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The discharging method in combinatorial geometry and the

Pach–Sharir conjecture

Radoš Radoičić and Géza Tóth

Abstract. We review several applications of the discharging method in graph
theory and in combinatorial geometry. As a new application, we generalize a
result of Pach and Sharir about intersection graphs of planar convex sets.

Introduction

The discharging method (DM) is a technique used to prove statements in struc-
tural graph theory, and it is commonly applied in the context of planar graphs. It is
most well-known for its central role in the proof of the Four Color Theorem, where
Heesch’s idea of discharging (Entladung [H69b]) is used to prove that certain con-
figurations are unavoidable in a maximal planar graph (cf. [AH77] or later proof
in [R+97]). Initially, a charge of 6 − i is assigned to each vertex of degree i in
a maximal planar graph. Using Euler’s formula, it is easy to see that the overall
charge is 12. During the discharging phase, vertices of positive charge push their
charge to other (nearby) vertices (they discharge), as required by a set of discharg-
ing rules. However, each discharging rule maintains the overall charge. Given that
a certain set of configurations F does not occur, one proves that all vertices can
discharge with a nonpositive charge in the end – a contradiction with the overall
charge being unchanged and positive; thus, the configurations in F are unavoidable.

Successful application of DM requires creative design of initial charges and
discharging rules. In Section 1, we present a brief survey of numerous existing
variants in graph theory. Section 2 shall focus on the recent expanding usage in the
realm of combinatorial geometry. In Section 3, we use the DM to make progress
towards Turán-type conjecture of Pach and Sharir on the maximum number of
edges in H-free intersection graphs of convex sets in the plane.
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Figure 1. Charges for a proof of Euler’s formula.

1. Applications of the DM in graph theory

1.1. A “charging scheme” for Euler’s formula. Euler’s formula is essen-
tial in a standard use of DM in order to prove that the sum of initial charges is a
small (positive or negative) constant. However, even this simple and classical tool
has a DM–type proof, as discovered by Thurston [T80]. For a convex polyhedron,
we need to prove that the number of vertices and faces together is exactly two
more than the number of edges. Arrange the polyhedron in space so that no edge is
horizontal; in particular, so there is exactly one uppermost vertex U and lowermost
vertex L. Put a +1 charge at each vertex, a −1 charge at the center of each edge,
and a +1 charge in the middle of each face (see Figure 1).

Next, we discharge all the vertex and edge charges into a neighboring face, and
then group together all the charges in each face. Each charge moves horizontally,
counterclockwise as viewed from above. Each face receives the net charge from an
open interval along its boundary, that is decomposed into edges and vertices, which
alternate. Since the first and the last are edges, there is a surplus of one −1 charge;
therefore, the total charge in each face is zero. All that is left is +2, coming from
the charges for L and for U .

1.2. Existence of light subgraphs in planar graphs. It is a well known
consequence of Euler’s formula that every planar graph contains a vertex of degree
at most 5. The earliest application of DM dates back to Wernicke [W04], who
introduced it in 1904 to prove that if a planar triangulation has minimum degree
5, then it contains two adjacent vertices of degree 5 or two adjacent vertices, one
of degree 5 and the other of degree 6. For the sake of completeness, we show this
simple application of DM in full detail. Pick a plane embedding of this triangulation
and use V , F , and E to denote the sets of vertices, faces, and edges, respectively, in
the resulting plane graph. Assign a charge of 6−d(v) to each vertex v and a charge
of 6 − 2d(f) to each face f , where d(v) denotes the degree of a vertex v and |f |
denotes the size of a face f , i.e. the number of edges (or vertices) on its boundary.1

1Since the planar graph is a triangulation, the initial charge on each face is 0.
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Since
∑

v∈V d(v) = 2|E| and
∑

f∈F |f | = 2|E|, we have that the overall charge is
∑

f∈F

(6− 2|f |)+
∑

v∈V

(6− d(v)) = 6|F |− 4|E|+6|V |− 2|E| = 6(|V |− |E|+ |F |) = 12,

where the last equality follows from Euler’s formula. The only vertices with positive
initial charge (equal to 1) are vertices of degree 5. We use a single discharging rule:

• Each vertex of degree 5 gives a charge of 1
5 to each neighbor.

Clearly, this rule does not change the overall charge, which, in particular, stays
positive, so there exists a vertex v with a positive final charge. However, v can only
have a positive final charge if d(v) ≤ 7. If d(v) = 5, then v had the initial charge
of 1, which it discharged equally among its neighbors; therefore, it had to receive
charge from a neighboring vertex u, that had to be of degree 5, in which case we
are done. If d(v) = 6, then v had the initial charge of 0, so it had to receive charge
from a neighboring vertex u, that had to be of degree 5, in which case our proof
is again complete. If d(v) = 7, then v had the initial charge of −1, so it had to
receive charge from at least 6 adjacent vertices of degree 5. Since the graph is a
triangulation, two of these neighbors of v must be adjacent.

Wernicke’s result was generalized in many directions; namely, it served as a
starting point of the quest for light subgraphs, i.e. subgraphs of small “weight” in
planar graphs, where the weight denotes the sum of vertex degrees [FJ97, JV].
The preceeding paragraph shows the existence of a light edge, i.e. an edge with
weight at most 11, in every planar graph with minimum degree at least 5. Following
some weaker forms of Franklin [F22] and Lebesgue [L40], Kotzig [K55] proved that
every 3-connected planar graph2 contains an edge of weight at most 13, and at most
11 if vertices of degree 3 are absent. In [FJ97] it was proved that every 3-connected
planar graph containing a path of length k contains such a path with all vertices of
degree at most 5k (which is best possible); furthermore, the only light subgraphs
are paths. Under the additional requirement of minimum degree ≥ 4, paths are
still the only light subgraphs [F+00], while the minimum degree ≥ 5 already yields
existence of many other light subgraphs [J+99], whose full characterization is not
known. The upcoming survey [JV] gives an overview of similar results for various
families of plane and projective plane graphs. Recently, Mohar [M00], Fabrici et
al. [F07] studied the existence of light subgraphs in the families of 4-connected
planar graphs and 1-planar graphs (graphs that can be drawn in the plane so that
every edge is crossed by at most one other edge), respectively.

Many of the theorems mentioned so far fall into the following general frame-
work, as observed in [M+03, MS04]: Let W be a list of weight constraints, that
is a set of pairs (H, w) where H is a graph and w is an integer. If G is a class
of graphs, let G(W ) be the class of all graphs G from G such that for every pair
(H, w) ∈ W , we have that every subgraph of G isomorphic to H has weight ≥ w in
G. Now, minimum degree constraints correspond to pairs (K1, w) in W . A natural
question arises: For a given list of weight constraints W , find all light graphs in

G(W ). Usually, G is taken to be the class of all planar graphs or some interesting
subfamily thereof. Madaras and Škrekovski [MS04] go on to study necessary and
sufficient conditions for the lightness of certain graphs (paths, stars, cycles) accord-
ing to values of w in various families of planar graphs and triangulations under edge
constraints (K2, w).

2These graphs are edge graphs of polyhedra by Steinitz’s theorem.
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1.3. Combinatorial structure of neighborhoods in plane graphs. DM–
type arguments have also been successfully used in the study of the neighborhood
structure of vertices and edges in plane graphs. This direction became apparent
after the fundamental paper of Lebesgue in 1940 [L40]. One of the stimuli in the
subsequent work of other authors were attempts to solve the Four Color Conjecture.
Lebesgue coined the term Euler contribution and observed that Euler’s formula can
be equivalently rewritten as

∑

v∈V



1 − d(v)

2
+

∑

f∋v

1

|f |



 = 2,

which implies that there exists a vertex v with a positive contribution: 1 − d(v)
2 +

∑

f∋v
1
|f | > 0. Since

∑

f∋v
1
|f | has maximum value d(v)

3 , one has d(v)
3 > d(v)

2 − 1,

that is d(v) < 6. Solving the inequalities for d(v) ∈ {3, 4, 5}, one deduces that in
every plane graph there exists: (1) a vertex of degree 3 incident to faces of one
of the following sizes3 (3, 6, ?), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),
(4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7); or (2) a vertex of degree 4 incident to
faces of one of the following sizes (3, 3, 3, ?), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5); or (3)
a vertex of degree 5 incident to four triangles and a face of size at most 5. Let w(k)
denote the minimum weight of a minimum degree vertex in a plane graph, with
maximum face size at most k ≥ 3, where the weight of a vertex is the sum of the sizes
of its neighboring faces. Lebesgue’s result implies w(k) ≤ max{51, k+9}. Unifying
and strengthening the previous results of Kotzig, Horn̆ak, Jendrol’, and others
(see [B95a, B96, HJ96] and references therein), Borodin and Woodall [BW98]
used DM to provide exact formulas for wk. Plane graphs showing optimality of their
results correspond to edge graphs of certain 3-polytopes. A detailed description of
the edge neighborhoods of 3-connected plane graphs may be found in [B93].

1.4. Vertex coloring of planar graphs without prescribed cycles. The
problem of deciding whether a planar graph is 3-colorable is NP-complete [GJ79].
Therefore, it is natural to discuss sufficient conditions for a planar graph to be
3-colorable. Grötzch proved that planar graphs without 3-cycles are 3-colorable. In
1976, Steinberg conjectured that every planar graph without 4-cycles and 5-cycles
is 3-colorable [JT95]. This conjecture remains unsettled despite several attempts.
Erdős suggested the following relaxation of the problem [S93]: does there exist an
integer C such that every planar graph without cycles of length between 4 and C
is 3-colorable? Abbott and Zhou [AZ91] were the first to answer Erdős’ question
in affirmative, showing that C ≤ 11. The result has been gradually improved by
Sanders and Zhao [SZ95] to C ≤ 9 and by Borodin et al. [B+05] to C ≤ 7. It is
now known that if G is a planar graph without 4-, 5-, and 6-cycles, and if it further
contains no k-cycles for some fixed k ∈ {7, 8, 9}, then G is 3-colorable (see [CW07]
and references therein). All the approaches use DM essentially in the same way:
first, any plane drawing of a possible minimal counterexample is chosen; then, a
set of reducible configurations that cannot be present are found; finally, the proofs
are completed by the DM, which shows that these configurations are incompatible.

3In what follows, “?” denotes a face with no restriction on its size.
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The following reenactment of the Euler’s formula
∑

f∈F

(|f | − 4) +
∑

v∈V

(d(v) − 4) = −8,

is frequently used, while the initial charges are d(v) − 4 for each vertex v ∈ V and
|f |−4 for each face f ∈ F , except for the outer face which receives the initial charge
of |f | + 4 (thus, forcing all the initial charges to sum to 0).

Havel asked in 1969 if there exists a constant C such that every planar graph
with minimal distance between 3-cycles at least C was 3-colorable [H69a]. The
(strong) Bordeaux conjecture is sort of an “intersection” of Steinberg’s and Havel’s
problem and it states that every planar graph without adjacent (intersecting) 3-
cycles and without 5-cycles is 3-colorable.4 It is only known that every planar graph
with neither 3-cycles at distance ≤ 3 nor 5-cycles is 3-colorable [BR03], where the
DM was a major ingredient again. For choosability analogues consult [M+06].

Another classical conjecture on vertex coloring of planar graphs is due to Weg-
ner [JT95]: the chromatic number of the square of a planar graph χ(G2) is at
most ⌊ 3

2∆⌋ + 1, if the maximum vertex degree ∆ is at least 8; and at most
∆ + 5, if 4 ≤ ∆ ≤ 7. These bounds would be best possible. Improving sev-
eral previous results, Molloy and Salavatipour [MS05] use the DM to prove that
χ(G2) ≤ ⌊ 5

3∆⌋ + O(1). They also study L(p, q)-labelings in connection with the
frequency assignment problems in radio and cellular phone systems.

1.5. Cyclic and acyclic colorings of the vertices of plane graphs. One
of the most fruitful applications of the DM has been in the study of several coloring
parameters of plane graphs, other than the chromatic number. Here, we survey
only a fraction of the rich literature on this subject.

A cyclic coloring of a plane graph is a coloring of its vertices such that any
two distinct vertices incident with the same face receive distinct colors. Clearly,
the number of colors used has to be at least the size ∆∗ of the largest face of a
plane graph. Let χc(∆

∗) be the minimum number of colors needed in a cyclic
coloring of every plane graphs with maximum face size ≤ ∆∗. The best known
lower bound of ⌊ 3

2∆∗⌋ is also conjectured to be the best possible (see [JT95], p.
37). Ore and Plummer proved the first upper bound χc(∆

∗) ≤ 2∆∗ in [OP69].
After several gradual improvements, Sanders and Zhao [SZ02a] proved the best
known upper bound χc(∆

∗) ≤ ⌊ 5
3∆∗⌋. Better results are known for small values of

∆∗. The Four Color Theorem can be restated as χc(3) = 4. The case of ∆∗ = 4
was Ringel’s conjecture, resolved by Borodin (c.f. [B95b]). Some partial results for
∆∗ ∈ {5, 6, 7} can be found in [B+07] and references therein.

For 3-connected plane graphs (i.e. 1-skeleta of 3-polytopes), there was a con-
jecture of Plummer and Toft that χc(∆

∗) ≤ ∆∗ +2, whenever ∆∗ ≥ 3. Horn̆ak and
Jendrol’ [HJ99] confirmed the conjecture for ∆∗ ≥ 24. Furthermore, by finding
appropriate reducible configurations and using clever discharging rules, Enomoto et
al. [E+01] prove that χc(∆

∗) ≤ ∆∗ + 1, with ∆∗ ≥ 60, improving previous results
by Borodin and Woodall [BW99]. At present, the sharp upper bound on χc(∆

∗)
for 3-connected plane graphs remains unknown whenever 5 ≤ ∆∗ ≤ 59. Facial,
diagonal and distance colorings of plane graphs are natural generalizations of the
cyclic coloring (see e.g. Problems 2.15 and 3.10 in [JT95]). Historical background

4Adjacent (intersecting) 3-cycles are triangles with an edge (a vertex) in common.
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and examples of applications of DM in the study of these coloring variants can be
found in [SZ02a, K+05, MR06, H+07].

A proper vertex coloring of a graph is acyclic if every cycle uses at least three
colors. These colorings were introduced by Grünbaum [G73], who proved that
every planar graph is acyclically 9-colorable. The result was steadily improved
(see [D+05] and references therein) until Borodin [B79] used the DM and proved
that every planar graph is acyclically 5-colorable, which is the best possible bound.
In [B+99b], it is proved that every planar graph with girth ≥ 5 (resp. ≥ 7) is
acyclically 4-colorable (resp. 3-colorable). Many other graph families have bounded
acyclic chromatic number; here we mention only those for which the property was
proved using the DM: graphs embeddable on a fixed surface [A+96, B+02b], and
1-planar graphs [B+99a]. Recently, Dujmović et al. [D+04, D+05] discovered
connections between the acyclic chromatic number and track and queue layouts of
graphs, which in turn have ramifications in graph drawing.

The concept of acyclic coloring has been successfully extended to the question
of acyclic choosability of planar graphs. In [B+02a], it is proved that every planar
graph is acyclically 7-choosable, that is, if each vertex v of a planar graph G has
a list L(v) of at least 7 admissible colors, then one can choose a color from L(v),
so that the resulting coloring of G is acyclic. The proof is based on a structural
theorem, that states a sufficient condition for a plane triangulation to have a face
of weight at most 17, and is proved by DM–type arguments (also see [B89] for
history of Kotzig’s conjecture). Since Thomassen proved that each planar graph
is 5-choosable, it seems wise to suspect that every planar graph is acyclicaly 5-
choosable. This is only known for planar graphs without 4-cycles and without
5-cycles (or 6-cycles) [M+07].

1.6. Simultaneous colorings of plane graphs. For convenience, in this
section, the term adjacent will replace the two standard terms of adjacent and in-
cident. A great amount of interest and successful applications of DM has been
devoted to the study of the problem of simultaneous colorings [F71, J69], that is,
colorings of some or all of the elements (vertices, edges, and faces) of plane graphs
so that distinct adjacent elements receive different colors [JT95]. One usually con-
siders the minimum number of colors needed in such a coloring for plane graphs
of maximum degree ∆, giving rise to chromatic numbers χv(∆), χe(∆), χf (∆),
χvf (∆), χve(∆), χef (∆), and χvef (∆). The Four Color Theorem [AH77, R+97]
then states that χv(∆) ≤ 4 (and hence χf (∆) ≤ 4), while Vizing’s theorem (that
generalizes to all graphs, not just planar ones) states that χe(∆) ≤ ∆ + 1 [V64].
Borodin’s resolution of Ringel’s conjecture (already mentioned in the previous
section) is equivalent to χvf (∆) ≤ 6 [B95b]. None of the chromatic numbers
involving edge colorings has been determined precisely. For instance, although
χe(∆) ≤ ∆ + 1 cannot be improved for all ∆ (in particular, ∆ ∈ {2, 3, 4, 5}),
Vizing [V68] proved that χe(∆) = ∆ for ∆ ≥ 8 and conjectured that the same
holds for ∆ ∈ {6, 7}. Zhang [Z00] used the DM and proved Vizing’s conjecture for
∆ = 7 (also c.f. [SZ01b]), while the case ∆ = 6 remains open (see [BW06]). Us-
ing the DM, Sanders and Zhao [SZ01a] proved Melnikov’s conjecture [M75] that
χef (∆) ≤ ∆ + 3. The currently best results on χef (∆) can be summarized as fol-
lows: χef (2) = 5, χef (3) ≤ 5, χef (∆) ≤ ∆+3 for ∆ ∈ {4, 5, 6}, χef (∆) ≤ ∆+2 for
∆ ∈ {7, 8, 9}, and χef (∆) = ∆+1 for ∆ ≥ 10 [B94, SZ01a]. For 2-connected plane
graphs it is known that χef (∆) = ∆ for ∆ ≥ 24 [LZ05]. Analogues for surfaces of
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higher genus are resolved in [SZ03, L+06] using DM–type arguments, while the
choosability extensions can be found in [WL04, C] and the reference therein. The
remaining two simultaneous coloring problems are unsolved, but most cases have
been completed, again using clever discharging rules. Vizing’s conjecture [V64]
(also for general graphs) that χve(∆) ≤ ∆ + 2 is only open for ∆ = 6 [SZ99].
Kronk and Mitchem’s conjecture [KM72] that χvef (∆) ≤ ∆ + 4 is only open for
∆ ∈ {4, 5} [SZ00].

1.7. Edge chromatic critical graphs. By Vizing’s theorem, mentioned in
the previous section, the edge chromatic number χe(∆) of a graph G (not necessarily
planar) of maximum degree ∆ is either ∆ or ∆ + 1. If G is a connected graph
of maximum degree ∆ such that χe(∆) = ∆ + 1, but χe(G \ e) < χe(G) for
every edge e ∈ E(G), then G is said to be ∆-critical. It was conjectured by
Vizing [V68] that if G is a ∆-critical graph then the number of edges e(G) is at
least 1

2 (n(∆− 1)+3). The conjecture has been verified for ∆ ≤ 5. The best known

lower bounds on e(G) were around 1
4n(∆ + 1), until Sanders and Zhao [SZ02b]

used the DM to show that e(G) ≥ f(∆)n
2 , where f(∆) = 1

2 (∆+
√

2∆ − 1). Refining
the charging rules, Zhao [Z04] was able to obtain the best lower bounds on e(G)
for ∆ ∈ {6, . . . , 11}. It is instructive to see how the DM is applied here, since
one considers general graphs, and hence Euler’s formula is not applicable. Suppose
there exists a ∆-critical graph G = (V, E) with |E| < 1

2f(∆)|V |. The essential tool
here is Vizing’s adjacency lemma which states that for every vertex of a ∆-critical
graph with at least one neighbor of degree i, the number of neighbors of degree
∆ is at least max{2, ∆ − i + 1}. For each vertex v ∈ V , define the initial charge
ch(v) = f(∆) − d(v). Then,

∑

v∈V ch(v) = f(∆)|V | − 2|E| > 0. Next, one assigns
a new charge denoted by ch1(v) to each v ∈ V according to the single discharging
rule:

• Let v be a vertex of degree less than f(∆). Then v discharges d(u)−f(∆)
d(u)+d(v)−∆−1

to each adjacent vertex u of degree greater than f(∆).

Now, it is not difficult to show that
∑

v∈V ch(v) =
∑

v∈V ch1(v) and, eventually,
that ch1(v) ≤ 0 for each v ∈ V , which is a contradiction.

We have only touched the tip of the iceberg in terms of the applications of
the DM in graph theory. For other examples of clever discharging arguments,
see [A+05, B+04, B07, CK07, HI02, S06, SZ01c, SW04, VW02, Z03].

2. Applications of the DM in discrete geometry

Euler’s polyhedral formula appears in many disguises throughout combinatorial
geometry literature. One of the typical occurrences is in connection with Sylvester-
Gallai–type problems (c.f. [CS93]). Given an arrangement of circles (or lines) in
the plane, Euler’s formula is applied to the plane graph obtained by introducing
a vertex at each intersection point, and considering the segments of the curves as
edges. It is usually restated as

∑

k≥2

(k − 3)tk +
∑

k≥2

(k − 3)fk = −6,

where tk denotes the number of intersection points of exactly k circles (lines), and
fk the number of faces of size k (each receiving k − 3 as the initial charge, −6 in
total). Notably, in [P02], Pinchasi proved a conjecture of A. Bezdek that every
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finite family of at least five pairwise intersecting unit circles in the plane contains
an intersection point that lies on exactly two circles. In [PP00], Pach and Pinchasi
proved weak version of Fukuda’s conjecture regarding the existence of a bichromatic
line through at most two blue and at most two red points in any given set of n
blue and n red points in the plane, not all on a line. Although their proofs are
actually clever counting arguments combined with the above identity, they can be
paraphrased using the discharging methodology.

In [P07], Euler’s formula in the above form is used again to prove that every
set of n points in the plane, not all on a line, determines at least ⌊n−1

2 ⌋ triangles
with pairwise distinct areas, hence confirming an old conjecture of Erdős, Purdy,
and Straus. A set P of points is called magic, if there is an assignment of positive
weights to the points of P so that for every line ℓ determined by P , the sum of the
weights of all points of P on ℓ is the same. In [A+06], a delicate discharging scheme
is executed in order to prove an old conjecture of U. S. R. Murty that, if P is a
magic configuration then either (1) P is in general position, or (2) P contains |P |−1
collinear points, or (3) P is the “failed Fano configuration”5. In [P+06a], Pach et
al. studied the lower bound on the crossing number cr(G) of an arbitrary graph G,
that is, the minimum number of edge crossings in a drawing of G in the plane (under
some natural restrictions). In the seminal papers in the early 80’s, Ajtai, Chvátal,
Newborn, Szemerédi and, independently, Leighton discovered that for every graph
G with E(G) edges and V (G) vertices, cr(G) is at least C|E(G)|3/|V (G)|2, where
C > 0 is an absolute constant. This result, known as the “Crossing Lemma”, has
found many important applications in discrete geometry, number theory, and VLSI
design, and it is tight up to a multiplicative constant C, whose exact value is difficult
to find and has attracted a lot of attention. All the known proofs of the Crossing
Lemma are based on the immediate corollary cr(H) ≥ |E(H)| − (3|V (H)| − 6) of
Euler’s formula, which is subsequently applied to small and mostly sparse subgraphs
H of G, or to a randomly selected one. After several gradual improvements, the
best known lower bound C > 1024

31827 > 0.032 is established in [P+06a] via a stronger
inequality for the sparse subgraphs. Namely, using the DM, the authors show that
every 3-planar graph (a graph that can be drawn in the plane so that every edge
crosses at most three others) has at most 5.5(|V (G)| − 2) edges. The DM has
been successfully applied in the study of crossing-critical graphs as well. It is well
known that for every positive integer k, there is a graph G and an edge e of G
such that cr(G) = k, but G − e is planar. In [RT93], Richter and Thomassen
conjectured that there is a constant c such that for every graph G, there is an edge
e such that cr(G − e) ≥ cr(G) − c

√

cr(G). They only showed that G always has

an edge e with cr(G − e) ≥ 2
5cr(G) − O(1), which was improved by Salazar [S00]

to cr(G − e) ≥ 1
2cr(G) − O(1) in the case when G has no vertices of degree 3

(c.f. [LS06, FT06]). Their approach uses DM to find “nearly light” cycles, i.e.
short cycles with at most one vertex of high degree, in embedded graphs; and is
very reminiscent of Lebesgue’s theory of Euler contributions from Section 1.3.

Discharging schemes among vertices in triangulations, that rely on the structure
of the set of all triangulations imposed by edge flips, were used by Sharir and Welzl
in [SW06] to investigate the expected number v̂i of interior points of degree i in a
triangulation of a finite set P of n + 3 points in general position in the plane (with

5Up to a projective transformation a “failed Fano configuration” is the three vertices of a
triangle, the midpoints of the sides, and the centroid.
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3 extreme points and n interior points), that is drawn uniformly at random from
all triangulations of P . They proved that n/43 ≤ v̂3 ≤ (2n + 3)/5, and proceeded
to use it to provide the best known upper bound of 43n on the maximum possible
number of triangulations of any set of n points in the plane. Their DM approach
significantly differs from the previous ones. First, they let every vertex have the
initial charge of 7 − i. This way they make sure the overall charge in a maximal
planar graph is at least n, or equivalently, there is at least one unit of charge per
every vertex on the average. Second, their discharging rules are applied across a
family of all triangulations of the given set, with charge going from a vertex v in
one triangulation T to vertices in the triangulations obtained by flipping a single
edge incident to v in T . The charge is redistributed so that no vertex of degree
exceeding 3 has positive charge, while the vertices of degree 3 have charge at most
43. This implies that at least 1/43 of all vertices over all triangulations have degree
3.

Another interesting class of problems where the DM has bore fruit is the estima-
tion of the chromatic number of intersection graphs in the plane, which was initiated
by Asplund and Grünbaum (see e.g. [KN98, K04]). In [KP00], Kostochka and
Perepelitsa show that every intersection graph of axis-parallel rectangles with girth
at least 6 (or 8) is 4−(or 3−) colorable.

2.1. Extremal questions for quasi-planar graphs. One of the most recent
and fundamental contributions of the DM is in the extremal theory of geometric
graphs [P91]. A geometric graph G is a graph drawn in the plane, that is, its vertex
set, V (G) is a set of distinct points, and its edge set, E(G), is a set of straight
line segments, each connecting two vertices and containing no other vertex.6 It is
typically assumed that no three edges of G cross in a single vertex. A geometric
graph is k-quasi-planar if no k of its edges are pairwise crossing. It is a folklore
conjecture [P91] that the maximum number of edges, fk(n), in a k-quasi-planar
graph on n vertices is at most ckn, where the constant ck depends on k. For
k = 2, it is immediate from Euler’s formula that f2(n) = 3n − 6. There are
several proofs that f3(n) = O(n) [A+97, P+06b], but the most recent one, due
to Ackerman and Tardos [AT07], uses the DM and provides the best value of the
constant c3 = 8 (which is very close to best lower bound construction with 7n−O(1)
edges). Ackerman [A06] went on to prove that f4(n) ≤ 36n − O(1), again using
the DM approach and some additional ideas. The best upper bound for k ≥ 5 is
O(n log4k−16 n).

Since it is very instructive for the presentation of our results later on in the
paper, we shall describe Ackerman’s original approach for k = 3 in some detail
here. We will not care about the best value of the constant c3 and will prove
f3(n) ≤ 10n − 20 instead. Consider a 3-quasi-planar graph G on n vertices. Let

G̃ be the planar graph together with its planar drawing, induced by E(G); that is,

the vertices V (G̃) are the endpoints of the segments (called end-vertices) and the
crossings of the segments (called crossing-vertices). The edges of G are subdivided

into the edges of G̃ accordingly (see Figure 2). Let Ve(G̃) (resp. Vc(G̃)) denote the

set of end-vertices (resp. crossing-vertices) of G̃, and let E(G̃) (resp. F (G̃)) denote

6Our discussion in this section also applies to more general topological graphs [P04], in which
the edges may be drawn with non-self-intersecting Jordan arcs; however, this is not important for
the present paper.
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Figure 2. End-vertices (in white), crossing-vertices (in black),
and initial charges.

the edges (resp. faces) of G̃. Note that as no three edges of G cross in a single
vertex, all the crossing-vertices have degree 4. For each face f , let |f | denote the
number of edges along its boundary, and let ve(f) denote the number of end-vertices

on its boundary. Note that an edge of G̃ may appear twice along the boundary of
a face. A face f will be shortly called a ve(f)–|f |-gon. For instance, a 1-triangle
denotes a face of size 3 with 1 end-vertex.

Initial charges ch(f) = |f |+ ve(f)−4 are assigned to the faces of G̃ (see Figure
2). The overall charge is

∑

f∈F (G̃)

ch(f) =
∑

f∈F (G̃)

(|f |+ve(f)−4) = 2|E(G̃)|+
∑

f∈F (G̃)

ve(f)−4|F (G̃)| = 4n−8,

where we used Euler’s formula and the obvious identity
∑

f∈F (G̃)

ve(f) =
∑

u∈Ve(G̃)

d(u) =
∑

u∈V (G̃)

d(u) −
∑

u∈Vc(G̃)

d(u)

= 2|E(G̃)| − 4(|V (G̃)| − |V (G)|),
where d(u) denotes the degree of u.

Graph G̃ does not have faces of size 1 or 2. Furthermore, there are no 0-
triangles, since G is 3-quasi-planar. Note that every face in G̃ has a non-negative
initial charge. Next, we redistribute the charges without affecting the total charge
of 4n−8, while making sure that the new charge ch1(f) of a face f satisfies ch1(f) ≥
ve(f)/5. Note that the only faces which do not already have enough charge are 1-
triangles. The idea is to “walk” along the wedge formed by the original vertex of
a 1-triangle and the two incident edges, and eventually find a face with plenty of
charge to discharge. More precisely, let f := f0 be a 1-triangle, and let e1 be the
edge not incident to its original vertex. Let f1 be the other face incident to e1 (see
Figure 3). If ve(f1) > 0 or |f1| > 4, f1 discharges 1/5 unit of charge through e1

(which is then called an active edge) to f . Otherwise, f1 must be a 0-quadrilateral.

Let e2 be an edge of G̃ opposite to e1 in f1, and let f2 be the other face incident to
e2. Applying the same argument as above, we conclude that either f2 discharges
1/5 unit of charge through e2 to f , or f2 is also a 0-quadrilateral. In the second
case, we continue to the next face in the wedge. At some point, we must encounter
a face fi with ve(f1) > 0 or |f1| > 4, in particular, fi is not a 0-quadrilateral. Then,
fi discharges 1/5 unit of charge through ei to f .
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Figure 3. Walking along the wedge and charging a 1-triangle.

Observe that ch1(f) = 1/5 = ve(f)/5 for every 1-triangle f and ch1(f) = 0 =

ve(f)/5 for every 0-quadrilateral f . Now, let f be a face of G̃ that is neither a
0-quadrilateral nor a 1-triangle. We have ch(f) = |f |+ ve(f)− 4 ≥ 1 and ch1(f) =
ch(f) − cf , where cf is the charge that f lost in the discharging phase. Since an
edge of f is active only if both endpoints of the edge are new vertices, we have
cf ≤ (|f | − ve(f))/5; hence, ch1(f) ≥ (2/5)ve(f) + (4/5)(ch(f) − 1) ≥ (2/5)ve(f).

Therefore, we have ch1(f) ≥ ve(f)/5 for all faces f of G̃. Finally, we obtain

|E(G)| =
1

2

∑

u∈V (G)

d(u) =
1

2

∑

f∈F (G̃)

ve(f) ≤ 5

2

∑

f∈F (G̃)

ch1(f) =
5

2

∑

f∈F (G̃)

ch(f)

=
5

2
(4n − 8) = 10n− 20.

3. On planar intersection graphs with forbidden subgraphs

Given a collection C = {C1, . . . , Cn} of compact connected sets in the plane,
their intersection graph G(C) is a graph whose vertices correspond to the sets, and
two vertices are connected if the corresponding sets intersect. For any graph H , a
graph G is called H-free if it does not contain a subgraph isomorphic to H . Pach
and Sharir [PS07] started investigating the maximum number of edges an H-free
intersection graph G(C) on n vertices can have. If H is not bipartite, then the
assumption that G is an intersection graph of compact connected sets in the plane
does not effect the answer. Namely, according to the Erdős-Stone theorem, we have
that the maximum number of edges in an H-free graph on n vertices is given by

ex(n, H) =

(

1 − 1

χ(H) − 1
+ o(1)

)

n2

2
,

where χ(H) is the chromatic number of H . This bound is asymptotically tight
if H is not bipartite, as it can be shown by Turán’s complete (χ(H) − 1)-partite
graph whose vertex classes are of roughly equal size. This graph, in turn, can be
realized geometrically as the intersection graph of a collection of segments in the
plane, where the segments in each of the vertex classes are parallel.
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The problem becomes much more interesting if H is bipartite. The classical
theorem of Kővári, Sós, and Turán provides a subquadratic bound on the number
edges in G(C), since ex(n, Kk,k) = O(n2−1/k). However, geometry does make the
difference here, as Pach and Sharir were able to prove that for every positive integer
k there is a constant ck such that, if G(C) is a Kk,k-free intersection graph of n
convex sets in the plane, then it has at most ckn log n edges. In other words, for
every collection of n convex sets in the plane with no k of them intersecting k others,
there are at most ckn logn intersecting pairs. In the case k = 2, they reduced their
bound by a log n factor to O(n). They further conjectured the following.

Conjecture 3.1 (Pach–Sharir). Given a bipartite graph H , there exists a
constant cH such that every H-free intersection graph of n convex sets in the plane
has at most cHn edges.

Here we prove their conjecture for H ∈ {K2,3, C6}. Our proof is based on the
ideas of Pach and Sharir, and the DM-type argument of Ackerman [A06].

Theorem 3.2. Suppose that the intersection graph of n convex sets in the plane

does not contain

(i): K2,3

(ii): C6

as a subgraph. Then its number of edges is O(n).

Proof. Let C be a collection of n convex sets in the plane such that their
intersection graph does not contain (i) K2,3, or it does not contain (ii) C6 as a
subgraph. Add four more sets to C, all four being very long horizontal segments,
two of them above all original sets in C, and two of them below all original sets in
C. Now we have n + 4 sets, their intersection graph has the same number of edges,
and it still does not contain K2,3 or C6, respectively, as a subgraph.

In both cases, it follows that the intersection graph does not contain K3,3 as
a subgraph. In the first part of the proof we only use this condition. We follow
the ideas of Pach and Sharir. For any C ∈ C let sC denote the spine of C, the
segment connecting its leftmost and rightmost points. Let S denote the set of
spines and A(S) denote their arrangement. Apply a little perturbation to the sets,
if necessary, so that their intersection graph remains the same, but the spines are
in general position, that is, no three spines cross at the same point, and no three
endpoints are collinear.

Let Ξ denote the vertical decomposition of the arrangement A(S) of the spines.
That is, erect a vertical segment up and down from each endpoint and from each
intersection of the segments, until they hit another segment, or else all the way to
infinity. Each cell of Ξ is a trapezoid, bounded by (portions of) the spines on the
top and bottom, and by vertical segments on the left and on the right; any of these
boundary segments may be missing. Let X denote the number of intersections of
the spines.

Let ∆ be a cell of Ξ, A and B be two of the sets such that sA (resp. sB)
contains the upper (resp. lower) boundary of ∆. Let K ∈ C, K 6= A, B, such
that K intersects ∆, and let p be a point in the intersection. Let λ be the vertical
line through p. Order all spines that intersect λ according to the order of the
intersections. Clearly, sA is above sB and they are neighbors in this order.

Assume that sK is below sB. Suppose that there are at least two other spines
between sB and sK . Let sC be the spine immediately below sB, and let sD be



THE DISCHARGING METHOD IN GRAPH THEORY AND COMBINATORIAL GEOMETRY13

∆

∆

K
1

K
2

K

SB

SA

S
D

SC

∆
2

1

p

λ

Figure 4. K, K1, and K2 are 1-assigned to (∆, ∆1, ∆2), thus
forming a K3,3 with B, C, and D in G(C).

immediately below sC . Let ∆1 be the cell below ∆ along line λ and let ∆2 be the cell
below ∆1 along λ. We say that K is 1–assigned to the ordered triple (∆, ∆1, ∆2).
We claim that there is at most one other set 1–assigned to (∆, ∆1, ∆2). Indeed,
suppose that K, K1, and K2 are all 1–assigned to (∆, ∆1, ∆2). Then each of K,
K1, and K2 must intersect each of B, C, and D, forming a forbidden K3,3 in the
intersection graph of C (see Figure 4).

Analogously, if sK is above sA, then sK is either the neighbor, or the second
neighbor above sA, or it is 2–assigned to the triple (∆, ∆3, ∆4), where ∆3 is the
cell above ∆ along line λ, and ∆4 is the cell above ∆3 along λ. We can observe
again that there are at most two sets 2–assigned to (∆, ∆3, ∆4).

Now let ℓ be a vertical line and suppose that ∆1, ∆2, ∆3, ∆4, ∆5 are five consec-
utive cells along λ from top to bottom. We say that (∆1, ∆2, ∆3, ∆4, ∆5) is a good

quintuple, and K ∈ C is assigned to it if either (i) K is 1–assigned to (∆3, ∆4, ∆5),
or (ii) K is 2–assigned to (∆3, ∆2, ∆1), or (iii) sK contains the upper or lower
boundary of any of ∆1, ∆2, ∆3, ∆4, ∆5.

Let us estimate the number of good quintuples. Sweep Ξ by a vertical line
ℓ from left to right and maintain the list of all good quintuples that intersect λ.
Initially, when λ is very far to the left, we have no such good quintuples. The list
changes when we pass through an endpoint of a segment or an intersection of two
segments, and in each case we get at most five new good quintuples. Therefore, we
have at most 10n + 5X + 40 good quintuples.7

Observe that if two sets A and B intersect each other, then they are both
assigned to the same good quintuple. By the previous argument, there are at most
10 sets of C that are assigned to the same good quintuple, and they contribute at
most

(

10
2

)

= 45 pairwise intersections. It follows that the intersection graph of C
has at most 450n + 225X + 1800 edges.

7Four long horizontal segments that we have added to C at the beginning of our proof prevent
any degenerate quintuples.
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Therefore, it remains to show that X = O(n); more precisely, we have to prove
the following statement (in Case (ii) we only sketch the argument). �

Lemma 3.3. Let S be a collection of n segments in the plane such that their

intersection graph G(S) does not contain

(i): K2,3

(ii): C6

as a subgraph. Then G(S) has O(n) edges.

Proof. Case (i): G(S) does not contain K2,3 as a subgraph. As in Section

2.1, let G̃ be the planar graph together with its planar drawing, induced by S. We
use the same notation: Ve(G̃), Vc(G̃), E(G̃), F (G̃), |f |, ve(f). Note that in our case

|Ve(G̃)| = 2n, and any face f with |ve(f)| > 0 has size |f | ≥ 6. Following [A06],
assign initial charge ch(f) = |f |+ ve(f)− 4 to each face f . For the total charge we
have

∑

f∈F (G̃)

ch(f) =
∑

f∈F (G̃)

(|f | + ve(f) − 4) = 2|E(G̃)| +
∑

f∈F (G̃)

ve(f) − 4|F (G̃)|

= 2|E(G̃)| + 2n − 4|F (G̃)| = 2|E(G̃)| + 2n + 4|Ve(G̃)| + 4|Vc(G̃)| − 4|E(G̃)| − 8

= −2|E(G̃)| + 10n + 4|Vc(G̃)| − 8 = 8n − 8.

We used that

|E(G̃)| = n + 2|Vc(G̃)|,
as well as Euler’s formula for G̃.

The only faces with negative charge are 0-triangles, and the only faces with 0
charge are the 0-quadrilaterals. We redistribute the charges so that all faces have
nonnegative charges. Then we move the charges from the faces to the crossing-
vertices on their boundary, and this will imply a linear upper bound on the number
of crossings. Our charge redistribution is very reminiscent of Ackerman’s; here,
instead of discharging 1/5 to a 1-triangle from one direction, we discharge 1/3 to a
0-triangle from all three directions.

Charge Redistribution. Let t be a 0-triangle, and e1, e2, e3 its edges. Let f1

be the other face incident to e3. It cannot be a 0-triangle since e1 and e2 cannot
intersect twice. If |f1| > 4, then move 1/3 charge from f1 to t. Otherwise, f1 is a
0-quadrilateral. Let e4 be the side of f1 opposite to e3, and consider the face f2

on the other side of e4. Just like in the previous case, f2 cannot be a 0-triangle.
If |f2| > 4, then move 1/3 charge from f2 to t, and if f2 is a 0-quadrilateral, then
consider the next face f3. Proceed analogously in this fashion, and at some point
we have to encounter a face f with |f | > 4. Then move 1/3 charge from f to t. Do
the same for all 0-triangles, in all three directions (see Figure 5). Let ch1(f) denote
the modified charge of a face f .

Claim 3.4. We have ch1(f) = 0 if and only if f is a 0-triangle or a 0-
quadrilateral. Otherwise, ch1(f) ≥ 2|f |/21.

Proof. It is clear that ch1(f) = 0 for 0-triangles and 0-quadrilaterals. We
show that ch1(f) ≥ 2|f |/21 for all other types of faces. Any face f gives 1/3 charge
to at most |f | triangles; therefore, if |f | ≥ 7, then ch1(f) ≥ |f | − 4 − |f |/3 ≥
2|f |/3− 4|f |/7 ≥ 2|f |/21.
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Figure 5. Discharging to 0-triangles.

Suppose that |f | = 6. Then f is either a 0-hexagon, or a 1-hexagon. If it is a 1-
hexagon, then ch(f) = 3, so ch1(f) ≥ 1 > 2|f |/21. If f is a 0-hexagon, let s1, . . . , s6

denote the segments containing the sides of f , in counterclockwise direction. If f
gave charge to at most five 0-triangles then ch1(f) ≥ 1/3 and we are done. If it
gave charge to six 0-triangles, then each segment si crosses si−1 and si+1 (indices
are taken mod 6), so their intersection graph contains a K2,3 (see Figure 6A).

Now suppose that |f | = 5. Then f is a 0-pentagon, ch(f) = 1, and just like
in the previous argument, it is not hard to see that f could give charge to at most
two 0-triangles (see Figure 6BC), so ch1(f) ≥ 1/3 and we are done. �

Now we do the second redistribution of the charges.

Charging Crossings. For each face with ch1(f) > 0, we know that ch1(f) ≥
2|f |/21. Move 2/21 charge to each crossing-vertex on its boundary.

Claim 3.5. (i): Each crossing-vertex gets charge at least 2/21.
(ii): The total charge of the crossing-vertices is at most 8n − 8.

Proof. (i) Let f1, . . . f4 be the four faces adjacent to a crossing-vertex, in
counterclockwise direction. We have to prove that at least one of them has positive
modified charge, that is, for some fi, ch1(fi) > 0. Suppose this is not the case.
Then each of f1, . . . f4 is either a 0-triangle or a 0-quadrilateral. If two neighboring
faces, say f1 and f2, are 0-quadrilaterals, then we have a K2,3 in G(S) (see Figure
7A). If two neighboring faces, say f1 and f2, are 0-triangles, then we have two
segments crossing twice. Therefore, up to symmetry, the only remaining case is
when f1 and f3 are 0-triangles, and f2 and f4 are 0-quadrilaterals. However, in
this case two segments would again cross twice, which is a contradiction (see Figure
7B).

(ii) Clearly, each face f with ch1(f) > 0 gives charge to at most |f | crossing-
vertices. Since ch1(f) > 2|f |/21, the total charge of the crossing-vertices is at most
as much as the total modified charge of the faces, which is 8n − 8. �

Lemma 3.3 (i) (and Theorem 3.2 (i)) now follow directly from Claim 3.5. Each
crossing-vertex has charge at least 2/21, and their total charge is at most 8n − 8.
Therefore, the total number of crossing vertices is at most 84n− 84.
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Figure 7. A) {1, 2} and {1′, 2′, 3′} form a K2,3 in G(S); B) If f2

is a 0-quadrilateral, then |f4| > 4, hence, f4 discharged 2/21 to the
crossing-vertex.

Case (ii): G(S) does not contain C6 as a subgraph. We will only sketch the

argument, since it is similar to the argument in Case (i). Again, let G̃ be the
planar graph together with its planar drawing, induced by S. We use the same
notation as in Case (i). A 1-hexagon is a triangle determined by three segments,
such that a fourth segment ends inside. For each 1-hexagon, cut the corresponding
fourth segment such that it ends just outside the triangle (see Figure 8). We have
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Figure 8. Eliminating 1-hexagons.

lost at most 2n crossing-vertices and we still do not have a C6 in the intersection
graph. Therefore, it is sufficient to prove the result for the new arrangement. We
use the same notation for the new arrangement.

Assign charge ch(f) = |f | + ve(f) − 4 to each face f . Just like in Case (i), we
have

∑

f∈F (G̃)

ch(f) = 8n − 8.

Charge Redistribution, Step 1. This step is identical to Charge Redistri-

bution in Case (i), so each 0-triangle gets charge 1/3 through each of its sides from
some t-gon, t ≥ 5. Denote by ch1(f) the new charge of a face f and call it a modified

charge. Now 0-triangles and 0-quadrilaterals have 0 modified charge. 0-pentagons
might have modified charge −2/3. There are no hexagons at all, since a 0-hexagon
would imply a C6 in the intersection graph, and we eliminated the 1-hexagons.

All other faces have positive charges.

Charge Redistribution, Step 2. We redistribute charges again, so that 0-
pentagons will have positive charge as well.

Let p be a 0-pentagon which gave charge 1/3 to five 0-triangles. Clearly,
ch1(p) = −2/3. Let s1, . . . , s5 be the segments, in counterclockwise direction,
which contain the sides of p. It is not hard to see that any two of s1, . . . , s5 in-
tersect. Therefore, there is no other segment s that intersects two segments from
{s1, . . . , s5}, since that would create a C6 in the intersection graph (see Figure 9A).
Moreover, for the same reason, for any 1 ≤ i < j ≤ 5, there is no path from si to sj

of length 2, 3, or 4 in the intersection graph of S \ {s1, . . . , s5} ∪ {si, sj}. By these
observations, we can conclude that all five neighboring faces of p are 0-triangles
(these triangles got the charge 1/3 from p in Charge Redistribution, Step 1).
It also follows that all five faces f1, . . . , f5, sharing a vertex with p but not a side,
have |fi| ≥ 9 (see Figure 9B-E). Move charge 1/7 from each fi to p, and do the
same for each 0-pentagon which gave charge 1/3 to five 0-triangles (see Figure 9F).

Let p be a 0-pentagon which gave charge 1/3 to four 0-triangles. Let f1, . . . , f5

be the faces sharing a vertex with p but not a side. By a similar argument as
above, one can show that two faces among f1, . . . , f5 have at least 9 edges along
their boundary, and two of them have at least 8 sides. Move charge 1/7 from each
fi of at least 8 sides to p, and do the same for each such 0-pentagon.
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Figure 9. Discharging 1/7 through each vertex of p from the
neighboring faces fi, |fi| ≥ 9.

Finally, suppose that p is a 0-pentagon which gave charge 1/3 to three 0-
triangles. Let f1, . . . , f5 be defined as before. Then, again by an analogous argu-
ment, we can show that at least three faces among f1, . . . , f5 are of size at least 8.
Move charge 1/7 from each fi of at least 8 sides to p, and do the same for each
such 0-pentagon.

There are some technicalities that we are omitting in the last two cases, as
some of the faces f1, . . . , f5 could be identical. This does not affect our charging
redistribution or computation later on, but it does increase the number of cases to
be considered. Furthermore, some of the faces fi could potentially have |ve(fi)| > 0,
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Figure 10. A) |f | > 4, so ch3(u) ≥ 1/105 and ch4(v) ≥ 1/525;
B) Labeled segments form a C6 in G(S).

in which case |fi| ≥ 7; however, these faces have plenty of charge for discharging to
p, and the inequalities in our later computation are even easier to establish.

Denote by ch2(f) the new charge of a face f and call it the final face-charge.

Claim 3.6. We have ch2(f) = 0 if and only if f is a 0-triangle or a 0-
quadrilateral. Otherwise, ch2(f) ≥ |f |/105.

Proof. It is clear that ch2(f) = 0 for 0-triangles and 0-quadrilaterals. We
show that ch2(f) ≥ |f |/105 for all other types of faces.

Suppose that |f | ≥ 8. Then an easy calculation shows that ch2(f) ≥ |f | − 4 −
|f |/3 − |f |/7 = 11|f |/21− 4 > |f |/105.

If |f | = 7, then ch2(f) = ch1(f) ≥ 7 − 4 − 7/3 = 2/3 > 7/105 (the case of
1-heptagons is omitted for the sake of simplicity).

Since there is no C6 in the intersection graph, and we eliminated all 1-hexagons,
|f | = 6 is impossible.

Finally, suppose that |f | = 5. Then the possible values of ch2(f) are 1, 2/3,
1/3, 0 + 3/7, −1/3 + 3/7, and −2/3 + 5/7, the smallest being −2/3 + 5/7 = 1/21,
so we are done. �

Now move the charges from the faces to the crossing-vertices.

Charging Crossings, Step 1. For each face with ch2(f) > 0, we know that
ch2(f) ≥ |f |/105. Move 1/105 charge to each vertex on its boundary. For any
vertex v, let ch3(v) denote the charge of v.
Charging Crossings, Step 2. For any vertex v, let

ch4(v) =
1

5

∑

u = v, or

uv ∈ E(G̃)

ch3(u).

Claim 3.7. (i): Each crossing vertex gets charge at least 1/525.
(ii): The total charge of the crossing-vertices is at most 8n − 8.

Proof. (i) Suppose for contradiction that ch4(v) < 1/525. Then ch3(u) = 0

if u = v or u is a neighbor of v in G̃; consequently, all faces adjacent to v, and all
its neighbors have charge 0, so all these faces are 0-triangles or 0-quadrilaterals. In
particular, v and all its neighbors are crossing-vertices. However, a straightforward
case analysis shows that in this case we have a C6 in the intersection graph of the
corresponding segments. Two cases are depicted in Figure 10.

(ii) Clearly, each face f with ch2(f) > 0 gives charge to at most |f | vertices.
Since ch2(f) ≥ |f |/105, after the first step, the total charge of the vertices is at
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most as much as the total final face-charge of the faces, which is 8n− 8. After the
second step, the total charge of the vertices could not increase. More precisely,

∑

v∈Vc(G̃)

ch4(v) ≤
∑

v∈V (G̃)

ch4(v) ≤
∑

v∈V (G̃)

ch3(v) ≤
∑

f∈F (G̃)

ch2(f) = 8n − 8.

�

Now we are in a position to conclude our proof of Lemma 3.3 (ii) (and, thus,
Theorem 3.2 (ii)). Each crossing-vertex has charge at least 1/525, and their total
charge is at most 8n−8. Therefore, the total number of crossing-vertices is at most
4200n− 4200. �

Concluding remarks. Using the same method, we can prove Conjecture 3.1
in the case when the forbidden subgraph H is either C8 or K2,4. However, since
the discharging method is always based on local discharging rules and arguments,
as the size of H increases, our proofs get increasingly complicated.

On the other hand, in a forthcoming paper, Fox and Pach [FP] settle Conjecture
3.1 using completely different techniques.

Acknowledgement. We are very grateful to Eyal Ackerman for his important
remarks.
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[FT06] J. Fox, C. D. Tóth, On the decay of crossing numbers, Proc. 14th Sympos. on Graph
Drawing (Karlsruhe, 2006) 4372 LNCS, Springer-Verlag, 174–183.

[F22] P. Franklin, The four color problem, Amer. J. Math. 44 (1922), 225–236.
[F+00] I. Fabrici, E. Hexel, S. Jendrol’, H. Walther, On vertex-degree restricted paths in polyhe-
dral graphs, Discrete Math. 212 (2000), 61–73.

[FJ97] I. Fabrici, S. Jendrol’, Subgraphs with restricted degrees of their vertices in planar 3-

connected graphs, Graphs Combin. 13 (1997), 245–250.
[GJ79] M. R. Garey, D. S.Johnson, Computer and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.
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[H+07] F. Havet, J.-S. Sereni, R. Škrekovski, 3-facial colouring of plane graphs, SIAM J. of
Discrete Math., to appear.

[H69b] H. Heesch, Untersuchungen zum Vierfarbenproblem, Hochschulskriptum 810ab, Bibli-
ographisches Institut, Mannheim, 1969.

[HJ99] M. Horn̆ak, S. Jendrol’, On a conjecture of Plummer and Toft, J. Graph Theory 30 (1999),
177–189.
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