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Abstract

A family F of convex sets is said to be in convex position, if none of its members is
contained in the convex hull of the others. It is proved that there is a function N(n) with
the following property. If F is a family of at least N (n) plane convex sets with non-empty
interiors, such that any two members of F have at most two boundary points in common
and any three are in convex position, then F has n members in convex position. This result
generalizes a theorem of T. Bisztriczky and G. Fejes T6th [BF1]. The statement does not
remain true, if two members of F may share four boundary points. This follows from the
fact that there exist infinitely many straight-line segments such that any three are in convex
position, but no four are. However, there is a function M (n) such that every family of at
least M (n) segments, any four of which are in convex position, has n members in convex
position.

1 Introduction
Erdés and Szekeres [ES1], [ES2] proved that any set of more than (2::24) points in general
position in the plane contains n points which are in convex position, i.e., they form the vertex
set of a convex n-gon. T. Bisztriczky and G. Fejes Téth [BF1], [BF2], [F] extended this result
to families of convex sets.

Throughout this paper, by a family F = {B,...,B;} we always mean a family of compact
convex sets in the plane in general position, i.e., no three of them have a common supporting
line, and no two are tangent to each other. B; € F is said to be a wertex of F if B; is not
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contained in the convex hull of the union of the others, i.e., if bd conv(UF), the boundary of the
convex hull of the union of all members of F, contains a piece of the boundary of B;. F is said
to be in convez position if every member B;, (i = 1,...,t) of F is a vertex of F. Evidently, any
two members of F are in convex position.

T. Bisztriczky and G. Fejes T6th proved that there exists a function N(n) such that if F is
a family of pairwise disjoint convex sets, |F| > N(n) and any three members of F are in convex
position, then F has n members in convex position. In [PT], we have shown that this is true
with N(n) < 16™.

The aim of this paper is to extend the above result to families of not necessarily disjoint sets.
A compact convex set in the plane with non-empty interior is called a convezr body. Two convex
bodies are said to be non-crossing, if they have at most two boundary points in common.

Theorem 1. For every n, there ezxists an integer N = N(n) > 0 with the following property.
FEvery family of at least N pairwise non-crossing convez bodies in the plane such that any
three of them are in convex position, has n members in convex position.

Theorem 1 cannot be generalized to families of convex bodies whose boundaries may have
four intersection points per pair. Indeed, this can be shown by replacing in the following theorem
each segment by a very narrow ellipse.

Theorem 2. There is an infinite family of straight-line segments in the plane such that any
three of them are in convex position but no four are.

However, the next result shows that an analogue of Theorem 1 is true for families of segments,
assuming that any four of them are in convex position.

Theorem 3. For every n, there exists an integer M = M (n) > 0 with the following property.
FEvery family of at least M straight-line segments in the plane such that any four of them are
in convez position, has n members in convex position.

In fact, we conjecture that for any k& > 2, there exist a constant my and a function My (n)
with the following property. Every family of at least My (n) convex bodies in the plane such that
any two share at most k£ boundary points and any my, are in convex position, has n members in
convex position.

2 Proof of Theorem 1

Since F is in general position, small perturbations of the bodies do not effect whether or not a
subset of F is in convex position. Therefore, we can assume that the boundary of every member
of F is smooth and no three members of F share a common boundary point.



Let F = {B1,Ba,...,Bn} be a family of non-crossing convex bodies in the plane. By
Ramsey’s theorem, F has log, N members which are either pairwise disjoint or pairwise inter-
secting. In the first case, it follows from the (improved version [PT]) of the Bisztriczky-Fejes
T6th theorem [BF1] that there are many (at least log,slog, N) members in convex position,
which exceeds n if N is large enough. So we can assume that {B1, Bs,..., By} is a subfamily
of pairwise intersecting bodies, N’ > log, N.

We classify the ordered triples (B;, Bj,By), i < j < k, as follows. Let I = bd(B;) N
Bj,I' = bd(B;) N Bg. Go along bd(B;) in clockwise direction. Denote the starting point and
the endpoint of I (resp. of I') by s and e (resp. s’ and €’). The type of the ordered triple
(Bi, Bj,By), © < j < k, is determined by the clockwise order of s,s’,e,€’ along bd(B;), and
some other conditions, in the following way.
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Type | clockwise order of s,s',e,e' on bd(B;),
and additional conditions

la | ses’e’ and BiNB;N By, #

1b | ses’e’ and BN B, #0, BN B; N By, =0
2a | ss'ee

2b | s'sele

3 ss'ele

4 | s'see

By Ramsey’s theorem, if N is large enough, then there is an arbitrarily large subfamily
{B1, By, ..., By}, all of whose ordered triples are of the same type. An easy case analysis shows
that there are no five bodies such that all of their ordered triples are of type 1b. By symmetry,
we do not have to treat types 2a and 2b separately: it is enough to consider, say, type 2a. So,
we are left with four cases according to the type of the ordered triples of {By,...,By}.

Case 1. All triples are of type la (see Fig. 2).

Considering the triples (B, B;, Bi+1), we can conclude that the intervals I; = bd(B;1) N B;
are pairwise disjoint and Iy, I, ..., Iy follow each other on bd(B) in, say, clockwise order. Since
B; and Bj (1 <4,j < f) intersect each other inside B;, they do not intersect each other outside
Bj. Let z be the starting point of I>. We can assume that z is the leftmost point of bd(Bj).

Let y be the rightmost point of bd(B;). There is an f’ such that Iy, I3,..., Iy are on the arc
zy and Ipry9,Ipy3,..., I are on the arc yz. By symmetry, we can assume that f' > f/2 — 2.
Let I, (resp. ly) be the vertical supporting line of B; at z (resp. y). Since there is at most
one B; (2 <i < f') such that B; meets both I, and [, there is a g such that By, Bs,..., B, do
not intersect Iy and By 2, Byy3s, ..., By do not intersect /. Again, by symmetry, we can assume
that g > f'/2—-2> f/4—3.

Claim 1. (i) By is a vertex of G = {B1, By,...,By}.

(ii) By is a vertez of G.
(iii) G is in convex position.

Proof. (i) Since [, is a supporting line of B; and each B;, (2 < i < g) is to the left of it, we
have that y € bd(conv U}_; B;) and By is a vertex of G.

Since the bodies B, B3, ..., B, do not intersect each other outside B, for any 1 < i <
j < k <g, B;,B; and By, appear on bd(U!_, B;) in this clockwise order. So, if B;, B;, By, each
appears on the convex hull of By, Bs,..., By, they appear in the same order.

(ii) Suppose that B, is not a vertex of G. Let ¢ = max{i | B; is a vertex of G}. Then
By C conv(By U B,), a contradiction.

(iii) We show that for any fixed 1 < i < g, B; is a vertex of G. Suppose on the contrary that
B, is not a vertex of G. Let



c=max{j <i| Bjis a vertex of G}, d = min{j > i | B; is a vertex of G}.
Since By and B, are both vertices of G, ¢ and d are well defined. The triple (B, B;, Bg) is of
type la, therefore B; C conv(B, U By), a contradiction.

If we choose N large enough, g can be arbitrarily large, therefore in Case 1 we are done. O

Case 1 Case 2
Fig. 2.

Case 2. All triples are of type 2a (see Fig. 2).

Let s; and e; denote the starting point resp. endpoint of I; = bd(B;) N B;, in clockwise
order. Considering the triples (B1, B;, Bi+1) and (B1, Bg, B;), it is easy to deduce that the
(clockwise) order of the points s; and e; (i = 2,..., f) along bd(B) is sg, s3,...,5f,€2,€3,...,¢€f,
and bd(szlei) is composed of arcs belonging to bd(Bi),bd(Bj3),...,bd(By) in this order.
Therefore, those members of { By, By, ..., By} which contribute to the boundary of conv szzl B;,
appear along this boundary in their original order.

Claim 2. (i) By is a vertex of G = {B1, B, ..., By}.

(ii) By is a vertez of G.
(iii) G is in convez position.
Proof. (i) Suppose that B; is not a vertex of G. Let
¢ =min{s | B; is a vertex of G}, d = max{i | B; is a vertex of G}.
Then B; C conv(B. U By), a contradiction.
(ii) Suppose that By is not a vertex of G. Let ¢ = max{i | B; is a vertex of G}.



Then By C conv(B; U B,.), a contradiction.
(iii) The proof is exactly the same as the proof of (ii).

If we choose N large enough, f can be arbitrarily large, therefore in Case 2 we are done. O

Case 3 Subcase 3a

Fig. 3.

Case 3. All triples are of type 3.

Let 1 <i<j < f—1. Since Bj;1 ¢ conv(B; U Bj) and the ordered triple (B;, Bj, Bj11) is
of type 3, bd(B;) and bd(Bj;1) intersect each other in two points outside B;. Thus, they do
not intersect each other inside B;, so B; N B; D B; N Bjy1 (see Fig. 3).

Therefore, we can take an oriented line [ passing through By N By and By \ By_; with the
following property. Let I; = [ N B;, with starting point s; and endpoint e;. Then the order of
the points s; and e; (i = 1,..., f) along [ is s1,592,...,57,€1,€2,..., €.

We distinguish two further subtypes of triples (B;,B;,B), 1 < i < j < k < f, in the
following way. There are four uniquely determined points, p1,¢1,p2, g2, on bd(B; U B; U By), in
this clockwise order, such that the piece of bd(B; U B; U By,) which belongs to By, (resp. B;) is
the arc p1q1 (resp. p2ga).

We say that the triple (B;, Bj, Bg) is of type 3a (resp. 3b) if the arc ¢ips (resp. g¢ap1)
of bd(B; U B;j U By) has a part which also belongs to bd(B;). Since (B;, Bj, By) is in convex
position, it is of type 3a or 3b (or both).

By Ramsey’s theorem, there is a subfamily of size g = log, f, all of whose ordered triples are
of the same subtype.

For simplicity, denote this subfamily by {Bi,Ba,...,By}). By symmetry, we can assume
that all triples are of subtype 3a.



Claim 3. (i) B, is a vertezx of G = {B1, Ba,...,By}.
(ii) By is a vertez of G.
(iii) G is in convez position.

Proof. (i) For any 1 <i < g, let

Si; = {z € bd(By) | B; has a supporting line at = which avoids B;}.

Every S; is an interval (connected arc) of bd(B;), and none of them contains e;. Any triple
(B1, B;, Bj) is in convex position, therefore $;N.S; # 0 (i. e., the sets S; are pairwise intersecting).
This implies that there exists a y € NY_,S; and a supporting line of B; at y, which avoids all
other bodies.

(ii) The proof is analogous to the proof of (i).

(iii) Let p be a point of bd(B;) N bd(conv U._; B;) and let ¢ be a point of bd(B,) N
bd(conv UY_; B;). We show that for any fixed 1 < i < g, B; appears on the (clockwise) arc pgq
of bd(conv UY_; B;). Suppose, for a contradicition, that B; does not appear on the arc pq.

Let

¢ =max{j <1 | Bj appears on the arc pg of bd(conv U}_, B;)},

d = min{j > i | B, appears on the arc pg of bd(conv U_; B;)}.
Since By and By both appear on the arc pg, ¢ and d are well defined. Then the triple (B, B;, By)
is not of subtype 3a, a contradiction.

If we choose N large enough, g can be arbitrarily large, therefore in Case 3 we are done. O

Case 4. All triples are of type 4.

Let 1 <i < j <k <m. Since Bj ¢ conv(B; U By) and the ordered triple (B;, Bj, By) is of
type 4, bd(B;) and bd(By) intersect each other in two points outside B;. Therefore, the oriented
triple (B, Bj, B;) is of type la, and, considering (By, Bf_1, ..., B1), we can proceed as in Case
1.

Thus, in all cases we can find n bodies in convex position provided that N is large enough.
This completes the proof of Theorem 1. O



3 Proof of Theorem 2

i
Fig. 4.
Fori=1,2,..., let
. T 7r
p;i = | —sin 2 ) > 1 —cos %))
1 — cos(3;)
a; = -
sm(?)

and, for some sufficiently large K, let

qi:(fa_i’ —K'\/a_i>-

Finally, let S consist of all segments S; = p;q; for i = 1,2, ... (see Fig. 4).

Each segment S; passes through the origin. One of its endpoints, p;, is on the circle 22 + (y —
1)2 = 1 so that p;;; is the midpoint of the arc Op;. The other endpoint lies on the hyperbola
zy = —K?. Since K is large enough, the segments are very long.



Let « < j < l. Notice that S; intersects the line p;p;. Therefore, p; is not a vertex
of conv(S;,S;,5;). Since the hyperbola zy = —K? is concave, g;j cannot be a vertex of
conv(S;, Sj,S;) either. Thus, the vertices of conv(S;, S, S;) are p;, pj, ¢i, qi, in counter-clockwise
order, which shows that any three segments are in convex position.

Now let i < j < k < I. By the above observations, the vertices of conv(S;, S;, Sk, S;) are p;,
Pj, gi» qi- Thus, S C COHV(Si,Sj,Sl). O

4 Proof of Theorem 3

Let pg denote the closed straight-line segment connecting two points, p and ¢q. Let S be a
family of M segments in the plane in general position, i.e., no two of them are parallel, no three
endpoints are collinear, and we may assume that no two endpoints have the same x-coordinate.
By Ramsey’s theorem, S has at least log, M members which are either pairwise disjoint or
pairwise crossing. In the first case, we can apply the (improved version of the) Bisztriczky-
Fejes T6th theorem to conclude that S has many (i.e., at least log, log, M) members in convex
position, which exceeds n, provided that M is large enough.

So, we can assume that S has log, M pairwise crossing members S1, S, ..., and we can also
suppose without loss of generality that they are listed in increasing order of slopes.

We classify the triples in S, as follows. Let p; and ¢; denote the left endpoint and the right
endpoint of S;, respectively. We say that two triples in S, (S;, S, Si) and (S, Sy, Sp) i < j <
k,i' < j' <K', are of the same type if the following conditions are satisfied:

(i) the orientation of p;p;py is the same as the orientation of p;p;py;

(ii) the orientation of g;q;qy is the same as the orientation of g; g, qy;

(iii) for any @, 3,7,d € {i,4,k}, the half-lines p,pp and g,gj cross each other if and only if
Papg and gy gy do.

Note that it follows immediately from (iii) that

iv) for any «, 8,7,6 € {i,,k}, bapp intersects the segment g, q; if and only if ppg intersects
Y g v
gy qs - Similarly, Jaqh intersects pps if and only if qa/qﬂ’/ intersects p.pg: -

Applying Ramsey’s theorem to the triples of S, we obtain that there exists a subfamily
S’ C S consisting of at least f = f(M) segments (denoted by Si, Sa, ... Sy, for simplicity), all of
whose triples (S;, S;,S;) @ < j <k, are of the same type. Here f(M) is a suitable function which
tends to infinity, as M — co. In what follows, we will show that &’ is in convex position. This
will complete the proof of the theorem, because if M is sufficiently large, then |S'| > f(M) > n
holds.

Let $1,55,S3 € 8'. It cannot occur that the orientations of p1pop3 and ¢ig2g3 are both
clockwise; otherwise ps (resp. g2) would lie inside the triangle pipsc (resp. gigsc), where c is
is the intersection of S; and S3. Thus, So would be contained in the convex hull of S; U Ss,



contradicting our assumption that any four segments are in convex position. Therefore, we have
to distinguish two essentially different cases (up to symmetry about the y-axis).

Case 1: p1pop3 and g192q3 are both counter-clockwise oriented.

Subcase 1.1: The half-line pap} intersects gaq3, and pap3 intersects qiqs (see Fig. 5).
Then p3p$ cannot intersect gzgs. This implies that (S, S3,5;) cannot have the same type
as (S1, Se,S3), contradicting the definition of §’. Thus, this subcase cannot occur.

Subcase 1.1 Subcase 1.3

Fig. 5.

Subcase 1.2: papi does not intersect gags, and paps does not intersect giqo (see Fig. 6).

In this case, every p; 1 < i < f, is a vertex of the convex hull of US’, so &' is in convex
position. Indeed, assume for contradiction that the line p;p;+1 is not a supporting line of
conv(US’). Then there is a g; on the right-hand side of p;pi{. If j < i, we find that p;p;+1
intersects g;g;, contradicting the fact that (S;,S;, Siy1) has the same type as (S1,S52,S53). If
j > i+ 1, then p;;1p; intersects g;+1g;, contradicting the fact that (S, Sit+1,S5;) has the same
type as (S, S2,S3).

We are left with one of the following cases: either (i) Papt intersects gaq3, and paph does not
intersect goqy or (ii) papi does not intersect qaqs, and pap} intersects gaqi. Since we can reverse
the numbering of the segments, we can assume that (i) holds. We can interchange the roles of
the p’s and ¢’s, so we can also assume that either (iii) gaqi intersects pops, and @qs does not
intersect pap1 or (iv) qoqi does not intersect paps, and Gaqh intersects papi. Moreover, since (i)
holds, (iv) cannot hold. Therefore, we have to consider only the following case.

Subcase 1.3: papi intersects goq3, and gzqi intersects pops (see Fig. 5).
Now we have S; C conv(S2 U S3), a contradiction.
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Subcases 1.2 and 2.2
Fig. 6.

Case 2: ppaps is counter-clockwise and q1q2q3 is clockwise oriented.
Subcase 2.1: pyp4 intersects q1go (see Fig. 4).
In this case, S3 C conv(S; U Sz U Sy), a contradiction.

By symmetry, we also have a contradiction if pop{ intersects gogs. Therefore, the only
remaining case is the following.

Subcase 2.2: pap$ does not intersect ¢1go, and papt does not intersect gogs (see Fig. 6).
It follows in exactly the same way as in Subcase 1.2 that every p; (1 < i < f) is a vertex of
the convex hull of US’, hence &' is in convex position.

The above case analysis shows that we can always find f(M) segments in S, which are in
convex position. This completes the proof of Theorem 3, because f(M) > n if M is sufficiently
large. O

5 Concluding Remarks

The proof of Theorem 3 can be modified to yield the following slightly more general result.

Theorem 4. For every n, there exists an integer M' = M'(n) > 0 with the following property.
Let F be any family of at least M' convez sets in the plane such that
(i) the boundaries of any two intersect in at most four points,
(ii) no three have a point in common,
(iil) any four are in convez position.
Then F has n members in convex position.

We conjecture that condition (ii) in Theorem 4 can be dropped.
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In [KP], it was shown that every family of n > 3 - (é) - k convex sets in the plane has either
k disjoint members or [ members, no 3 of which have a point in common.
Combining this result with Theorems 1 and 4, we obtain

Theorem 5. For every k > 3 and for every n, there exists My = My(n) > 0 with the following
property. Let F be any family of at least M convex sets in the plane such that
(i) the boundaries of any two intersect in at most four points,
(ii) no k have a point in common,
(iii) any four are in convex position.
Then F has n members in convex position.
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