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Abstract

Let G be a geometric graph with n vertices, i.e., a graph drawn in the plane with
straight-line edges. It is shown that if G has no self-intersecting path of length 3, then its
number of edges is O(n log n). This result is asymptotically tight. Analogous questions
for longer forbidden paths and for graphs drawn by not necessarily straight-line edges
are also considered.

1 Introduction

A geometric graph is a graph drawn in the plane so that its vertices are points and its edges
are possibly crossing straight-line segments. We assume, for simplicity, that the points are
in general position, i.e., no three points are on a line and no three edges pass through the
same point. Topological graphs are defined similarly, except that now the edges are not
necessarily rectilinear; every edge can be represented by an arbitrary continuous arc which
does not pass through any vertex different from its endpoints. Throughout this paper, we
also assume that any two edges have a finite number of common interior points and that
they properly cross at each of them. Clearly, every geometric graph is also a topological
graph.

Using this terminology, the fact that every planar graph with n vertices has at most
3n − 6 edges can be rephrased as follows: any topological graph with n vertices and more
than 3n − 6 edges must have two edges that cross each other. This result is tight even for
geometric graphs.

In the mid-sixties Avital and Hanani [AH66], Erdős, and Perles initiated, later Kupitz
[K79] and many others continued the systematic study of extremal problems for geometric
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graphs. In particular, they proposed the following general question. Let H be a so-called
forbidden geometric configuration or a class of forbidden configurations. What is the max-
imum number of edges that a geometric graph with n vertices can have without containing
any forbidden subconfiguration? If H consists of k = 2 (pairwise) crossing edges, then,
according to the previous paragraph, the answer is 3n − 6. For k = 3, this maximum is
linear in n (see [AAPPS97]), but for larger values of k the best known bound due to Valtr
is only O(n log n) [V98]. It is an exciting open problem to decide whether one can get rid
of the logarithmic factor here. If H is the class of all configurations consisting of k + 1
edges, one of which crosses all the others, then the maximum number of edges is equal to
(k + 2)(n − 2), provided that k = 1, 2, 3, and the maximum is O(

√
kn) for large values of k

(cf. [PT97]). For surveys on Geometric Graph Theory, consult [P99], [P03], and [PRT03].

The above questions can also be regarded as geometric analogues of the fundamental
problem of Extremal Graph Theory [B78]: determine the maximum number of edges of all
K-free graphs on n vertices, i.e., all graphs which do not contain a subgraph isomorphic to
a fixed graph K. Denote this maximum by ex(n,K).

In the present note, we consider the special instance of the above question when H
consists of all self-intersecting straight-line drawings of a fixed graph K. In other words,
what is the maximum number excr(n,K) of edges that a geometric graph with n vertices can
have, if it contains no self-intersecting copy of K? Obviously, we have excr(n,K) ≥ ex(n,K),
because if a graph contains no copy of K, then it cannot contain a self-intersecting copy
either. Therefore, if K is not a bipartite graph, then excr(n,K) is quadratic in n. On the
other hand, if K is not planar then excr(n,K) = ex(n,K), since if a graph contains a copy
of K, then it is a self-intersecting copy. The question is more exciting for bipartite planar
graphs. What happens if K = Pk (or K = Ck), a path (or a cycle) of (an even) length k?
The case where K = C4 is discussed in [PR03].

We analyze the case when K = P3. The corresponding graph property is a relaxation
of planarity: the geometric graphs satisfying the condition are allowed to have two crossing
edges, but if this is the case, no endpoint of one of these edges can be joined to an endpoint
of the other. Is it still true that the number of edges of such geometric graphs is O(n)? The
following theorem provides a negative answer to this question.

Theorem 1. The maximum number of edges of a geometric graph with n vertices, contain-
ing no self-intersecting path of length 3, satisfies

excr(n, P3) ≤ cn log n,

for a suitable constant c. Apart from the value of the constant, this bound cannot be im-
proved.

The proof of this result (presented in three different versions in the next three sections)
applies to a slightly more general situation. Theorem 1 remains true for topological graphs
whose edges are continuous functions defined on subintervals of the x-axis, i.e., every line
perpendicular to the x-axis intersects each edge in at most one point. The topological
graphs satisfying this condition are usually called x-monotone.

On the other hand, a construction in Section 3 shows that Theorem 1 cannot be improved
even for geometric graphs all of whose edges are crossed by a straight line.

What happens if we drop the requirement of x-monotonicity? We do not have any
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example of a topological graph with n vertices and more than constant times n log n edges,
in which every path of length 3 is simple, i.e., non-self-intersecting. The best upper bound
we have is the following.

Theorem 2. The maximum number of edges of a topological graph with n vertices, con-
taining no self-intersecting path of length 3, is O(n3/2).

As was pointed out by Tutte [T70], parity plays an important role in determining the
possible crossing patterns between the edges of a topological graph. This may well be a
consequence of the Jordan Curve Theorem: every Jordan arc connecting an interior point
and an exterior point of a simple closed Jordan curve must cross this curve an odd number
of times. In particular, Tutte showed that every topological graph with n vertices and more
than 3n − 6 edges has two edges that not only cross each other, but (i) they cross an odd
number of times, and (ii) they do not share an endpoint. (See also [H34].)

This may suggest that Theorem 2 and perhaps any other bound of this type can be
sharpened as follows.

Theorem 3. The maximum number of edges of a topological graph with n vertices, contain-
ing no path of length 3 whose first and last edges cross an odd number of times, is O(n3/2).

In Section 5 we prove this stronger statement. Somewhat surprisingly (to the authors),
it turns out that this last result is asymptotically tight. More precisely, in Section 6 we
establish

Theorem 4. Let G be a bipartite graph on n vertices, containing no cycle of length 4. Then
G can be drawn in the plane as an x-monotone topological graph with the property that any
two edges belonging to a path of length 3 cross an even number of times.

It is well known that there are C4-free bipartite graphs of n vertices and at least constant
times n3/2 edges (see e.g. [B78]).

In Section 7, we consider geometric and x-monotone topological graphs with no self-
intersecting path of length five. In this case, Theorem 9 provides a slightly stronger upper
bound on the number of edges than those obtained for graphs with no self-intersecting P3.
We do not believe that Theorem 9 is tight. However, a recent construction of Tardos [T03]
shows that excr(n, Pk) is superlinear in n, for any fixed value k ≥ 3.

In the final section, we discuss a few related results and open problems.

2 A Davenport-Schinzel bound for double arrays

In this section, we discuss the special case of Theorem 1 when G is a bipartite geometric (or
x-monotone topological) graph, whose vertices are divided by the y-axis into two classes,
A and B, and all edges of G run between these classes. We assume, for simplicity, that no
two edges of G cross the y-axis at the same point.

Let a1b1, a2b2, . . . , ambm be the edges of G listed from top to bottom, in the order of
their intersections with the y-axis, where ai ∈ A and bi ∈ B for every i. Consider the
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corresponding double array (2 × m matrix)

M =

(
a1 a2 . . . am

b1 b2 . . . bm

)

u

y

u
y

x

(a) (b)

x

Fig. 1. (a) F2 is forbidden, (b) not necessarily forbidden if adjacent edges may cross

It is easy to verify that if G is a geometric graph (or an x-monotone topological graph)
without any self-intersecting path of length three, then the corresponding matrix M does

not contain any submatrix of the form F1 =

(
u v u v
∗ x x ∗

)
or F2 =

(
∗ u u ∗
x y x y

)
,

where u 6= v, x 6= y and ∗ stands for an unspecified entry (see Fig. 1(a)).

In what follows, we show that if a 2×m matrix M having at most n distinct entries does
not contain any forbidden submatrix of the above two types, then its number of columns
is O(n log n). Therefore, the number of edges of G is at most O(n log n), as required by
Theorem 1.

If G is an x-monotone topological graph whose adjacent edges are allowed to cross, and
we only require that the first and last edges of every path of length three must be disjoint,
then the situation is slightly more complicated, because M may contain submatrices of the
above forms (see Fig. 1(b)). However, in this case the following 2 × 6 submatrices are
forbidden:

(
v ↔ u v u v ↔ u
∗ ∗ x x ∗ ∗

)
(1)

and
(

∗ ∗ u u ∗ ∗
y ↔ x y x y ↔ x

)
. (2)

Here the signs ↔ indicate that the order of the first two columns and the order of the last
two columns are not specified.

Theorem 5. Let M be a 2×m matrix with at most n distinct entries, all of whose columns
are different. If M has no 2 × 6 submatrix of types (1) or (2), then m ≤ 17n log2 n.

It follows from the construction at the end of Section 3, that the bound in Theorem 5 is
tight apart from the value of the constant. In fact, for any n there exist a 2×m matrix with
at most n distinct entries having neither F1 nor F2 as a submatrix with m ≥ n log2 n/4.
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Proof. We need some definitions. Let

M =

(
a1 a2 . . . am

b1 b2 . . . bm

)

For any 1 ≤ i ≤ m, we say that ai is a leftmost (or rightmost) entry if ak 6= ai for every
k < i (or k > i, resp.). Accordingly, ai is called a second leftmost (or second rightmost)
entry if ak = ai for precisely one index k < i (or precisely one index k > i, resp.). Analogous
terms are used for the entries bi in the second row of M .

A set of consecutive columns of M is called a block. A block is said to be pure if all
elements in the first row of the block are distinct and the same is true for the elements in
the second row.

Assume the columns of M are partitioned into l pure blocks. Consider now two consecu-
tive pure blocks, B1 and B2, consisting of the columns i+1, i+2, . . . , j and j+1, j+2, . . . , k,
resp., for some 0 ≤ i < j < k ≤ n. Suppose that there is an element which appears in the
first row of B1 as well as in the first row of B2. That is, ap = aq for some i < p ≤ j and
j < q ≤ k. We claim that either bq is a leftmost, second leftmost or rightmost entry, or bp

is a rightmost, second rightmost or leftmost entry. Indeed, otherwise, using the fact that
bq is neither a leftmost nor a second leftmost entry, we obtain that there exists an index
r ≤ i such that br = bq. Since bq is not a rightmost entry, there is an index s > k such that
bs = bq. Similarly, in view of the fact that bp is neither a rightmost nor a second rightmost
entry, we can conclude that bs′ = bp for some s′ > k. Since bp is not leftmost, there is
a r′ ≤ i such that br′ = bp. Observe that now the columns r, r′ < p < q < s, s′ form a
forbidden submatrix of type

(
∗ ∗ u u ∗ ∗
y ↔ x y x y ↔ x

)
,

a contradiction.

A symmetric argument shows that if bp = bq for some i < p ≤ j and j < q ≤ k, then
either aq is a leftmost, second leftmost or rightmost entry, or ap is a rightmost, second
rightmost or leftmost entry. Thus, if we delete from M (and from its block decomposition)
every column whose upper or lower element is a leftmost, second leftmost, rightmost, or
second rightmost entry, the union of the remainders of any two consecutive blocks becomes
pure.

There are at most n distinct entries, each may appear in the first row and in the second
row, so the number of deleted columns is at most 8n. The resulting matrix M ′ can be
decomposed into dl/2e pure blocks. Repeating this process at most dlog2 le times, we end
up with a matrix consisting of at least m−8ndlog2 le columns that form a single pure block.
Thus, we have

m − 8ndlog2 le ≤ n.

Applying the above procedure to the initial partition of M into l = m pure blocks, each
consisting of a single column, the upper bound follows. �

For many other extremal result on excluded submatrices (in somewhat different settings)
consult [FH92], [AGS97], and [AFS01].

As we have pointed out before, the last theorem implies that every geometric or x-
monotone topological graph with n vertices and no path of length three whose first and
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last edges cross each other, has at most constant times n log n edges, provided that all of
its edges can be stabbed by a vertical line. Thus, we immediately obtain

Corollary 1. The maximum number of edges of an x-monotone topological graph with n
vertices, containing no path of length 3 whose first and last edges cross, is O(n log2 n).

This bound is slightly weaker than the bound in Theorem 1.

3 Proof of Theorem 1

First, we prove the following more general statement.

Theorem 6. Let G be an x-monotone topological graph of n vertices, which has no self-
intersecting path of length 3. Then G has at most constant times n log n edges.

Proof. Assume without loss of generality that no two edges that share an endpoint cross
each other. Otherwise, the two non-common endpoints of these edges must be of degree 1
or 2, because G has no self-intersecting path of length 3. So we can delete these endpoints,
and complete the argument by induction on the number of vertices.

It will be convenient to use the following terminology. If a vertex v is the left (resp.
right) endpoint of an edge e, then e is said to be a right (resp. left) edge at v. It follows
from our assumption on adjacent edges that the left and the right edges at a given vertex
can be ordered from bottom to top.

Let e1 = vu1 and e2 = vu2 be two right edges at a vertex v such that the x-coordinate
of u1 is at most as large as the x-coordinate of u2. We define the right triangle determined
by them as the bounded closed region bounded by e1, a segment of e2,, and a segment
of the vertical line passing through u1. The vertex v is called the apex of this triangle.
Analogously, we can introduce the notion of left triangle.

Construct a sequence of subgraphs G0, G1, G2, . . . of G, as follows. Let G0 = G. If Gi

has already been defined for some i, then let Gi+1 be the topological graph obtained from
Gi by deleting at each vertex the bottom 2 and the top 2 left and right edges (if they exist).
We delete at most 8 edges per vertex.

Claim. For any k ≥ 0, every triangle determined by two edges of Gk contains at least 2k

pairwise different triangles of G.

Proof. By induction on k. Obviously, for k = 0, the Claim is true, because every triangle
contains itself. Assume that the Claim holds for k − 1 (k > 0). Consider, e.g., a right
triangle T in Gk, determined by the edges e1 = vu1 and e2 = vu2, where the x-coordinate
of u1 is at most as large as the x-coordinate of u2. Suppose without loss of generality that
e1 lies below e2. Using the fact that e1 ∈ E(Gk), we obtain that at u1 there are at least
two left edges f1, f2 ∈ E(Gk−1) which lie above e1. Both of these edges must be entirely
contained in T , otherwise we could find a self-intersecting path of length 3. Suppose that
f1 lies below f2.

Let T1 and T2 denote the left triangles with apex u1, determined by e1 and f1, and by
f1 and f2, resp. Clearly, T1 and T2 both belong to Gk−1, and they have disjoint interiors.
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By the induction hypothesis, both T1 and T2 contain 2k−1 pairwise different triangles. It
follows that T contains 2k pairwise different triangles, as required. �

Now we can easily complete the proof of Theorem 6. Since every triangle is specified
by a pair of edges meeting at its apex, the total number of different triangles is at most
n3. Hence, for k > 3 log2 n, the graph Gk cannot determine any triangle, and its number
of edges is smaller than n. On the other hand, we have that |E(Gk)| ≥ |E(G0)| − 8kn.
Therefore, |E(G)| = |E(G0)| ≤ 25n log2 n, completing the proof of Theorem 6. �

Fig. 2. The construction of Gi (i = 3)

We close this section by showing that, up to the value of the constant c, Theorem 1 (and
hence Theorem 6, too) is best possible. Let n = 2k be fixed. We will recursively construct

a sequence of bipartite geometric graphs Gi = G
(k)
i , i = 1, 2, . . . , k, such that Gi has 2i

vertices, (i + 1)2i−2 edges, and contains no self-intersecting path of length 3. Furthermore,
we will maintain the following properties for every i.

1. The vertices of Gi have distinct x-coordinates, which are all integers in the closed
intervals [−2k,−2k + 2i − 1] and [0, 2i − 1]. Vertices with x-coordinates in the first
(resp. second) interval are called left (resp. right).

2. Every edge of Gi connects a left vertex to a right vertex, and hence it must cross the
vertical line (x = − 1

2).

3. The horizontal edges of Gi are of length 2k and form a perfect matching. If two
vertices of u, v ∈ V (Gi), are connected by a horizontal edge, than they are said to
form a pair.

4. For any vertex v of Gi, the order of the edges incident to v according to their slopes
coincides with the order according to the lengths of their projections to the x-axis.

Let G1 consist of two vertices, (−2k, 0) and (0, 0), connected by an edge. Obviously,
this meets the requirements.

Assuming that we have already constructed Gi for some i, we show how to obtain
Gi+1. Let G′

i denote the translate of Gi by a vector (2i−1, Yi), where Yi is a very large
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positive integer to be specified later. Let Gi+1 be the union of Gi and G′
i, together with

the following 2i−1 “new” edges: connect every left vertex v ∈ V (Gi) to the right vertex
v + (2k + 2i−1, Yi) ∈ V (G′

i), that is, to the right vertex forming a pair with the translate of
v. See Fig. 2.

Choose Yi so large that the slope of the new edges exceeds the slope of any line induced
by the points of Gi (or by the points of G′

i).

We have to check that Gi+1 has the required properties. We have |V (Gi+1)| = 2|V (G)| =
2i+1 and |E(Gi+1)| = 2|E(Gi)|+2i−1 = (i+2)2i−1. Properties 1, 2, 3 and 4 are all inherited
from Gi. To see that property 4 is maintained, it is sufficient to recall that both the slope
and length of the x-projection of every new edge between Gi and G′

i is larger than the
corresponding values for the old edges.

It remains to verify that Gi+1 does not contain a self-intersecting path of length 3.
Assume to the contrary that there is such a path P in Gi+1, and denote its edges by
e1 = uv, e2 = vw, and e3 = wz. Since Gi (and thus G′

i) does not contain a self-intersecting
path of length 3, at least one of these edges must run between Gi and G′

i. Note that there
cannot be two such edges, because all edges of Gi+1 running between Gi and G′

i are parallel.
It is also clear that e2 is not such an edge.

Assume, without loss of generality, that e1 runs between Gi and G′
i, and that we have

u ∈ V (Gi) and v ∈ V (G′
i). Thus, e2 and e3 belong to G′

i. As v is a right vertex, w must be
a left vertex, and both e2 and e3 are to the right of w. Since e3 crosses e1, the slope of e3

must be smaller than that of e2. In view of property 4, we conclude that the x-coordinate
of z is smaller than the x-coordinate of v. This implies that the slope of the line connecting
z and v is larger than the slope of e2, contradicting our assumption.

4 A strengthening of Theorem 6

The aim of this section is to establish the following stronger form of Theorem 6.

Theorem 7. The maximum number of edges of an x-monotone topological graph with n
vertices, containing no path of length 3 whose first and last edges cross, is O(n log n).

Proof. Let G be an x-monotone topological graph with n vertices and m edges, containing
no path of length 3 whose first and last edges cross. Our goal is to construct another
topological graph G′ with n′ = 2n vertices and m′ ≥ m/2−n edges, with the property that
G′ has no path of length 3 whose first and last edges cross, and no two adjacent edges of
G′ cross each other. Applying Theorem 6, the statement follows.

First, we split each vertex of G into into two vertices, one of them just a bit left to the
other, so that every original edge e becomes an edge connecting the right copy of the left
endpoint of e to the left copy of its right endpoint. The resulting x-monotone topological
graph G0 has n′ = 2n vertices and m edges, it has no self-intersecting path of length three
whose first and last edges cross, and the right endpoint of any edge of G0 is distinct from
the left endpoint of any other edge.

In the rest of this section, the length of an edge means the length of its projection to the
x-axis, and the terms shorter and longer will be used in the same sense. We write e = uv
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for an edge of G0, whose left and right endpoints are u and v, resp. We call an edge e = uv
long if it is the longest either among all edges uv ′ ∈ E(G0) or among all edges u′v ∈ E(G0).
Clearly, G0 has fewer than n′ long edges. Let e and e′ be two edges of G0, where e is shorter
than e′, and either we have e = uv and e′ = uw, or we have e = vu and e′ = wu. We say
that e is higher than e′ if v is above e′. Similarly, we say e is lower than e′ if v is below e′.
Note that the relations “higher than” and “lower than” are not partial orders, and they are
not inverse to each other. Also note that if e is higher or lower than e′ then e is shorter,
but e and e′ may cross several times.

Let e = uv be an edge of G0 which is not long. By definition, there exist two edges,
e′ = uw and e′′ = zv ∈ E(G0), such that both of them are longer than e. So e is either
higher or lower than e′ and e is also higher or lower than e′′. However, e cannot be higher
than both e′ and e′′. Indeed, otherwise u is above e′′ while v is above e′, so e′ and e′′

cross, contradicting our assumption on G. Similarly, e cannot be lower than both e ′ and
e′′. Thus, each edge e = uv ∈ E(G0) which is not long either satisfies that e is higher than
every longer edge uw and lower than every longer edge zv, or it satisfies that e is lower than
every longer edge uw and higher than every longer edge zv. We can assume, by symmetry,
that the former condition (which will be referred to as the monotonicity condition) holds
for m′ ≥ (m−n′)/2 = m/2−n edges. Let G1 be the subgraph of G0 formed by these edges.

^

^

ê

e

e

e+

-

Fig. 3. The construction of the edge ê in G′

We are now in a position to define the x-monotone topological graph G′. As an abstract
graph, G′ is identical to G1. The locations of the vertices will coincide, too. For any edge
e ∈ E(G1), denote by ê the corresponding edge of G′. We draw the edges of G′ one by one,
in decreasing order of length. If e in G1 is neither higher nor lower than any other edge, set
ê = e. If e = uv is higher (lower) than at least one other edge, let e− be the shortest edge
such that e is higher than e− (resp. let e+ be the shortest edge such that e is lower than
e+). Draw ê in such a way that all of its internal points lie strictly above ê− and below ê+

(if these edges exist). Notice that, if they exist, e+ and e− are longer than e, so ê+ and ê−
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are already defined. We make sure during the construction that, if e+ exists, it passes above
u, if e− exists, it passes below v (see property 2 below), and if both of them exist, they are
disjoint (see property 4 below). We define ê to follow e, except in the intervals where ê+ is
below e or ê− is above e. In these intervals, let ê run just below ê+ or just above ê−, close
enough not to intersect any further edges and going on the same side of every vertex. See
Fig. 3.

We claim that the resulting graph G′ has the following four properties.

1. If e is lower (higher) than e′ in G1, then every interior point of ê is below (resp. above)
ê′.

2. If e′ is lower (higher) than e in G1, then the endpoint of e′ which is not an endpoint
of e is below (resp. above) ê.

3. If e, e′, and e′′ form a path in G1 and e is longer than e′, then ê and e′′ do not cross.

4. If e, e′, and e′′ form a path in G1 then ê and ê′′ do not cross.

We verify these properties by showing that if they hold for the partially drawn graph,
they do not get violated when we add an extra edge ê.

(1) By the monotonicity, if there exists at least one edge f such that e is lower than f ,
then the shortest among them, e+, must be lower than all others. Similarly, e− (if exists)
must be higher than all other edges f with e higher than f . Therefore, as property 1 has
been satisfied so far, it does not get violated now, provided that ê is in between ê− and ê+,
which is the case.

(2) Let e = uv and assume that e′ = uw is above e. By definition, w is above e and,
by the monotonicity condition, w is above e−, if the latter exists. As property 2 has been
satisfied so far, w is above ê−, so w must be above ê. Similarly, if e′ = zv is below e, then
z is below ê.

(3) Note that e′ is higher or lower than e. By symmetry, we can assume that e′ is lower
than e. By monotonicity, this means that they share their right endpoints. Here e and e ′′

do not cross, as they are first and last edges of a path of length 3, and the left endpoint of
e′′ is below e. So every point of e′′ must be below e or to the right of the right endpoint of
e. If e+ exists, we can apply property 3 to the edges e+, e′, e′′, and find that ê+ does not
cross e′′. By the construction, wherever ê runs below e, it follows ê+, so ê is disjoint from
e′′.

(4) We consider two cases.

If both e and e′′ are shorter than e′, then one of them is lower and the other one is
higher than e′ (by the monotonicity). Thus, by property 1, ê′ (drawn before the other two)
separates ê from ê′′, so they cannot cross.

We may assume that e is shorter than e′′, so in the remaining case e′′ is longer than e′.
The edge e′ is lower or higher than e′′, and we can again assume, by symmetry, that e′ is
lower than e′′. Applying property 3 to the path formed by e′′, e′, and e, we find that e is
disjoint from ê′′. By property 2, the left endpoint of e lies below ê′′. Thus, all points of
e must be below ê′′ or to the right of its right endpoint. As ê follows ê− wherever it runs
above e, it is enough to show that if e− exists, ê− is disjoint from ê′′. If e− = e′, this follows
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from property 1, otherwise, from property 4 of the initial configuration (before ê has been
drawn).

Observe that, by property 1, no two adjacent edges of G′ cross each other and, by
property 4, the same is true for second neighbors. Hence, we can indeed apply Theorem 6
to G′, and Theorem 7 follows. �

5 Forbidden subgraphs – Proof of Theorem 3

For any k ≥ 2, let Fk denote a graph with vertex set

V (Fk) = {x, y} ∪ {bi : 1 ≤ i ≤ k} ∪ {cij : 1 ≤ i < j ≤ k}

and edge set

E(Fk) = {xbi, ybi : 1 ≤ i ≤ k} ∪ {cijbi, cijbj : 1 ≤ i < j ≤ k}.

We need the following theorem, which can be obtained by a straightforward generalization
of a result of Füredi [F91].

Theorem 8. For any fixed integer k ≥ 2, let ex(n, Fk) denote the maximum number of
edges of an Fk-free graph with n vertices. Then we have ex(n, Fk) = O(n3/2). �

Let G be a topological graph with n vertices, containing no path of length 3 whose first
and last edges cross an odd number of times. To establish Theorem 3, it is sufficient to verify
that the abstract graph obtained from G by disregarding how the edges are drawn does not
have a subgraph isomorphic to F4. In fact, it is enough to concentrate to a the subgraph
F ′

4 of F4 induceed by the vertex set {x, y} ∪ {bi : 1 ≤ i ≤ 4} ∪ {cij : 1 ≤ i < j ≤ 3}. Notice
that F ′

4 is a subdivision of K5: it can be obtained from K5 by replacing four of its edges (a
triangle and an edge not incident to the triangle) by paths of length two. This means that a
topological graph isomorphic to F ′

4 can be also considered as a topological graph isomorphic
to K5 (simply remove the subdividing points). As K5 is not a planar graph, any topological
graph isomorphic to it must have at least one crossing. Furthermore, by Tutte’s theorem
[T70], there must exist two non-adjacent edges that cross an odd number of times. Thus,
any topological graph isomorphic to F ′

4 has two edges that cross an odd number of times
and they are either non-adjacent edges of the underlying K5 or portions of two such edges.
However, any two edges with this property can be extended to a self-intersecting path of
length 3. Consequently, F ′

4 is not isomorphic to a subgraph of G, and Theorem 3 follows.

6 Drawing C4-free graphs – Proof of Theorem 4

Let G be a C4-free bipartite graph with vertex set V (G) = A∪B, where A = {a1, a2, . . . , an}
and B = {b1, b2, . . . , bn}. The edge set of G is denoted by E(G).

We now construct a drawing of G. Pick 2n points, a1, . . . , an, b1, . . . bn, on the x-axis,
from left to right in this order. These points will be identified with the vertices of G. For
every edge aibj ∈ E(G), draw an x-monotone arc eij connecting ai to bj , according to the
following rules:
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(i) for any k > i, the arc eij passes above ak if and only if akbj 6∈ E(G);

(ii) for any l < j, the arc eij passes above bl if and only if aibl ∈ E(G);

(iii) no two distinct arcs “touch” each other (internal crossings are proper).

Notice that, unless two arcs share an endpoint, the parity of their number of intersections
is determined by these rules.

Take two non-adjacent edges aibj, akbl ∈ E(G) that belong to a path of length 3. We
have to distinguish four different cases:

1. i < k, j < l, and akbj ∈ E(G);

2. i < k, j < l, and aibl ∈ E(G);

3. i < k, l < j, and aibl ∈ E(G);

4. i < k, l < j, and akbj ∈ E(G).

Consider the first case. By drawing rule (i), the arc eij passes below ak. By rule (ii),
ekl passes above bj . In view of rule (iii), this implies that eij and ekl cross an even number
of times, as required. The second case can be treated similarly and is left to the reader.

In the third case, applying rule (i), we obtain that ak lies above eij . It is sufficient to
show that the same is true for bl. At this point, we use that G is C4-free: since aibj , bjak,
akbl ∈ E(G), we have aibl 6∈ E(G). By rule (ii), this implies that bl is above eij , as required.
The last case follows in the same way, by symmetry.

So far we have checked that in our drawing any two non-adjacent edges cross an even
number of times. It is not hard to extend the same property to all pairs of edges, even
if they share endpoints. To this end, we slightly modify the arcs eij in some very small
neighborhoods of their endpoints. Clearly, this will not effect the crossing patterns of non-
adjacent pairs.

Fix a vertex ai. Redraw the arcs eij incident to ai so that the counter-clockwise order
of their initial pieces in a small neighborhood of ai will be the same as the order of x-
coordinates of their right endpoints. Consider now two arcs, eij, eil, (l < j), incident to ai.
By rule (ii), bl lies below eij . On the other hand, after performing the local change described
above, the initial piece of eil will also lie below eij . This guarantees that eij and eil cross
an even number of times. Repeating this procedure for each vertex ai, and its symmetric
version for each bj, we obtain a drawing which meets the requirements of Theorem 4.

7 Longer paths

If we exclude longer self-intersecting paths, the upper bounds on the number of edges can
be improved. The next theorem represents a very modest improvement, but in the special
case when all edges of an x-monotone topological graph cross the y-axis we have stronger
results (see Theorem 10). We do not think that any of these results would be best possible.

Theorem 9. Let G be an x-monotone topological graph of n vertices with no self-intersecting
path of length 5. Then G has at most constant times n log n/ log log n edges.
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Proof. We modify the proof of Theorem 6, and use the same notation. We call an edge a
left edge at its right endpoint and a right edge at its left endpoint.

Suppose that G has nm edges with m ≥ 8. Construct a sequence of subgraphs G0, G′
0,

G′′
0 , G1, G′

1, G′′
1 , G2, . . . of G, as follows. Let G0 be the topological graph obtained from G

by deleting each vertex of degree at most m
2 .

1. If Gi has already been defined for some i, let G′
i denote the topological graph obtained

from Gi by deleting each vertex of degree at most m
2 .

2. If G′
i has already been defined for some i, let G′′

i denote the topological graph obtained
from G′

i by deleting the bottom and the top left and right edges at each vertex (if
they exist). We delete at most four edges per vertex.

3. If G′′
i has already been defined for some i, let Gi+1 be the topological graph obtained

from G′′
i by deleting the bottom and the top left and right edges at every vertex (if

they exist). We delete at most four edges per vertex.

Notice that no two adjacent edges of G′
0 cross each other, and similarly, no path of

length 3 or 4 is self-intersecting in G′
0. Otherwise, the self-intersecting path could be

extended to a self-intersecting P6 in G, a contradiction. As adjacent edges do not cross,
all left (respectively, right) edges at a vertex are naturally ordered top to bottom, so our
choices for edges to be deleted from G′

i and G′′
i are well defined.

Let ai denote the average degree in Gi. It is easy to see that if ai ≥ m, then the
average degree of G′

i is at least ai, the average degree of G′′
i is at least ai − 8i, and we

have ai+1 ≥ ai − 16. So, we have ab m

16
c ≥ m. Therefore, Gb m

16
c still determines at least one

triangle (actually, several triangles).

Recall from the proof of Theorem 6 in Section 3 that a left (right) triangle at a vertex
is determined by two left (resp., right) edges at this vertex, and it is the region bounded by
one of the edges, a piece of the other edge, and a vertical interval.

It is sufficient to establish the following.

Claim. For any 0 ≤ k ≤ m
16 , every triangle determined by two edges of Gk contains at least(

m
2 − 2

)k
pairwise different triangles in G.

We postpone the proof of the Claim and finish the proof of the Theorem, assuming that

the Claim is true. A triangle determined by Gb m

16
c contains at least

(
m
2 − 2

)b m

16
c

triangles,

and this number is at most n3. It follows that m ≤ c log n/ log log n, as required by the
theorem. �

Proof of Claim. By induction on k. Obviously, for k = 0, the assertion is true, because
every triangle contains itself. Assume that the Claim holds for k−1 (k > 0). Consider a right
triangle T in Gk, determined by the edges e1 = vu1 and e2 = vu2, where the x-coordinate
of u1 is at most as large as the x-coordinate of u2. Suppose without loss of generality that
e1 lies below e2. Since e1 ∈ E(Gk), there is at least one left edge, f1 ∈ E(G′′

k−1), at u1

above e1. This edge, f1 = w1u1, must be entirely contained in T , otherwise we could find
a self-intersecting path of length 3. Since f1 ∈ E(G′′

k−1), there is at least one right edge,
f2 ∈ E(G′

k−1), at w1 below f1. Similarly, this edge, f2 = w1w, must be entirely contained
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in the triangle determined by e1 and f1. Therefore, f2 must also lie in T . See Fig. 4.
As w ∈ V (G′

k−1), its degree in Gk−1 is at least m
2 . In view of the fact that there is no

self-intersecting path of length 5 or shorter, none of the at least m/2 edges of Gk−1 incident
to w crosses e1, e2, or f1. Therefore, all of them lie inside T . They determine at least m

2 −2

triangles with pairwise disjoint interiors, each of which contains at least
(

m
2 − 2

)k−1
further

triangles in G, by the induction hypothesis. This finishes the proof of the Claim. �

e2

w

f

w
1

u2

1

e1

u1

v

Fig. 4. The edges at w are all in T

Theorem 10. Let G be an x-monotone topological graph of n vertices, all of whose edges
cross the y-axis. Let k ≥ 2 and suppose G has no self-intersecting path of length at most
2k. Then G has at most ckn log1/k n edges for some absolute constant c > 0.

Proof. Let G be the topological graph satisfying the conditions in the theorem. Assume
without loss of generality that no two vertices have the same x-coordinate. Just like in
the proof of Theorem 7, the length of an edge is defined as the length of its projection
to the x-axis. We call every vertex to the left of the y-axis a left vertex, the remaining
vertices are right vertices. As in the proof of Theorem 7, first we ensure a monotonicity
condition (see below). For each vertex, delete the longest edge incident to it. Since there is
no self-intersecting path of length 3, for each remaining edge e = xy, one of the following
two conditions are satisfied: Either (i) all longer edges incident to x are above e and all
longer edges incident to y are below e, or (ii) all longer edges incident to x are below e and
all longer edges incident to y are above e. (The terms “above” and “below” make perfect
sense for adjacent edges, because, in contrast to Theorem 7, here two adjacent edges are not
allowed to cross.) So, by deleting at most half of the edges, we can assume by symmetry
that among any two adjacent edges incident to a left (right) vertex, the longer one passes
above (resp., below) the other. For simplicity, the resulting graph will also be denoted by
G.

We can assume without loss of generality that the edges of G intersect the y-axis at
distinct points, and let e1, . . . , em be the list of all edges in the bottom-to-top order of these
intersections. Let x and y denote the left and right endpoints of ei, respectively. Let ei+
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be the shortest edge in G incident to x which is longer than ei. If no such edge exists, set
i+ = m+1. Similarly, let ei− be the shortest edge in G incident to y which is longer than ei,
where i− = 0 if no such edge exists. By the monotonicity, we have i− < i < i+. Certainly,
either i+ − i ≥ i − i− or i − i− ≥ i+ − i holds. Assume without loss of generality that
i+ − i ≥ i − i− is true for at least half of the edges ei ∈ E(G). Let G′ denote the subgraph
of G formed by these edges.

For a left vertex x, let ix denote the smallest index of an edge of G incident to x,
provided that such an edge exists. Define the rank of an edge ei ∈ E(G) incident to a left
vertex x as r(ei) = i − ix + 1. Clearly, we have 1 ≤ r(ei) ≤ m.

Claim. Let e and e′ be two edges of G′ with a common left endpoint, and assume that e′

passes above e. Then we have r(e′) ≥ 2r(e).

Proof of Claim. Let e = ei and let x be its left endpoint. Obviously, we have r(e) =
i − ix + 1, r(e′) ≥ i+ − ix + 1, and, as the path formed by ei− , e, and eix does not cross
itself, we also have that i− ≤ ix − 1. This last inequality also holds if ei− does not exist and
i− = 0. Since e belongs to G′, we have i+ − i ≥ i − i−. Combining the above inequalities,
the Claim immediately follows. �

Notice that for the proof of the Claim we only needed the fact that no path of length
three intersects itself, and this readily implies that the degree of each left vertex in G ′ is
at most log m + 1. Thus, the number of all edges in G′ (which is obviously at least m/2)
cannot exceed n(log m + 1). This can be regarded as another proof of the special case of
Theorem 1 settled in Section 2.

Recursively, construct a sequence of graphs G′ = G0, G1, . . . Gk−1, as follows. Assuming
that Gi has already been defined, we obtain Gi+1 from Gi by deleting the l = 2dlog1/k ne
longest edges incident to each vertex. In each step, we decrease the number of edges by at
most nl. So, if G′ has more than kln edges, on either side of Gk−1 we can find a vertex of
degree at least l. However, as is shown in the next paragraph, no such left (right) vertex
can exist, provided that k is odd (resp., even). Hence, the number of edges of G ′ (which is
at least m/2) cannot exceed kln, and this implies Theorem 10.

Fig. 5. Illustration to the proof of Theorem 10 for k=6
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To complete the proof, suppose to the contrary that Gk−1 has a left (right) vertex x of
degree at least l and that k is odd (resp., even). By the construction of the sequence of
graphs, G′ has at least lk−1 distinct paths of length k−1, starting at x and extendible in at
least l different ways to paths of length k consisting of edges of monotone increasing lengths.
The l possible extensions at each vertex are said to form a star. Notice that, according to
our assumption that there is no self-intersecting path of length at most 2k, no two edges
participating in these paths can cross each other. It follows from the monotonicity condition
that these paths form a subtree of G′ (i.e., no vertex can be reached in more than one ways)
and that there is a topologically unique way to draw all of these paths (see Figure 5). Order
the edges participating in the stars according to their intersections with the y-axis. We find
that the edges of the individual stars form subintervals in this order and that the ranks of
these edges increase from bottom to top. Furthermore, according to the Claim, inside a
star, the ranks increase by a factor of two (here we use the fact that the common vertex of
the edges of a star is a left vertex). Therefore, the rank of the highest edge of a star is at
least 2l−1 times the rank of its lowest edge. Consequently, the rank of the highest edge of
the highest star is at least (2l−1)l

k−1

times the rank of the lowest edge of the lowest star.
This ratio is larger than n2 > m, which is a contradiction. �

As in Section 2, the above proof can be easily rephrased in terms of forbidden submatrices
of a double array. Suppose that in a double array containing n distinct symbols, all columns
are distinct, and there are no submatrices of the following type:

For k = 2, the forbidden submatrices are

F1 =

(
u v u v
∗ x x ∗

)

and

M2 =

(
∗ ∗ u u
x y x y

)
,

and one more matrix obtained from F1 by a top-bottom flip, and three others obtained
from M2 by top-bottom and left-right flips.

In general, for k ≥ 2, the forbidden submatrices are F1,M2, . . . ,Mk, and all other
matrices that can be obtained from them by top-bottom or by left-right flips. Here

M3 =

(
v w u u v w
∗ ∗ x y y x

)
,

and, in general, each Mk corresponds to a specific spiral path of length 2k that cannot be
drawn without crossing.

With the above assumptions, we can conclude that the double array has at most
O(kn log1/k n) columns.

Theorem 10 is not known to be tight for any k ≥ 2. However, a recent construction
of Tardos [T03] shows that, even if all paths of a given length are non-selfintersecting, the
number of edges can still be superlinear.

8 Related problems

A. Theorems 1 and 6 easily imply
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Corollary 2. For any tree T other than a star, there exists a constant c(T ) such that every
geometric (or x-monotone topological) graph G with n vertices and more than c(T )n log n
edges contains a self-intersecting copy of T . That is, we have

excr(n, T ) ≤ c(T )n log n.

Indeed, deleting one-by-one every vertex of G whose degree is smaller than |V (T )|, we
end up with a graph G′ having at most n vertices and at least (c(T ) log n− |V (T )|)n edges.
If c(T ) is sufficiently large, then G′ has a self-intersecting path of length 3. Using the fact
that the degree of every vertex in G′ is at least |V (T )|, this path can be extended to a copy
of T in G′ (and hence in G).

B. A slight modification of the proof of Theorem 1 gives

Corollary 3. For any positive integer k, there exists a constant ck with the property that
every geometric graph with n vertices and at least ckn log n edges has two adjacent vertices,
u and v, and 2k edges incident to them, uu1, uu2, . . . , uuk and vv1, vv2, . . . , vvk, such that
uui crosses vvj for every pair 1 ≤ i, j ≤ k.

C. We conjecture that Theorem 1 (and Theorem 10) can be generalized to every topological
graph with no self-intersecting path of length 3 (resp., length 2k). In particular, we believe
that every topological graph without a self-intersecting path of length 4 has O(n log1/2 n)
edges. It is interesting to note that one cannot guarantee the existence of any specific
crossing pattern of a path of length 4, even in a geometric graph with Ω(n log n) edges, each
intersecting the y-axis. Indeed, the construction in Section 3 provides such a geometric
graph with no self-intersecting path of length 3. On the other hand, a convex, balanced,
complete bipartite geometric graph, all of whose edges cross the y-axis, has no path of
length 4, whose only self-intersection occurs between its first and last edges.

D. Any drawing of K3,3, a complete bipartite graph with 3 vertices in each of its classes,
has two non-adjacent edges that cross each other. Clearly, any two edges belong to a cycle
of length 4, so

excr(n,C4) ≤ ex(n,K3,3) = O(n5/3).

This bound has been recently improved to O(n8/5) by Pinchasi and Radoičić [PR03]. It
seems likely that the best possible bound is close to n3/2.

It also follows from Theorem 8 that excr(n,C6) = O(n3/2), and it generalizes to topo-
logical graphs. On the other hand, we have excr(n,C6) ≥ ex(n,C6) ≥ cn4/3, for a suitable
constant c > 0 (see [BS74]). For C4-free graphs this bound is almost tight.

Theorem 11. Let G be a C4-free geometric (or x-monotone topological) graph on n vertices.
If G has no self-intersecting cycle of length 6, then G has O(n4/3 log2/3 n) edges.

Proof. Assume without loss of generality that the left end of an edge is not the right
end of another edge in G. This can be achieved by splitting the vertices in two as in the
proof of Theorem 7. Let G have n vertices and |E(G)| = m > c′n4/3 log2/3 n edges. For
p = 2cn log n

|E(G)| < 1, color randomly and independently with probability p each vertex of G red.

Let G′ be the subgraph of G induced by the red vertices.
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Let i(G′) denote the number of self-intersecting paths of length 3 in G′. Deleting one
edge from each such path, we obtain a graph with no self-intersecting path of length 3.
Thus, in view of Theorem 1, we have

|E(G′)| − i(G′) < c|V (G′)| log |V (G′)|,

for some positive c. Taking expected values, this yields

p2|E(G)| − p4i(G) < cpn log n.

We obtain i(G) > |E(G)|3

8c2n2 log2 n
. If c′ is large enough, then i(G) >

(n
2

)
, and there must exist two

self-intersecting paths of length 3 connecting the same pair of vertices. These paths cannot
share an internal vertex as that would lead to a C4. Therefore, putting them together, we
get a C6 which intersects itself at least twice. �
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