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Abstract

Let n ≥ 4 be even. It is shown that every set S of n points in the plane can be connected
by a (possibly self-intersecting) spanning tour (Hamiltonian cycle) consisting of n straight line
edges such that the angle between any two consecutive edges is at most 2π/3. For n = 4 and 6,
this statement is tight. It is also shown that every even-element point set S can be partitioned
into at most two subsets, S1 and S2, each admitting a spanning tour with no angle larger than
π/2. Fekete and Woeginger conjectured that for sufficiently large even n, every n-element set
admits such a spanning tour. We confirm this conjecture for point sets in convex position. A
much stronger result holds for large point sets randomly and uniformly selected from an open
region bounded by finitely many rectifiable curves: for any ε > 0, these sets almost surely admit
a spanning tour with no angle larger than ε.

1 Introduction

In the Euclidean traveling salesman problem (TSP), given a set of points in the plane, one seeks
a shortest tour that visits each point. In recent years, there has been an increased interest in
studying tours that optimize objective functions related to angles between consecutive edges in the
tour, rather than the length. The problem has applications in motion planning, where restrictions
on turning angles have to be enforced. For example, an aircraft or a boat moving at high speed,
required to pass through a set of given locations, cannot make sharp turns in its motion. This
and other applications to planning curvature-constrained paths for auto-vehicles and aircraft are
discussed in [2, 7, 13, 14].

Consider a set of n ≥ 2 points. A spanning tour is a directed Hamiltonian cycle, drawn with
straight line edges; if n = 2 the tour consists of the two edges, with opposite orientations, connecting
the two points. When three points, p1, p2, and p3, are traversed in this order, their rotation angle
∠p1p2p3 is the angle in [0, π] determined by segments p1p2 and p2p3. If p3 is on the left (resp. right)
side of the oriented line −−→p1p2 then we say that the tour, or path makes a left (resp. right) turn at
p2. If a tour (or path) makes only right turns, we call it pseudo-convex. If all of its rotation angles
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are at most π/2, we call it an acute tour (or path). If all rotation angles are at least π/2, the tour
(or path) is obtuse; see Figure 1.

Given a set A of angles, the angle-restricted tour (ART) problem is to decide whether a set S of
n points in the plane allows a (possibly self-intersecting) spanning tour such that all the n angles
between consecutive segments belong to the set A; see [12].
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Figure 1: (a) acute (b) obtuse (c) obtuse and pseudo-convex (d) acute and pseudo-convex

Fekete and Woeginger [12] proved that every finite set of at least five points admits a pseudo-
convex tour and a non-intersecting pseudo-convex spanning path. They also noticed that every
n-element point set S admits an acute spanning path. To see this, start at any point p1 ∈ S.
Assuming that the initial portion p1 . . . pi of such a path has already been defined and i < n, let
pi+1 be an element of S \ {p1, . . . , pi} farthest away from pi. It is easy to check that the resulting
path p1 . . . pn is acute. It is also clear that such a path cannot be always completed to an acute
tour. Indeed, if all points are on a line and n is odd, then along any (spanning) tour, one of the
rotation angles must be equal to π.

The question arises: Does every even-element point set admit a tour with small rotation angles?
More precisely, given an n-element point set S in the plane, where n is even, let α = α(S) ≥ 0
denote the smallest angle such that S admits a (spanning) tour with the property that all of its
rotation angles belong to [0, α]. Finally, let α(n) be the maximum of α(S) over all n-element point
sets in the plane. Trivially, α(2) = 0. The 4-element point set formed by the 3 vertices and the
center of an equilateral triangle shows that α(4) ≥ 2π/3. The 6-point configuration depicted in
Fig. 2 (left) shows that α(6) ≥ 2π/3.

a

b c

Figure 2: Left: ∆abc is an isosceles triangle with ∠bac = 2π/3. Point a and the 3 points below it are placed
on the altitude of the triangle, and very closely inter-spaced. Every tour on these 6 points has a rotation
angle of at least 2π/3 − ε. Right: n − 1 equidistant points very closely inter-spaced on a small circular arc
of a circle of unit radius, and one point at the center. Every tour on these n points has a rotation angle of
at least π/2 − ε.

In this note we show that α(n) ≤ 2π/3, for all even n ≥ 4.
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Theorem 1. Let n ≥ 4 be even. Every set of n points in the plane admits a spanning tour such
that all of its rotation angles are at most 2π/3. This bound is tight for n = 4, 6. Such a tour can
be computed in O(n4/3 log1+ε n) time, for every ε > 0.

It remains open whether the bound 2π/3 can be replaced by π/2, for every even n ≥ 8, as was
conjectured in [12]. In other words, every n-element set may admit an acute tour, whenever n ≥ 8
is even. The point set depicted in Fig. 2 (right) demonstrates that this statement, if true, cannot
be improved. That is, we have α(n) ≥ π/2, for all even n ≥ 8.

We confirm three weaker versions of this statement. In Section 4, we show that if we enforce
acute rotation angles, two tours instead of one will certainly suffice.

Theorem 2. Let n ≥ 8 be even.
(i) Every set of n points in the plane can be partitioned into two even parts, each of which

admits an acute spanning tour. Given the n points, the two tours can be computed in O(n) time.
(ii) Every set of n points in the plane can be partitioned into two parts of sizes 2⌊n

4
⌋ and 2⌈n

4
⌉,

each of which admits an acute spanning tour. Given the n points, the two tours can be computed
in O(n4/3 log1+ε n) time, for every ε > 0.

In Section 5, we prove the existence of an acute tour in the special case when the points are in
convex position.

Theorem 3. Every even set S of n points in the plane in convex position, with n ≥ 12, admits an
acute spanning tour. Given the n points, such a tour can be computed in O(n) time.

A much stronger statement holds for random point sets, uniformly selected from a not necessarily
connected region.

Theorem 4. Let B be an open region in the plane bounded by finitely many rectifiable Jordan
curves and let S be a set of n points, randomly and uniformly selected from B. Then, for any
ε > 0, the point set S almost surely admits a spanning tour with no rotation angle larger than ε,
as n tends to infinity.

The last result easily generalizes to higher dimensions.

Related problems and results. Various angle conditions imposed on geometric graphs (that
is, graphs with straight-line edges) drawn on a fixed vertex set have been studied in [3, 4, 5, 6].
For instance, sharpening an earlier bound of Bárány, Pór, and Valtr [6], Kynćl [15] proved that any
point set admits a (possibly self-intersecting) Hamiltonian path, in which each rotation angle is at
least π/6. This result conjectured by Fekete and Woeginger [12] cannot be improved.

Aichholzer et al. [3] studied similar questions for planar geometric graphs. Among other re-
sults, they showed that any point set in general position in the plane admits a non-intersecting
Hamiltonian (spanning) path with the property that each rotation angle is at most 3π/4. They also
conjectured that this value can be replaced by π/2. Arkin et al. introduced the notion of reflexivity
of a point set, as the minimum number of reflex vertices in a polygonalization (i.e., simple polygon)
of the set [5]. They gave estimates for the maximum reflexivity of an n-element point set. Recently,
Ackerman et al. have made further progress on this problem [1].
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2 Balanced partitions

It is well known (see, e.g. [10], Section 6.6) that every region (every continuous probability measure)
in the plane can be cut into four parts of equal area (measure) by two orthogonal lines. This
statement immediately implies:

Lemma 1. Given a set S of n ≥ 8 points in the plane (n even), one can always find two orthogonal
lines ℓ1, ℓ2 and a partition S = S1∪S2∪S3 ∪S4 with |S1| = |S3| = ⌊n

4
⌋, |S2| = |S4| = ⌈n

4
⌉ such that

S1 and S3 belong to two opposite closed quadrants determined by ℓ1 and ℓ2, and S2 and S4 belong
to the other two opposite quadrants.

Proof. By a standard compactness argument, it is sufficient to prove this statement for point sets
S in general position, in the sense that no 3 points of S are on a line, no 3 determine a right angle,
and no two segments spanned by 4 points are orthogonal to each other. Choose a very small ε > 0
and replace each point p ∈ S by a disk of radius ε around p. Applying the above mentioned result
from [10] to the union of these n disks, we obtain two orthogonal lines that meet the requirements
of the lemma.

Lemma 2. Given a set S of n points in the plane (n even), there exist three concurrent lines such
that the angle between any two of them is π/3, and there is a partition S = S1 ∪ . . . ∪ S6 with
|S1| = |S4|, |S2| = |S5|, and |S3| = |S6|, such that Si is contained in the i-th closed angular region
(wedge) determined by the lines, in counterclockwise order.

Proof. Just like before, by compactness, it is sufficient to prove the statement for point sets in
general position. This time, it is convenient to assume that no 3 points of S determine an angle
which is an integer multiple of π/3, and there are no 2 pairs of points such that the angle between
their connecting lines is an integer multiple of π/3.

Choose again a very small ε > 0 and replace each point p ∈ S by a disk Dp of radius ε centered
at p. Approximate very closely the union of these disks by a continuous measure µ which is strictly
positive on every Jordan region in the plane and for which µ(R2) = n and |µ(Dp)−1| < ε for every
p ∈ S.

We say that a line ℓ is a bisecting line with respect to the continuous measure µ if the measures
of both half-planes bounded by ℓ are equal to n/2. Clearly, there is a unique bisecting line parallel
to every direction, and this line changes continuously as the direction varies. Choose three bisecting
lines ℓ1, ℓ2, ℓ3 such that the angle between any two of them is π/3. By changing the direction of
ℓ1, we can achieve that these lines pass through the same point. Indeed, as we turn ℓ1 by π/3, the
crossing point of the other two lines moves from one side of ℓ1 to the other. Therefore, there is an
intermediate position in which the three lines pass through the same point.

An easy case analysis shows that if ε was sufficiently small, then either no ℓi intersects any disk
Dp or there is one ℓi that intersects two Dp’s and the others do not intersect any. In the former
case, the lines satisfy the conditions in the lemma, in the latter one, they can be slightly perturbed
so as to meet the requirements.

Given a set S of n points in general position in the plane (i.e., no three points are collinear), a
line passing through two elements of S is called a halving line if there are ⌊(n− 2)/2⌋ points on one
of its sides and ⌈(n − 2)/2⌉ points on the other [16]. The number of halving lines of an n-element
point set in the plane is bounded from above by O(n4/3), as was established by Dey [11]. It is also
known that the set of halving lines can be computed in O(n4/3 log1+ε n) time [8], for every ε > 0.
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Remark. Starting with an arbitrary halving line ℓ and following the rotation scheme described in
[16], one can enumerate all halving lines for S. Using this approach, one obtains algorithmic proofs
of Lemmas 1 and 2 that run in O(n4/3 log1+ε n) time, for every ε > 0.

3 Constructing a tour with rotation angles at most 2π/3

In this section, we prove Theorem 1. As we mentioned in the Introduction, for small even values
of n, namely for n = 4 and n = 6, we need to allow rotation angles as large as 2π/3. Here we show
that this value suffices for all even n.

Let ℓ1, ℓ2, ℓ3 be three concurrent lines satisfying the conditions of Lemma 2. They divide the
plane into six wedges.

Y

ℓ1

ℓ3
ℓ2

Z X

Z
′

Y
′

X
′

Figure 3: Three concurrent bisecting lines of S: ℓ1, ℓ2, ℓ3, at angles 0, π/3, and 2π/3.

Let X,Y,Z,X ′, Y ′, Z ′ denote the six wedges in counterclockwise order, labeled as in Fig. 3.
Note that the angle between the x-axis and any edge pi−1pi of a tour with with pi−1 ∈ X and
pi ∈ X ′, say, belongs to the interval [0, π/3]. A piece pi−1pipi+1 of a tour is of the form XX ′X,
say, if pi−1, pi+1 ∈ X and pi ∈ X ′.

Observation 1. Consider a piece of a tour, which is of the form XQX, where Q = Y ′,X ′, or Z.
Then the rotation angle at the middle point of this piece, which belongs to Q, is at most 2π/3. The
same holds for any other piece consisting of two edges, which starts and ends in the same wedge,
and whose middle point belongs to the opposite wedge or to one of the two wedges adjacent to it.

Observation 2. Consider a piece of a tour, which is of the form XX ′Y or XX ′Z ′. Then the
rotation angle at the middle point of this piece, which belongs to X ′, is at most 2π/3. The same
holds for any other piece of the form X ′XZ, X ′XY ′, Y Y ′X, Y Y ′Z, Y ′Y X ′, Y ′Y Z ′, ZZ ′Y , ZZ ′X ′,
Z ′ZX, Z ′ZY ′.

Proof of Theorem 1. We distinguish two cases:

Case 1. There are at most two nonempty double wedges. If all points are contained in a unique
double wedge, say XX ′ then, by Observation 1, they can be connected by an acute tour of the form
(XX ′)∗. The tours starts in X, ends in X ′, and alternates between the wedges X and X ′ until all
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points in X ∪X ′ are exhausted. Assume now that there are exactly two nonempty double wedges,
XX ′ and Y Y ′, say, and refer to Fig. 4. Consider a spanning tour of the form (XX ′)∗(Y Y ′)∗, where

Y
′

X

Y

X
′

Figure 4: Case 1: points in two double wedges. A tour of the form XX ′XX ′XX ′Y Y ′Y Y ′ is shown; its
starting vertex in X is drawn as an empty circle.

(XX ′)∗ and (Y Y ′)∗ are point sequences that alternate between the corresponding opposite wedges
until all points in those wedges are exhausted. By Observations 1 and 2, at each vertex of this tour
the rotation angle is at most 2π/3.

Case 2. There are exactly three nonempty double wedges; refer to Fig. 5.
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X ′ Z ′
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Figure 5: Case 2: points in three double wedges. Left: a tour of the form X ′XY ′Y Y ′Y y′xzz′x′y is shown;
its starting vertex in X ′ is drawn as an empty circle. Right: a tour of the form Y ′Y Y ′Y y′xzZ ′Zz′x′y is
shown; its starting vertex in Y ′ is drawn as an empty circle.

Arbitrarily pick one point from each wedge: x ∈ X, y ∈ Y , z ∈ Z, x′ ∈ X ′, y′ ∈ Y ′, z′ ∈ Z ′.
Consider the two triangles ∆xzy′ and ∆yx′z′. The sum of the interior angles of the two triangles
is obviously 2π. By averaging, there is one pair of points lying in opposite wedges, say x and x′,
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whose angles sum up to at most 2π/3. Thus, each of these angles is at most 2π/3: ∠zxy′ ≤ 2π/3,
and ∠yx′z′ ≤ 2π/3.

If |X ∩ S| = |X ′ ∩ S| ≥ 2, consider a spanning tour (X ′X)+(Y ′Y )+y′xz(Z ′Z)+z′x′y. Here
(X ′X)+ denotes a nonempty alternating path between the wedges X ′ and X, that starts in X ′,
ends in X, and involves all points except x and x′. The notations (Y ′Y )+ and (Z ′Z)+ are used
analogously. An example is depicted in Fig. 5 (left). By Observations 1 and 2, and by our choice
of x, y, z, x′, y′, z′, all rotation angles along this tour are at most 2π/3, as required.

If |X ∩ S| = |X ′ ∩ S| = 1, consider a spanning tour (Y ′Y )+y′xz(Z ′Z)+z′x′y; see Fig. 5 (right).
The arguments justifying that all rotation angles are at most 2π/3 are the same as before.

The proof of Theorem 1 is now complete.

4 Covering by two acute tours

Proof of Theorem 2. (i) Take a horizontal line ℓ and a partition of our point set S = S+ ∪ S−

into two subsets, each of size n/2, such that S+ and S− are in the closed half-planes above and
below ℓ, respectively. If some points of S lie on ℓ, we can include them in either of these sets so as
to satisfy the condition. Next, take a vertical line ℓ′ which gives rise to another equipartition of S.
Assume for simplicity that ℓ and ℓ′ coincide with the x and y coordinate axes. See Fig. 6, for an
illustration.

Figure 6: Even set covered by two tours with 6 and 2 points, respectively; a = 3, and b = 1. (A double-edge
counts as a tour.)

Thus, we obtain a partition S = S1∪S2∪S3∪S4 such that all points of Si belong to the i-th closed
quadrant determined by the axes (enumerated in the counterclockwise order), |S1| = |S3| = a, and
|S2| = |S4| = b for some integers a and b with a + b = n/2. Connect now all elements of S1 ∪ S3

by a tour of length 2a alternating between S1 and S3. Similarly, connect the elements of S2 ∪ S4

by an alternating tour of length 2b. Obviously, both tours are acute. The above procedure can be
performed in linear time, using any linear time selection algorithm [9].

(ii) Find two orthogonal lines and a partition S = S1 ∪ S2 ∪ S3 ∪ S4 satisfying the conditions
of Lemma 1. Using the notation of the proof of part (i), now we have a = ⌊n

4
⌋ and b = ⌈n

4
⌉. As

above, we obtain two acute tours, of lengths 2⌊n
4
⌋ and 2⌈n

4
⌉, respectively. This completes the the

proof of part (ii) of Theorem 1.

By keeping only the larger tour, Theorem 2 immediately implies
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Corollary 1. For any even n, every n-element point set in the plane admits an acute even tour
covering at least half of its elements.

5 Acute tours for points in convex position

Throughout this section, let S denote a set of n ≥ 8 points in the plane, in convex position and let
S = S1 ∪ S2 ∪ S3 ∪ S4 be a partition satisfying the conditions in Lemma 1. A 3-edge path (on 4
points) is called a hook if the rotation angles at its two intermediate vertices are acute.

Lemma 3. Let P = {p1, p2, p3, p4} be the vertex set of a convex quadrilateral, with pi ∈ Si,
i = 1, 2, 3, 4. Then at least one of the following two conditions is satisfied.

(i) p1p3p4p2 and p3p1p2p4 are hooks, or
(ii) p1p3p2p4 and p3p1p4p2 are hooks.

Proof. At least one of the two angles defined by the diagonals p1p3 and p2p4 is larger or equal
to π/2. Let x denote the crossing point of these diagonals. If ∠p1xp2 ≥ π/2, then the two 3-edge
paths p1p3p4p2 and p3p1p2p4 are hooks, while if ∠p2xp3 ≥ π/2, then p1p3p2p4 and p3p1p4p2 are
hooks.

We say that a convex quadrilateral P , as in Lemma 3, is of type 1 if ∠p1xp2 ≥ π/2, and of type
2, otherwise (i.e., if ∠p2xp3 > π/2).

Lemma 4. Let P = {p1, p2, p3, p4}, Q = {q1, q2, q3, q4}, and R = {r1, r2, r3, r4} be three vertex-
disjoint convex quadrilaterals with pi, qi, ri ∈ Si, for i = 1, 2, 3, 4. Then there exist two hooks induced
by two of these quadrilaterals such that the two endpoints of the first one and the two endpoints of
the second one lie in different parts of the partition S1 ∪ S2 ∪ S3 ∪ S4. Two such hooks are called
opposite. (See Fig. 7 (left).)

q4

q1

p1

q3

s

q2

p4

p2

p3r4

r1

q1

r3 p4

q4

p1

q2

p2

p3

r2

q3

S1S2

S4S3

S1S2

S3 S4

Figure 7: Left: p1p3p4p2 and r3r1r2r4 are two opposite hooks. Right: an acute tour of S of the form
(S1S3)

+p1p3p4p2(S4S2)
+q4q2q1q3, starting at s ∈ S1.

Proof. By the pigeonhole principle, two out of the three quadrilaterals, say P and Q, must have
the same type. By Lemma 3, one can find a hook in each of them such that their endpoints are all
in different parts of the partition, i.e., two opposite hooks.
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Proof of Theorem 3. Consider a partition S = S1 ∪ S2 ∪ S3 ∪ S4 satisfying the conditions in
Lemma 1. Since |S| ≥ 12, we have |Si| ≥ 3. Pick 3 points from each Si, and using these points
construct three vertex-disjoint convex quadrilaterals, P , Q, and R. By Lemma 4, two of these
quadrilaterals, P and Q, say, determine opposite vertex-disjoint hooks. Suppose without loss of
generality that P and Q are of type 1, and these two hooks are p1p3p4p2 and q4q2q1q3, where
pi, qi ∈ Si, i = 1, 2, 3, 4. See Fig. 7(right).

Let (SiSj)
+ denote a polygonal path starting in Si, ending in Sj, alternating between Si and

Sj, and exhausting all points of Si ∪ Sj, except for pi, pj, qi, qj . The following tour is acute:
(S1S3)

+p1p3p4p2(S4S2)
+q4q2q1q3, and this completes the proof.

6 Random point sets

We first verify Theorem 4 for centrally symmetric convex bodies, and then in its full generality.

Lemma 5. Let B be a centrally symmetric convex body in the plane and let S be a set of n points,
randomly and uniformly selected from B. Then, for any ε > 0, S almost surely admits a spanning
tour with no rotation angle larger than ε, as n tends to infinity.

Proof. Let ε be fixed, and let o denote the center of B. Assume without loss of generality that
area(B) = 1. Any chord through o divides the area of B into two equal parts. Therefore, there is a
positive constant δ = δ(B, ε), depending only on B and ε, such that for every wedge W with angle
at most π − ε

2
and apex at o, we have that area(W ∩ B) ≤ 1/2 − δ. Let m = ⌈n/2⌉.

Let p1, p2, . . . pn be n random points, independently and uniformly selected from B, listed in
their circular order of visibility from o. The indices are taken modulo n, so that pn+1 = p1. Note
that almost surely all points pi are distinct and different from o.

If n is odd, consider the spanning tour C = p1pm+1p2pm+2 . . . pmp1. For every i, almost surely
we have

π −
ε

2
≤ ∠piopm+i−1 ≤ π +

ε

2
,

and
π −

ε

2
≤ ∠piopm+i ≤ π +

ε

2
.

Therefore, we almost surely have ∠pm+i−1pipm+i ≤ ε, for every i, and the tour C meets the
requirements.

If n is even, we choose two odd numbers n1, n2 with n1 + n2 = n such that 0 ≤ n1 − n2 ≤ 2.
That is, n1 is m or m + 1 while n2 is m or m − 1. Connect the points pi by two disjoint cycles,
C1 and C2, of length n1 and n2, with property that (1) in the cyclic order around o, the points
p1, p2, . . . belong alternately to C1 and C2, as much as possible; and (2) every edge of C1 and C2

connects two points, pi and pj , with |j − i − m| ≤ 3 (mod n). We distinguish two cases.

Case 1. n1 = n2 = m. Let

C1 = p1p2+mp3p4+mp5 . . . pn−1pm,

C2 = p2p3+mp4p5+mp6 . . . pnp1+m.

Switching between these two cycles at two points, we can combine them into a single spanning tour
C, as follows.

C = p1p2+mp3p4+mp5 . . . pn−1pmp2p3+mp4p5+mp6 . . . pnp1+m.
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It remains true that |j − i − m| ≤ 3 (mod n) for every edge pipj of C, so that almost surely all
rotation angles of C will be smaller than ε.

Case 2. n1 = m + 1, n2 = m − 1. Let

C1 = p1p2+mp3p4+mp5 . . . pnpm+1,

C2 = p2p3+mp4p5+mp6 . . . pn−1pm.

We can combine them into a single spanning tour C, as follows.

C = p1p2+mp3p4+mp5 . . . pnpm+1p2p3+mp4p5+mp6 . . . pn−1pm.

It remains true that |j − i − m| ≤ 3 (mod n) for every edge pipj of C, so that almost surely all
rotation angles of C will be smaller than ε.

To prove Theorem 4 in its full generality, we need the following technical lemma. Its proof is
very similar to that of Lemma 5. The minor modifications are left to the reader.

Lemma 6. Let B be a centrally symmetric convex set in the plane with nonempty interior. Let o
denote the center of B, let ε > 0 be fixed, let s and t be two points of B, and let S′ be a set of at
most εn/4 points not belonging to B.

Then, for any set S of n points randomly and uniformly selected from B, the set S ∪ S′ almost
surely admits a spanning path satisfying the following conditions, as n → ∞:

(i) all of its turning angles are at most ε;
(ii) its first two points are p1 and p2 such that ∠op1p2 ≤ ε/3, and ∠sop1 ≤ ε/3;
(iii) its last two points are q2 and q1 such that ∠oq1q2 ≤ ε/3, and ∠toq1 ≤ ε/3.

Proof of Theorem 4. Assume without loss of generality that area(B) = 1. Consider a square
lattice of minimum distance δ, for some δ > 0 to be specified later. Let A = A(δ) denote the total
area of all cells (lattice squares of side length δ) completely contained in B, and let A′ = A′(δ)
denote the total area of all those cells that intersect B, but are not completely contained in it.
Obviously, A + A′ ≥ 1. Since the boundary of B is the union of finitely many rectifiable curves, we
have

lim
δ→0

A = 1, lim sup
δ→0

A′

δ
< ∞.

Therefore, we can choose δ > 0 so that A′ ≤ ε/6.
Let X1,X2, . . . ,Xm denote the cells completely contained in B, in some arbitrary order, and

let oi denote the center of Xi. For any 1 ≤ i ≤ m, let si be a point on the line oioi−1 such that oi

belongs to the segment sioi−1. Analogously, let ti be a point on the line oioi+1 such that oi belongs
to the segment tioi+1. Here the indices are taken modulo m.

Let S be a set of n points in B, selected independently, randomly, and uniformly. Let Si = S∩Xi,
for 1 ≤ i ≤ m, and let S′ = S \ ∪m

i=1
Si. Divide S′ into m almost equal parts, S′

1, S
′
2, . . . , S

′
m with

||S′
i| − |S′

j || ≤ 1, for any i, j = 1, . . . ,m.
For each 1 ≤ i ≤ m, apply Lemma 6 with Si, S′

i, si, and ti, to obtain a spanning path
Pi. The spanning tour P1P2 . . . Pm obtained by the concatenation of these paths now meets the
requirements.

10



References

[1] E. Ackerman, O. Aichholzer, and B. Keszegh: Improved upper bounds on the reflexivity of
point sets, Computational Geometry: Theory and Applications, 42(3) (2009), 241–249.

[2] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber: The angular-metric
traveling salesman problem, SIAM Journal on Computing, 29(3) (1999), 697–711.

[3] O. Aichholzer, T. Hackl, M. Hoffmann, C. Huemer, A. Pór, F. Santos, B. Speckman, and
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