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Abstract We prove that the crossing number of a graph decays in a “continuous
fashion” in the following sense. For any ε > 0 there is a δ > 0 such that for a
sufficiently large n, every graph G with n vertices and m ≥ n1+ε edges, has a subgraph
G ′ of at most (1 − δ)m edges and crossing number at least (1 − ε)cr(G). This
generalizes the result of J. Fox and Cs. Tóth.

Keywords Crossing number · Embedding method

1 Introduction

For any graph G, let n(G) (resp. m(G)) denote the number of its vertices (resp. edges).
If it is clear from the context, we simply write n and m instead of n(G) and m(G). The
crossing number cr(G) of a graph G is the minimum number of edge crossings over all
drawings of G in the plane. In the optimal drawing of G, crossings are not necessarily
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distributed uniformly among the edges. Some edges could be more “responsible” for
the crossing number than some other edges. For any fixed k, it is not hard to construct
a graph G whose crossing number is k, but G has an edge e such that G \ e is planar.
Richter and Thomassen [7] started to investigate the following general problem. We
have a graph G, and we want to remove a given number of edges. By at least how
much does the crossing number decrease? They conjectured that there is a constant c
such that every graph G with cr(G) = k has an edge e with cr(G − e) ≥ k − c

√
k.

They only proved that G has an edge with cr(G − e) ≥ 2
5 k − O(1).

Pach et al. [5] proved that for every graph G with m(G) ≥ 103
16 n(G), we have

cr(G) ≥ 0.032 m3

n2 . It is not hard to see [6] that for any edge e, we have cr(G − e) ≥
cr(G) − m + 1. These two results imply an improvement of the Richter–Thomassen
bound if m ≥ 8.1n, and also imply the Richter–Thomassen conjecture for graphs of
�(n2) edges.

Fox and Tóth [3] investigated the case where we want to delete a positive fraction
of the edges.

Theorem A [3] For every ε > 0, there is an nε such that every graph G with n(G) ≥
nε vertices and m(G) ≥ n(G)1+ε edges has a subgraph G ′ with

m(G ′) ≤
(

1 − ε

24

)
m(G)

and

cr(G ′) ≥
(

1

28
− o(1)

)
cr(G).

In this note we generalize Theorem A.

Theorem For every ε, γ > 0, there is an nε,γ such that every graph G with n(G) ≥
nε,γ vertices and m(G) ≥ n(G)1+ε edges has a subgraph G ′ with

m(G ′) ≤
(

1 − εγ

1224

)
m(G)

and

cr(G ′) ≥ (1 − γ )cr(G).

2 Proof of the Theorem

Our proof is based on the argument of Fox and Tóth [3], the only new ingredient is
Lemma 1.

Definition Let r ≥ 2, p ≥ 1 be integers. A 2r -earring of size p is a graph which is
a union of an edge uv and p edge-disjoint paths between u and v, each of length at
most 2r − 1. Edge uv is called the main edge of the 2r -earring.
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Lemma 1 Let r ≥ 2, p ≥ 1 be integers. There exists n0 such that every graph G with
n ≥ n0 vertices and m ≥ 6prn1+1/r edges contains at least m/3pr edge-disjoint
2r-earrings, each of size p.

Proof By the result of Alon et al. [1], for some n0, every graph with n ≥ n0 vertices
and at least n1+1/r edges contains a cycle of length at most 2r.

Suppose that G has n ≥ n0 vertices and m ≥ 6prn1+1/r edges. Take a maximal
edge-disjoint set {E1, E2, . . . , Ex } of 2r -earrings, each of size p. Let E = E1 ∪ E2 ∪
· · · ∪ Ex , the set of all edges of the earrings and let G ′ = G − E . Now let E ′

1 be a 2r -
earring of G ′ of maximum size. Note that this size is less than p. Let G ′

1 = G ′ − E ′
1.

Similarly, let E ′
2 be a 2r -earring of G ′

1 of maximum size and let G ′
2 = G ′

1 − E ′
2.

Continue analogously, as long as there is a 2r -earring in the remaining graph. We
obtain the 2r -earrings E ′

1, E ′
2, . . . , E ′

y, and the remaining graph G ′′ = G ′
y does not

contain any 2r -earring. Let E ′ = E ′
1 ∪ E ′

2 ∪ · · · ∪ E ′
y .

We claim that y < n1+1/r . Suppose on the contrary that y ≥ n1+1/r . Take the main
edges of E ′

1, E ′
2, . . . , E ′

y . We have at least n1+1/r edges so by the result of Alon et al.
[1] some of them form a cycle C of length at most 2r. Let i be the smallest index with
the property that C contains the main edge of E ′

i . Then C, together with E ′
i would be

a 2r -earring of G ′
i−1 of greater size than E ′

i , contradicting the maximality of E ′
i .

Each of the earrings E ′
1, E ′

2, . . . , E ′
y has at most (p − 1)(2r − 1) + 1 edges so we

have |E ′| ≤ y(p − 1)(2r − 1) + y < (2pr − 1)n1+1/r . The remaining graph, G ′′
does not contain any 2r -earring, in particular, it does not contain any cycle of length
at most 2r, since it is a 2r -earring of size one. Therefore, by [1], for the number of its
edges we have e(G ′′) < n1+1/r .

It follows that the set E = {E1, E2, . . . , Ex } contains at least m−2prn1+1/r ≥ 2
3 m

edges. Each of E1, E2, . . . , Ex has at most p(2r − 1) + 1 ≤ 2pr edges, therefore,
x ≥ m/3pr . ��
Lemma 2 [3] Let G be a graph with n vertices, m edges, and degree sequence d1 ≤
d2 ≤ · · · ≤ dn . Let � be the integer such that

∑�−1
i=1 di < 4m/3 but

∑�
i=1 di ≥ 4m/3.

If n is large enough and m = �(n log2 n) then

cr(G) ≥ 1

65

�∑
i=1

d2
i .

Proof of the Theorem Let ε, γ ∈ (0, 1) be fixed. Choose integers r, p such that 1
ε

<

r ≤ 2
ε
, and 67

γ
< p ≤ 68

γ
. It follows that we have 1

r < ε ≤ 2
r , and 67

p < γ ≤ 68
p .

Then there is an nε,γ with the following properties: (a) nε,γ ≥ n0 from Lemma 1, (b)
(nε,γ )1+ε > 18pr · (nε,γ )1+1/r .

Let G be a graph with n ≥ nε,γ vertices and m ≥ n1+ε edges. Let v1, . . . , vn be
the vertices of G, of degrees d1 ≤ d2 ≤ · · · ≤ dn and define � as in Lemma 2, that
is,

∑�−1
i=1 di < 4m/3 but

∑�
i=1 di ≥ 4m/3. Let G0 be the subgraph of G induced

by v1, . . . , v�. Observe that G0 has m′ ≥ m/3 edges. Therefore, by Lemma 1 G0
contains at least m′/3pr ≥ m/9pr edge-disjoint 2r -earrings, each of size p.

Let M be the set of the main edges of these 2r -earrings. We have |M | ≥ m/9pr ≥
εγ

1224 m. Let G ′ = G − M and G ′
0 = G0 − M.
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(a)

vi

(b)

Fig. 1 The thick edges are edges of G′, the thin edges are the potential edges. a A neighborhood of a
crossing in D(G′) and b a neighborhood of a vertex vi in G′

Take an optimal drawing D(G ′) of the subgraph G ′ ⊂ G. We have to draw the
missing edges to obtain a drawing of G. Our method is a randomized variation of the
embedding method, which has been applied by Leighton [4], Richter and Thomassen
[7], Shahrokhi et al. [8], Székely [9], and most recently by Fox and Tóth [3]. For
every missing edge ei = uivi ∈ M ⊂ G0, ei is the deleted main edge of a 2r -earring
Ei ⊂ G0. So there are p edge-disjoint paths in G0 from ui to vi . For each of these
paths, draw a curve from ui to vi infinitesimally close to that path, on either side.
Call these p curves potential uivi -edges and call the resulting drawing D. Note that
a potential uivi -edge crosses itself if the corresponding path does. In such cases, we
redraw the potential uivi -edge in the neighborhood of each self-crossing to get a
noncrossing curve.

To get a drawing of G, for each ei = uivi ∈ M, choose one of the p potential
uivi -edges at random, independently and uniformly, with probability 1/p, and draw
the edge uivi as that curve.

There are two types of new crossings in the obtained drawing of G. First category
crossings are infinitesimally close to a crossing in D(G ′), second category crossings
are infinitesimally close to a vertex of G0 in D(G ′).

The expected number of first category crossings is at most

(
1 + 2

p
+ 1

p2

)
cr(G ′) =

(
1 + 1

p

)2

cr(G ′).

Indeed, for each edge of G ′, there can be at most one new edge drawn next to it, and
that is drawn with probability at most 1/p. Therefore, in the close neighborhood of
a crossing in D(G ′), the expected number of crossings is at most (1 + 2

p + 1
p2 ) (see

Fig. 1a).
In order to estimate the expected number of second category crossings, consider

the drawing D near a vertex vi of G0. In the neighborhood of vertex vi we have at
most di original edges. Since we draw at most one potential edge along each original
edge, there can be at most di potential edges in the neighborhood. Each potential edge
can cross each original edge at most once, and any two potential edges can cross at
most twice (see Fig. 1b). Therefore, the total number of first category crossings in D
in the neighborhood of vi is at most 2d2

i . (This bound can be substantially improved
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with a more careful argument, see e. g. [3], but we do not need anything better here.)
To obtain the drawing of G, we keep each of the potential edges with probability 1/p,

so the expected number of crossings in the neighborhood of vi is at most ( 1
p + 1

p2 )d2
i ,

using the fact that the self-crossings of the potential uv-edges have been eliminated.
Therefore, the total expected number of crossings in the random drawing of G is

at most (1 + 2
p + 1

p2 )cr(G ′) + ( 1
p + 1

p2 )
∑�

i=1 d2
i .

There exists an embedding with at most this many crossings, therefore, by Lemma 2
we have

cr(G) ≤
(

1 + 1

p

)2

cr(G ′) +
(

1

p
+ 1

p2

) �∑
i=1

d2
i

≤
(

1 + 1

p

)2

cr(G ′) +
(

65

p
+ 65

p2

)
cr(G).

It follows that

(
1 − 65

p
− 65

p2

)
cr(G) ≤

(
1 + 1

p

)2

cr(G ′),

so

(
1 − 65

p
− 65

p2

)(
1 − 1

p

)2

cr(G) ≤
(

1 − 1

p2

)2

cr(G ′),
(

1 − 65

p
− 65

p2

) (
1 − 2

p

)
cr(G) ≤ cr(G ′),

(
1 − 67

p

)
cr(G) ≤ cr(G ′),

consequently,

(1 − γ ) cr(G) ≤ cr(G ′).

��

3 Concluding Remarks

In the statement of our Theorem we cannot require that every subgraph G ′ with (1−δ)

m(G) edges has crossing number cr(G ′) ≥ (1 − γ )cr(G), instead of just one such
subgraph G ′. In fact, the following statement holds.

Proposition 1 For every ε ∈ (0, 1) there exist graphs Gn with n(Gn) = Θ(n) vertices
and m(Gn) = Θ(n1+ε) edges with subgraphs G ′

n ⊂ Gn such that

m(G ′
n) = (1 − o(1)) m(Gn)
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and

cr(G ′
n) = o(cr(Gn)).

Proof Roughly speaking, Gn will be the disjoint union of a large graph G ′
n with low

crossing number and a small graph Hn with large crossing number. More precisely,
let G = Gn be a disjoint union of graphs G ′ = G ′

n and H = Hn, where G ′ is
a disjoint union of Θ(n1−ε) complete graphs, each with �nε� vertices and H is a
complete graph with �n(3+5ε)/8� vertices. We have m(G) = Θ(n1+ε) and m(H) =
Θ(n(3+5ε)/4) = o(m(G)), since 3+5ε

4 < 1 + ε. By the crossing lemma (see e. g.
[5]), cr(G) ≥ cr(H) = �(n(3+5ε)/2), but cr(G ′) = O(n1−ε · n4ε) = O(n1+3ε) =
o(cr(G)), because 3+5ε

2 > 1 + 3ε. ��
In the preliminary version of this paper [2] we conjectured that we can require that a

positive fraction of all subgraphs G ′ of G with (1−δ)m(G) edges has crossing number
cr(G ′) ≥ (1 − γ )cr(G). The following construction shows that the conjecture does
not hold in general for graphs with less than n4/3−�(1) edges.

Proposition 2 For every ε ∈ (0, 1/3) and δ > 0 there exist graphs Gn with n(Gn) =
Θ(n) vertices and m(Gn) = Θ(n1+ε) edges with the following property. Let G ′

n be
a random subgraph of Gn such that we choose each edge of Gn independently with
probability p = 1 − δ. Then

Pr
[
cr(G ′

n) ≤ o(cr(Gn))
]

> 1 − e−δnΘ(1/3−ε)

.

Proof As in Proposition 1, the idea is to build the graph G = Gn from two disjoint
graphs K and H, where K is a large graph with low crossing number and H is a small
graph with high crossing number. In addition, deleting a random constant fraction of
edges from H will break all the crossings in H with high probability.

Now we describe the constructions more precisely. Let γ > 0 be a constant such
that 3ε + 4γ < 1. Let K be a disjoint union of Θ(n1−ε) complete graphs, each
with nε vertices (we omit the explicit rounding to keep the notation simple). We have
m(K ) = Θ(n1+ε) and cr(K ) = Θ(n1+3ε).

The graph H consists of five main vertices v1, v2, . . . , v5 and n1−2γ internally
vertex disjoint paths of length nγ connecting each pair vi , v j . The graph H has n(H) =
Θ(n1−γ ) vertices and m(H) = Θ(n1−γ ) edges. We claim that cr(H) = n2−4γ .

The upper bound follows from the fact that the crossing number of K5 is 1. We
take a drawing of K5 with one crossing and replace each edge e by n1−2γ paths
drawn close to e. For the lower bound take a drawing of H with minimum number of
crossings. Let pi, j be a path with the minimum number of crossings among the paths
connecting vi and v j . By redrawing all the other paths connecting vi and v j along pi, j

the crossing number of the drawing does not change. The paths pi, j together form a
subdivision of K5, therefore at least one pair pi, j , pk,l of the paths crosses. Due to
the redrawing, every path connecting vi and v j crosses every path connecting vk and
vl , which makes n2−4γ crossings. By the choice of γ, n1+3ε = o(n2−4γ ), therefore
cr(G) = Θ(cr(H)) and cr(K ) = o(cr(G)).
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Let G ′ be a random subgraph of G where each edge of G is taken independently
with probability p = 1 − δ. Let H ′ = G ′ ∩ H. We show that with high probability,
H ′ is a forest, in particular cr(H ′) = 0. This happens if at least one edge is missing
from every path connecting two main vertices of H. The probability of such an event
is at least

1 − n · (1 − δ)nγ ≥ 1 − e−δnγ +log n .

It follows that with this probability, cr(G ′) ≤ cr(K ) ≤ o(cr(G)). ��
Note that in the above construction the number δ does not have to be constant: it

is enough to delete a random δ = c log n/nγ fraction of the edges to get the same
conclusion with probability almost 1.

The question whether deleting a small random constant fraction of the edges of
a graph G decreases the crossing number only by a small constant fraction remains
open for graphs with more than n4/3 edges. We do not know the answer even to the
following weaker version of the question.

Problem 1 Let ε ∈ (0, 2/3) and p ∈ (0, 1) be constants. Does there exist c(p) > 0
and n0 such that for every graph G with n(G) > n0 and m(G) > n(G)4/3+ε, a random
subgraph G ′ of G with each edge taken with probability p has crossing number at
least c(p) · cr(G), with probability at least 1/2?

The graphs in Proposition 2 have small number of edges responsible for almost
all the crossings. Is this the only way how to force a random subgraph of G to have
crossing number o(cr(G))?

Problem 2 Let ε > 0. Does there exist n0 and δ such that every graph G with n(G) ≥
n0 and m(G) ≥ n(G)1+ε has a subset F of o(m(G)) edges such that every subgraph
G ′ of G with m(G ′) ≥ (1 − δ)m(G) and F ⊂ E(G ′) has cr(G ′) ≥ (1 − ε)cr(G)?
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