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Abstract

It is shown that if a graph of n vertices can be drawn on the torus without edge crossings
and the maximum degree of its vertices is at most d, then its planar crossing number
cannot exceed cdn, where c is a constant. This bound, conjectured by Brass, cannot
be improved, apart from the value of the constant. We strengthen and generalize this
result to the case when the graph has a crossing-free drawing on an orientable surface
of higher genus and there is no restriction on the degrees of the vertices.

1 Introduction

Let Sg be the compact orientable surface with no boundary, of genus g. Given a simple graph
G, a drawing of G on Sg is a representation of G such that the vertices of G are represented by
points of Sg and the edges are represented by simple (i.e., non-selfintersecting) continuous
arcs in Sg, connecting the corresponding point pairs and not passing through any other
vertex. The crossing number of G on Sg, crg(G), is defined as the minimum number of edge
crossings over all drawings of G in Sg. For cr0(G), the “usual” planar crossing number, we
simply write cr(G).

Let G be a graph of n vertices and e edges, and suppose that it can be drawn on the
torus without crossing, that is, G satisfies cr1(G) = 0. How large can cr(G) be? Clearly, we
have cr(G) <

(e
2

)

, and this order of magnitude can be attained, as shown by the following
example. Take five vertices and connect any pair of them by e

20 vertex-disjoint paths of
lengths two. In any drawing of this graph in the plane, every subdivision of K5 gives rise
to a crossing. Therefore, the number of crossings must be at least e2

400 .
Peter Brass suggested that this estimate can be substantially improved if we impose an

upper bound on the degree of the vertices. More precisely, we have
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Theorem 1. Let G be a graph of n vertices with maximum degree d, and suppose that G
has a crossing-free drawing on the torus. Then we have cr(G) ≤ cdn, where c is a constant.

For d ≥ 3, the bound in Theorem 1 cannot be improved, apart from the value of the
constant c. Consider the following example. Let d ≥ 4, G = Ck ×Ck, where k =

√

n/d is a
large integer and Ck denotes a cycle of length k. Obviously, this graph can be drawn on the
torus without crossings. On the other hand, by a result of Salazar and Ugalde [?], its planar
crossing number is larger than (4

5 − ε)k2, for any ε > 0, provided that k is large enough.

Substitute every edge e of G by ⌊d
4⌋ new vertices, each connected to both endpoints of e.

The resulting graph G′ has at most n vertices, each of degree at most d. It can be drawn
on the torus with no crossing, and its planar crossing number is at least

(

4

5
− ε

)

k2 ×

⌊

d

4

⌋2

>
1

100
nd.

To see this, it is enough to observe that there is an optimal drawing of G′ in the plane
with the property that any two paths of length two connecting the same pair of vertices
cross precisely the same edges. The same construction can be slightly modified to show
that cr(G) can also grow linearly in n if the maximum degree d is equal to three.

Theorem 1 can be generalized as follows.

Theorem 2. Let G be a graph of n vertices of maximum degree d that has a crossing-free

drawing on Sg, the orientable surface of genus g. Then we have cr(G) ≤ cd,gn, where cd,g

is a constant depending on d and g.

We can drop the condition on the maximum degree and obtain an even more general
statement.

Theorem 3. Let G be a graph of n vertices with degrees d1, d2, . . . , dn, and suppose that G
has a crossing-free drawing on Sg. Then we have

cr(G) ≤ cg

n
∑

i=1

d2
i ,

where cg is a constant depending on g.

To simplify the presentation and to emphasize the main idea of the proof, in Section 2
first we settle the simplest (planar) case (Theorem 1). In Section 3, we reduce Theorem 3
to a similar upper bound on the crossing number of G in Sg−1 (Theorem 3.1). This latter
result is established in Section 4.
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2 The simplest case: Proof of Theorem 1

We can assume that d ≥ 3. It is sufficient to prove that cr(G) ≤ cd(n − 1) holds for any
two-connected graph G satisfying the conditions. Indeed, if G is disconnected or has a cut
vertex, then it can be obtained as the union of two graphs G1 and G2 with n1 and n2

vertices that have at most one vertex in common, so that we have n1 + n2 = n or n + 1.
Arguing for G1 and G2 separately, we obtain by induction that

cr(G) = cr(G1) + cr(G2) ≤ cd(n1 − 1) + cd(n2 − 1) ≤ cd(n − 1),

as required.
Let G be a two-connected graph with maximum degree d and cr1(G) = 0. Fix a crossing-

free drawing of G on the torus. We can assume that the boundary of each face is connected.
Indeed, if one of the faces contains a cycle not contractible within the face, then cutting
the torus along this cycle we do not damage any edge of G. Therefore, G is a planar graph
and there is nothing to prove.

If our drawing is not a triangulation, then by adding O(n) extra vertices and edges we
can turn it into one so that the maximum degree of the vertices increases by at most a
factor of three. We have to apply the following easy observation.

Lemma 2.1. Let G be a two-connected graph with n vertices of degree at most d (d ≥ 3).
Suppose that G has a crossing-free drawing on the orientable surface of genus g such that

the boundary of each face is connected. Any such drawing can be extended to a triangulation

of the surface with at most 19n + 36(g − 1) vertices of maximum degree at most 3d.

Proof. First consider a cycle f = x1x2 . . . xn(f) bounding a single face in the drawing of
G. Note that some vertices xi ∈ V (G) and even some edges may appear along this cycle
several times. Take a simple closed curve γ0 = p1p2 . . . pn(f) inside the face, running very
close to f and passing through the (new) points pi in this cyclic order. In the ring between
f and γ0, connect each vertex xi to pi and pi+1 (where pn(f)+1 := p1).

Divide γ0 into m0 := ⌈n(f)
d−1 ⌉ connected pieces, each consisting of at most d vertices,

such that the last vertex of each piece πi is the first vertex of πi+1, where 1 ≤ i ≤ m0 and
πm0+1 := π1. Place a simple closed curve γ1 = q1q2 . . . qm0

in the interior of γ0. In the ring
between γ0 and γ1, connect each qi to all points in πi. (If m0 = 1 or 2, then γ1 degenerates
into a point or a single edge.) If γ1 has more than three vertices, repeat the same procedure
for γ1 in the place of γ0, and continue as long as the interior of the face is not completely
triangulated. We added

n(f) + m0 + m1 + . . . < n(f) + n(f) +
n(f)

2
+

n(f)

4
+ . . . < 3n(f)
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new vertices, and their maximum degree is at most d + 4. The degree of every original
vertex of f increased by at most twice the number of times it appeared in f .

If we triangulate every face of G in the above manner, the resulting drawing G′ defines
a triangulation of the surface with fewer than n +

∑

f 3n(f) ≤ n + 6|E(G)| vertices, each of
degree at most d′ := 3d. By Euler’s formula, we have n + 6|E(G)| ≤ n + 18(n − 2 + 2g), as
required. 2

In the sequel, slightly abusing the notation, we write G for the triangulation G′ and d
for its maximum degree d′.

If G has no noncontractible cycle, i.e., no cycle represented on the torus by a closed
curve not contractible to a point, then we are done, because G is a planar drawing so
that cr(G) = 0. Otherwise, choose a noncontractible cycle C with the minimum number
of vertices, fix an orientation of C, and let k := |V (C)|. Let El (and Er) denote the set
of edges not belonging to C that are incident to at least one vertex of C and in a small
neighborhood of this vertex lie on the left-hand side (respectively right-hand side) of C.
Note that the sets El and Er are disjoint, but this fact is not necessary for the proof.

Replace C by two copies, Cr and Cl, lying on its right-hand side and left-hand side.
Connect each edge of Er (respectively El) to the corresponding vertex of Cr (respectively
Cl). Cut the torus along C, and attach a disk to each side of the cut.

The resulting spherical (planar) drawing G1 represents a graph, slightly different from
G. To transform it into a drawing of G, we have to remove Cl and (re)connect the edges of
El to the corresponding vertices of Cr. In what follows, we describe how to do this without
creating too many crossings.

Let Ĝ1 denote the dual graph of G1, that is, place a vertex of Ĝ1 in each face of G1, and
for any e ∈ E(G1) connect the two vertices assigned to the faces meeting at e by an edge
ê ∈ E(Ĝ1). Let r and l denote the vertices of Ĝ1 lying in the faces bounded by Cr and Cl.

Lemma 2.2. In Ĝ1, there are k vertex-disjoint paths between the vertices r and l.

Proof. By Menger’s theorem, the maximum number p of (internally) vertex-disjoint paths
connecting r and l in Ĝ1 is equal to the minimum number of vertices whose deletion separates
r from l. Choose p such separating vertices, and denote the corresponding triangular faces
of G by f1, . . . , fp. The interior of the union of these faces must contain a noncontractible
closed curve that does not pass through any vertex of G. Let δ be such a curve whose
number of intersection points with the edges of G is minimum. Choose an orientation
of δ. Let e1, . . . , eq denote the circular sequence of edges of G intersected by δ. By the
minimality of δ, we have q ≤ p, because the interior of each triangle fi contains at most
one maximal connected piece of δ. Let vi be the right endpoint of ei with respect to the
orientation of δ. Notice that vi is adjacent to or identical with vi+1, for every 1 ≤ i ≤ q
(where vq+1 := v1). Therefore, the circular sequence of vertices v1, . . . , vq induces a cycle in
G that can be continuously deformed to δ. Thus, we have a noncontractible cycle of length
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Figure 1: C is the shortest noncontractible cycle

q ≤ p in G, which implies that k, the length of the shortest such cycle, is at most p, as
required. 2

By Lemma 2.1, the graph Ĝ has at most 2|V (G)| ≤ 38n vertices. According to Lemma
2.2, there is a path connecting r and l in Ĝ with fewer than 38n

k
internal vertices. The

corresponding faces of G1 form a “corridor” B between Cr and Cl. Delete now the vertices of
Cl from G1. Pull every edge in El through B, and connect each of them to the corresponding
vertex of Cr. See Figures 1 and 2. Notice that during this procedure one can avoid creating
any crossing between edges belonging to El.

We give an upper bound on the number of crossings in the resulting planar drawing of
G. Using that |C| = k and |El| ≤ dk, we can conclude that by pulling each edge through the
corridor B, we create at most 38n

k
crossings per edge. Thus, the total number of crossings

cannot exceed dk · 38n
k

= 38dn, which completes the proof of Theorem 1. 2

3 Reducing Theorem 3 to Theorem 3.1

Given a graph G, let n(G) and σ(G) denote the number of vertices of G and the sum of the
squares of their degrees.

Theorem 3 provides an upper bound for the crossing number of a graph G that can be
drawn on Sg without crossing. Next we show that this bound can be deduced by repeated
application of the following result. In each step, we reduce the genus of the surface by one.

Theorem 3.1. Let G be a two-connected graph with crg(G) = 0. Then we have crg−1(G) ≤
c∗gσ(G), for some constant c∗g ≥ 1.
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Figure 2: Pulling the edges in El through the corridor B.

Proof of Theorem 3 using Theorem 3.1. As in the proof of Theorem 1, we can assume
that G is two-connected. Consider a crossing-free drawing of G0 := G on Sg. According to
Theorem 3.1, G0 can be drawn on Sg−1 with at most cσ(G) crossings. Place a new vertex
at each crossing, and apply Theorem 3.1 to the resulting graph G1. Proceeding like this,
we obtain a series of graphs G2, G3, . . . , Gg, drawn on Sg−2, Sg−3, . . . , S0, respectively, with
no crossing.

We claim that for any i, 0 ≤ i ≤ g,

σ(Gi) ≤ (17)i





∏

g−i<j≤g

c∗j



 σ(G)

holds. This is obviously true for i = 0. Let 0 < i ≤ g, and assume that the claim has
already been verified for i − 1. Notice that, apart from the original vertices of Gi−1, every
other vertex of Gi has degree four. Thus, applying Theorem 3.1 to the graph Gi−1 that had
a crossing-free drawing on Sg−i+1, we obtain

σ(Gi) ≤ σ(Gi−1) + 16crg−i(Gi−1) ≤ σ(Gi−1) + 16c∗g−i+1σ(Gi−1)

≤ (1 + 16c∗g−i+1)(17)
i−1





∏

g−i+1<j≤g

c∗j



 σ(G) ≤ (17)i





∏

g−i<j≤g

c∗j



 σ(G),

which proves the claim.
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It follows from the construction that Gg is a planar graph, and we have

n(Gg) − n(G) < σ(Gg) ≤ 17g





g
∏

j=1

c∗j



 σ(G).

Replacing the n(Gg)−n(G) “new” vertices of Gg by proper crossings, we obtain a drawing

of G in the plane with at most 17g
(

∏g
j=1 c∗j

)

σ(G) crossings. This completes the proof of

Theorem 3. 2.

4 Reducing the genus by one: Proof of Theorem 3.1

It remains to prove Theorem 3.1.
All noncrossing closed curves C on Sg belong to one of the following three categories:

1. C is contractible (to a point);

2. C is noncontractible and twosided, i.e., it separates Sg into two connected components;

3. C is noncontractible and onesided.

Let us cut the surface Sg along C, and attach a disk along each side of the cut. If C is
contractible, we obtain two surfaces: one homeomorphic to Sg and the other homeomorphic
to the sphere S0. If C is noncontractible and twosided, then we obtain two surfaces home-
omorphic to Sa and Sb, for some a, b > 0 with a + b = g. Finally, if C is noncontractible
and onesided, then we get only one surface, Sg−1 [?].

First we need an auxiliary statement, interesting on its own right.

Theorem 4.1. Let G be a graph with a crossing-free drawing on Sg. If G has no noncon-

tractible onesided cycle, then G is a planar graph.

Proof. We follow the approach of Cairns and Nikolayevsky [?], developed to handle a
similar problem on generalized thrackles. Let S be a very small closed neighborhood of
the union of all edges of the drawing of G on Sg. Then S is a compact connected surface
whose boundary consists of a finite number of closed curves. Attaching a disk to each
of these closed curves, we obtain a surface S′ with no boundary. We show that S′ is a
sphere. To verify this claim, consider two closed curves, α′ and β′, on S′. They can be
continuously deformed into closed walks, α1 and β1, along the edges of G. Let α and β be
the corresponding closed walks along the edges of G in the original drawing on Sg. By the
assumption, α divides Sg into two parts, therefore, β crosses α an even number of times.
Since the original drawing of G on Sg was crossing-free, every crossing between α and β
occurs at a vertex of G. Using the fact that in the new drawing of G on S′, the cyclic order
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of the edges incident to a vertex is the same as the cyclic order of the corresponding edges
in the original drawing, we can conclude that α1 and β1 cross an even number of times. It
is not hard to argue that then the same was true for α′ and β′. Thus, S′ is a surface with
no boundary in which any two closed curves cross an even number of times. This implies
that S′ is a sphere. Consequently, we have a crossing-free drawing of G on the sphere, that
is, G is a planar graph. 2

Proof of Theorem 3.1. As in the previous section, let σ(G) denote the the sum of the
squared degrees of the vertices of G. A grid of size k × k is the cross product Pk × Pk of
two paths of length k. The vertices of Pk × Pk with degrees less than four are said to form
the boundary of the grid. The proof of Theorem 3.1 is based on the same idea as that of
Theorem 1, but some important details have to be modified.

Suppose that G is a two-connected graph of n vertices, drawn on Sg without crossing.
We can also assume that G has no crossing-free drawing on Sg−1, otherwise Theorem 3.1
is trivially true. In particular, it follows that every face of the drawing of G on Sg has a
connected boundary.

Replace each vertex v of degree d(v) > 4 by a grid of size d(v) × d(v) and connect the
edges incident to v to distinct vertices on the boundary of the grid, preserving their cyclic
order. The resulting crossing-free drawing of G′ has at most σ(G) vertices, each of degree
at most four. Every face has a connected boundary, so that we can apply Lemma 2.1 to
turn G′ into a triangulation G′′ with at most 19σ(G) + 36(g − 1) vertices, each of degree
at most twelve. Restricting G′ and G′′ to any grid substituting for a vertex in G, the only
difference between them is that each quadrilateral face in G′ is subdivided by one of its
diagonals into two triangles in G′′. Color all edges along the boundaries of the grids blue,
and all other grid and diagonal edges of G′′ that lie in the interior of some grid red.

If G′′ has no noncontractible onesided cycle, then we are done by Theorem 4.1. Oth-
erwise, pick such a cycle C with the smallest number k of vertices. Without increasing its
length too much, we can replace all red edges of C by blue edges. Indeed, the first vertex
and the last vertex of any maximal red path in C must belong to the boundary of the same
grid. Replace each such path by the shortest blue path connecting its first and last vertices
along the boundary of the grid containing them. The resulting cycle C ′ is noncontractible,
onesided, and its length is at most 2k. It has no red edges, and we can assume without loss
of generality that it does not intersect itself. Fix an orientation of C ′.

Let El (and Er) denote the set of edges not belonging to C ′ that are incident to at
least one vertex of C ′ and in a small neighborhood of this vertex lie on the left-hand side
(respectively right-hand side) of C ′.

Replace C ′ by two copies, Cr and Cl, lying on its right-hand side and left-hand side.
Connect each edge of Er and El) to the corresponding vertex of Cr and Cl. Cut Sg along
C, and attach a disk to each side of the cut. The resulting surface is Sg−1, and it contains
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a crossing-free drawing G1 of a graph slightly different from G′′. To obtain a drawing of
G′′ from G1, we have to remove Cl and (re)connect the edges of El to the corresponding
vertices of Cr without creating too many crossings.

Let Ĝ1 be the dual drawing of G1 on Sg−1. Let r (respectively l) be the vertex of
Ĝ1 lying in the face bounded by Cr (respectively Cl). Color blue each vertex of Ĝ1 that
corresponds to a face lying inside a grid in G′′.

Repeating the proof of Lemma 2.2, we obtain

Lemma 4.2. In Ĝ1, there are k vertex-disjoint paths between the vertices r and l. 2

The number of cells in G1 is equal to the number of cells in G′′ plus 2. Therefore, by
Euler’s formula, Ĝ1 has at most

2|V (G′′)| + 4(g − 1) + 2 ≤ 2 (19σ(G) + 36(g − 1)) + 4(g − 1) + 2 < 40(σ(G) + 2g)

vertices. Thus, by Lemma 4.2, there is a path P (rl) between r and l, of length at most
40(σ(G) + 2g)/k. Replacing all blue vertices of P (rl) by others, we obtain a new path P ′(rl),
not much longer than P (rl). First observe that r and l, the two endpoints of P (rl), are not
blue. Let uv1v2 . . . vjv be an interval along P such that all vi’s are blue (1 ≤ i ≤ j), but u
and v are not. Then the faces corresponding to u and v must be adjacent to the boundary
of some grid in G1. These two faces are connected by two chains of faces following the outer
boundary of the grid. Replace v1, v2, . . . , vj by the sequence of vertices corresponding to
the shorter of these two chains. Since the degree of every vertex in G1 is at most twelve,
the length of this chain is at most 12j. Repeating this procedure for each maximal blue
interval of P (rl), we obtain a new path P ′(rl), whose length is at most 480(σ(G) + 2g)/k.

The corresponding faces of G1 form a “corridor” B between Cr and Cl. Now delete r,
l, and the vertices of Cl. In the same way as in the proof of Theorem 1, “pull” all edges
of El through B, and connect them to the corresponding vertices of Cr. This step can be
carried out without creating any crossing between the edges in El.

Now we count the number of crossings in the resulting drawing. Since |C ′| ≤ 2k,
|El| ≤ 20k. Pulling them through the corridor B, we create at most 480(σ(G) + 2g)/k
crossings per edge, that is, altogether at most X := 9600(σ(G) + 2g) crossings.

Deleting the extra vertices and edges from G1 and collapsing each grid into a vertex, we
obtain a drawing of G on Sg−1, in which the number of crossings cannot exceed X. This
concludes the proof of Theorem 3.1. 2

Acknowledgement. We are very grateful to Zoltán Szabó (Princeton) for many valuable
suggestions.
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