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Abstract

We show that for any n there is an arrangement of n lines which contain an
z-monotone path of length Q(n"/4).

1 Introduction

Properties of line arrangements in the plane (see [PA95]) have been intensively studied,
partly because of their importance in the construction and analysis of geometric algo-
rithms (see [E87]). One of the most important and studied such problem is the k-level
problem [D98], [T99]. The k-level of an arrangement of n lines is the closure of the the
set of points of the lines with the property that there are exactly k lines pass below
them. The k-level of a line arrangement is an z-monotone polygon (path) which has a
turn in each of the line intersections on it. Its length is the number of turns plus one,
which is called the complexity of the k-level. The k-level problem asks for the maximum
complexity of the k-level in an arrangement of n lines.

In this note we consider a generalization of this problem, when the polygon does not
necessarily have a turn in each of the intersections on it. In other words, we want to
find the maximum length of an z-monotone path in an arrangement of n lines in the
plane. The length of the path is the number of turns plus one. Sharir (see [EG89], [E87])
established an Q(n3/2) lower bound. Matousek [M91] improved it to ©(n°/3). Yamamoto
et. al. [YKII88] found an interesting application of this problem.

Theorem. For any n > 0 there exists an arrangement of n lines which contain a
monotone path of length Q(n/%).
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Obviously, there are at most (%) intersection points in any arrangement of n lines, so

a monotone path has length at most () + 1. We very slightly improve this trivial upper
bound (see Remarks).

2 Proof of Theorem

We construct an arrangement of at most n lines which contain a monotone path of length
Q(n"/*). We define it in three steps. For any arrangement A of lines, |.A| denotes the
number of lines in A.

STEP 1. For any m > 0, let AL be an arrangement of 2m lines, arranged into two
bundles of m parallel lines, called the row bundle R!, and the column bundle C},. More
precisely, let

RL ={ly=1)]i=1,2,...m},

Ct={(zx—y=1)|i=1,2,...m},

and let A}, = Rl UCL. Clearly, there is a monotone path of length 2m in this arrange-
ment (see Fig. 1).

/

/

Figure 1. AL

STEP 2. Suppose for simplicity that /m is an integer. We define A2, an arrangement
of 3m — 1 lines, arranged into four bundles of parallel lines. Let € > 0 very small.
A2 = R2, UC2 UUZ UV?2. R2 and C2, are further subdivided into sub-bundles.

R2, = Uﬁ R2,(j) where

an(j)z{(yzsj—i-&?i) | i:1,2,...\/ﬁ}.



R2,(4) is called the j-th row.
Similarly, C2, = U;/j C2,(j) where

C2G)={(@—y=j+¢e%) |i=12...y/m}.

C2,(j) is called the j-th column.
Clearly, any row R2,(j) and column C2(j') forms an arrangement isomorphic to
Ai/ﬁ’ so in the intersection of any row and column we have a monotone path of length

2y/m. The lines in U2, and V2, allow us to link all these monotone paths.

Uz =1t li=12,...vy/mj=12..ym—1}

where ) . )
b= Qo —y =20+ +3)e) — (i +3)e =2+ (j +5)e)
VZi={t]i=1,2,...v/m—1}
where

0= 2z +y=2i+1).

Figure 2. A2

Now we have the following monotone path. Start with a monotone path of length
2y/m in the intersection of the first row and first column. We leave the intersection on
the highest line in the first row. Then we use /;; to go up to the highest line in the
first column, and then we go along the monotone path of length 2,/m in the intersection
of the second row and first column. After leaving the intersection, we use /12 to reach
again the highest line in the first column, and we continue analogously, until leaving the



intersection of the last row and first column. Then we go down on £} to the lowest line of
the first row, and proceed similarly along the second column, then the third column, until
the last column. This path includes a monotone path of length 21/m in the intersection
of each row and column. Therefore, the length is at least 2m+/m > m>/? (see Fig. 2).

STEP 3. First we define A3, = R3, UC3 UUZ, UV3, | A3 | < 6m.
R2, is divided into y/m bundles of \/m parallel lines, called the rows, and each
row is further subdivided into y/m sub-bundles of /m parallel lines. More precisely,

RS, = Ug R2, (i) and R3 (i) is called the i-th row, R (i) = U R3 o (i,7) where

R;”n(z‘,j):{(y:i+52j+s3k)|k:1,2,...€/ﬁ},

SO

R ={y=i+e%+ek) | j=1,2,...,¢m, k=1,2,... /m}.

Similarly, €3, = UY} C3,(i) and €3,(i) is called the i-th column, C3,(i) = U7 €3, (i, )

where
Cf’n(i,j):{(x—y:i+6j—|—e3k) | k:1,2,...{4/7_n},
SO

Cfn(i):{(x—y:i+ej+e3k) |j=1,2,...,¥m, k:1,2,...%}.

Consider any row R>, (i) and column C3,(i'). The arrangement R3 (i) U C3,(i') is

isomorphic to R? N Cfﬁ from the arrangement .A2 . Let U3 (i,4') (resp. V3 (i,)) be

the copy of U\Q/m (resp. V \/777.) under the same 1somorphlsm. Let

vm v/m
= U U6,i,
=1 i’:l
and
Vi v/m
= U V&.G,i).
i=14i'=1
In other words, for any row R>, (i) and column C3,(i'), add the lines corresponding
to Z/{\Q/m and V?/Fn so that we get an arrangement isomorphic to -Af/m
Because of the slopes of the lines in U3 (i,4'), U3,(i,3') = US,(i + 2,7 — 1) and
U3, (i,4")| < v/m, therefore, U3 | < 3v/m\/m = 3m. Similarly, V3 (4,i') = V3 (i+2,i' —3)
and |V3,(4,i")| < /m, therefore, |V3 | < 5y/my/m < m. Cearly, |R3,| = |C3,| = m, so
|A3 | < 6m (see Fig. 3).



In A3, in the crossing of any row and column we have an arrangement isomorphic
to A? —, S0 there is a monotone path of length at least \/m?’/ > = m3/4. We want to link

all of them with some additional lines, just like in the construction of A2,. The problem
is that the crossing of row R2 (i) and column C3,(i') is exactly below the crossing of
R, (i+1) and C3,(i —1). Let T be an affine transformation, T'(x,y) = (z + /2y, y) and
let B3, = T(A3)). Tt is not hard to see that for € small enough, all lines with positive
(resp. negative) slope will still have positive (resp. negative) slope. So, in the crossing
of any row and column of B3, we still have a monotone path of length m?/%. But now,
all crossings of the rows and columns can be separated from each other by vertical lines.
These lines can be perturbed to lines of very large positive or negative slopes, such that
they can be used to link the monotone paths in consecutive crossings. Let £ be the set
of these lines. Then |£| =m — 1, so | B3, U L] < Tm.

There are m row-column crossings, and in each of them we have a monotone path
of length at least m®/* so the monotone path containing all of them has length at least

m3/tm = m/4,
XXX/
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Figure 3. A2,

Remarks. 1. As mentioned in the introduction, a monotone path has length at most
(3)+1 in any arrangement of n lines. This can be improved by the following observation.
Take a monotone path of length 5m and divide it into m inervals, each of length 5. Notice



that above or below each of these intervals there is a crossing of the lines which is not
on the path (see Fig. 4). So, if there are n lines and a monotone path of length k, then
(5) > k— 1+ |k/5] so 5n?/12 > k. Considering longer intervals, the constant can be
further improved, but we were unable to give a o(n?) upper bound.

2. If instead the number of turns, we define the length of the path as the number
of intersection points on it, it is easy to construct an arrangement of n lines with a
monotone path of length Q(n?).

Figure 4. A monotone path of length 5 has an unused crossing above or below it.
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