0), (0,−2, 0),
(0, 0, 1), (−1, 0, 1), (−1,−1, 1), (0,−1, 1), (1, 0, 1), (0, 1, 1),
(1,−1, 1), (0,−2, 1), (−1,−2, 1), (−2,−1, 1), (−2, 0, 1), (−1, 1, 1),
(0, 0, 2), (−1, 0, 2), (−2, 0, 2), (−2,−1, 2), (−1,−1, 2), (−2,−2, 2),
(−1,−2, 2), (0,−2, 2), (0,−1, 2)
(−1,−1, 3), (−1,−2, 3), (−2,−1, 3), (−2,−2, 3), (−2,−2, 4)

Finally, it is easy to check that none of the triples satisfy 5i+ 3j + k 6≡ 0
(mod 15). 2

Return to the proof of the Theorem. Suppose that there are two points,
p and p′ of the same color and at unit distance, p ∈ Ti,j,k and p′ ∈ Ti′ ,j′,k′ .
Since the unit distance is not realized in T , (i, j, k) 6= (i′, j′, k′). Let I = i′−i,
J = j′− j, K = k′− k. Since p and p′ have the same color, 5I +3J +K ≡ 0
(mod 15). Let q = p− i~a− j~b−k~c, q′ = p′− i~a− j~b−k~c. Then q ∈ T0,0,0 and
q′ ∈ TI,J,K , q and q′ have the same color they are unit distance apart. But
then (I, J, K) is a dangerous triple so by the Claim q and q′ have different
colors, a contradiction. This concludes the proof of the Theorem. 2

Remarks. 1. If we add the missing vertices to each Ti,j,k , then we have
two problems. The unit distance would be realized within each tile, and we
would get an additional set of dangerous neighbors:

(1, 2, 0), (2, 1, 0), (2,−1, 0), (1,−2, 0), (−1,−2, 0), (−2,−1, 0),
(−2, 1, 0), (−1, 2, 0), (1,−1, 2), (−1,−3, 2), (−3,−1, 2), (−1, 1, 2),
(−1, 1,−2), (1, 3,−2), (3, 1,−2), (1,−1,−2), (−1,−2, 4), (−3,−2, 4),
(−2,−1, 4), (−2,−3, 4), (1, 2,−4), (3, 2,−4), (2, 1,−4), (2, 3,−4)

If we want a modular coloring where these tiles also have different colors
than T0,0,0, we have to use 24 colors. In other words, our construction is
“rigid”, the tiling can not be scaled even a little bit.

2. Since the permutahedron used in the construction has 14 facets, we can
not have a similar proper coloring with 14 colors.
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3. We conjecture that there is a proper modular coloring based on the lattice
tiling of <d with d-dimensional permutahedra, that uses asymptotically fewer
than (3 + o(1))d colors. With this method we found a proper 54-coloring of
<4.

Added in proof. Very recently, Coulson [C02] has independently found
a very similar 15-coloring of 3-space.

Acknowledgement. We are grateful to János Pach for many helpful re-
marks, and to François Blanchette for technical help.
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