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A generalization of quasi-planarity

János Pach, Radoš Radoičić, and Géza Tóth

Abstract. A topological graph is a graph drawn in the plane by simple Jordan
arcs. Suppose that a topological graph G has no k + 2 edges such that the
first two cross each other and the remaining k edges. Then G has at most Ckn

edges, for a suitable constant Ck.

1. Introduction

A topological graph is a graph drawn in the plane so that its vertices are repre-
sented by points in the plane and its edges by simple (non-selfintersecting) Jordan
arcs connecting the corresponding points and not passing through any vertex other
than its endpoints. Throughout this paper, we assume that if two edges of a topo-
logical graph G share an interior point, then they properly cross at this point. We
also assume, for simplicity, that no three edges cross at the same point and that
any two edges cross only a finite number of times. Let V (G) and E(G) denote the
vertex set and edge set of G, respectively. We will make no notational distinction
between the vertices (edges) of the underlying abstract graph, and the points (arcs)
representing them in the plane. If the edges of G are represented by straight-line
segments, then G is called a geometric graph. If, in addition, the vertices are in
convex position, then G is said to be a convex geometric graph.

It follows from Euler’s Polyhedral Formula that if a topological graph with
n vertices has no pair of crossing edges, then its number of edges cannot exceed
3n− 6. It is conjectured that for every fixed k the maximum number of edges that
a topological graph of n vertices can have without containing k pairwise crossing
edges is O(n), where the constant hidden in the O-notation depends on k. For
k = 3, this conjecture has been verified in [AAPPS97] for geometric graphs and
in [PRT03] in full generality. For larger values of k, the best upper bound known
for the number of edges is n times a polylogarithmic factor [V97], [PRT03]. For
convex geometric graphs G with n ≥ 2k vertices, Capoyleas and Pach [CP92] found
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an exact formula: if G has no k pairwise crossing edges, then

|E(G)| ≤ 2(k − 1)n −

(

2k − 1

2

)

,

and this bound can be attained.
In [PPST03], it was shown that if a topological graph G with n vertices has

no k × k grid-like pattern, i.e., it has no 2k edges so that each of the first k edges
crosses the remaining ones, then |E(G)| = O(n).

The aim of the present note is to make another, albeit small, step towards the
solution of the above problem, by proving

Theorem. For any fixed positive integer k, there exists a constant Ck with the
property that in every topological graph with n vertices and more than Ckn edges
there are k + 2 edges such that the first 2 cross each other and the remaining k

edges.

In the literature, topological graphs with no k pairwise crossing edges are often
called k-quasi-planar.

2. Proof of Theorem.

Let G be a topological graph with n vertices, containing no k + 2 edges such
that the first 2 cross each other and the remaining k edges, k > 1. We may assume
without loss of generality that the underlying abstract graph of G is connected,
because otherwise the theorem follows by induction on the number of vertices.
Redraw G, if necessary, without creating a forbidden (k +2)-tuple of edges, so that

the number of crossings in the resulting topological graph G̃ is as small as possible.
Obviously, no edge of G̃ can cross itself, otherwise we could reduce the number of
crossings by removing the loop. Suppose that G̃ has two distinct edges that have
at least two points in common. A region enclosed by two pieces of the participating
edges is called a lens.

Claim 1. Every lens of G̃ contains a vertex.

Proof. Suppose there is a lens ` that contains no vertex of G̃. Consider a
minimal lens `′ ⊆ `, by containment. Notice that by swapping the two sides of `′,
we could reduce the number of crossings without creating any new pair of crossing
edges. �

The following property is a direct consequence of a result of Schaefer and Ste-
fankovič on string graphs [SS01].

Claim 2. For any edge e of G̃ and for any m > 0, every set of 2m consecutive
crossings along e involves at least m distinct edges other than e. �

Let e1, e2, . . . , en−1 ∈ E(G) be a sequence of edges such that e1, e2, . . . , ei form
a tree Ti ⊆ G for every 1 ≤ i ≤ n−1. In particular, e1, e2, . . . , en−1 form a spanning
tree T := Tn−1 of G.

First, we construct a sequence of crossing-free topological graphs (trees), T̃1,

T̃2, . . ., T̃n−1, as follows. Let T̃1 be defined as a topological graph of two vertices,

consisting of the single edge e1 (as was drawn in G̃). Suppose that T̃i has already
been defined for some i ≥ 1, and let v denote the endpoint of ei+1 that does not

belong to Ti. Now add to T̃i the piece of ei+1 between v and its first crossing with

T̃i. More precisely, follow the edge ei+1 from v up to the point v′ where it hits T̃i
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for the first time, and denote this piece of ei+1 by ẽi+1. If v′ is a vertex of T̃i, then

add v and ẽi+1 to T̃i and let T̃i+1 be the resulting topological graph. If v′ is in the

interior of an edge e of T̃i, then introduce a new vertex at v′. It divides e into two
edges, e′ and e′′. Add both of them to T̃i, and delete e. Also add v and ẽi+1, and

let T̃i+1 be the resulting topological graph.

After n−2 steps, we obtain a topological tree T̃ := T̃n−1, which (1) is crossing-

free, (2) has fewer than 2n vertices, (3) contains each vertex of G̃, and (4) has the

property that each of its edges is either a full edge, or a piece of an edge of G̃.
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Figure 1. Constructing T̃ from T

Let D denote the open region obtained by removing from the plane every point
belonging to T̃ . Define a directed convex geometric graph H , as follows. Traveling
around the boundary of D in clockwise direction, we encounter two kinds of different
“features”: vertices and edges of T̃ . Represent each such feature by a different
vertex xi of H , in clockwise order in convex position. Note that the same feature
will be represented by several xi’s: every edge will be represented twice, because
we visit both of its sides, and every vertex will be represented as many times as its
degree in T̃ . It is not hard to see that the number of vertices xi ∈ V (H) does not
exceed 8n.

Next, we define the edges of H . Let E = E(G̃ \T ) be the set of edges of G̃ \T .

Direct the elements of E arbitrarily. Every edge e ∈ E may cross T̃ at several
points. These crossing points divide e into several pieces, called segments. Let S
denote the set of all directed segments of all edges e ∈ E. With the exception of
its endpoints, every segment s ∈ S runs in the region D. Both the starting point
and endpoint of s belong to a feature along the boundary of D, represented by two
vertices of H , xi and xj , respectively. Connect xi and xj by a straight-line edge
−−→xixj ∈ E(H), directed from xi to xj .

Notice that H has no loops, because if xi = xj , then, using the fact that T̃ is
connected, one can easily conclude that the lens enclosed by s and by the edge of
T̃ corresponding to xi has no vertex of G̃ in its interior. This contradicts Claim 1.

Of course, several different segments may give rise to the same directed edge
−−→xixj ∈ E(H). Two such segments are said to be of the same type.

Claim 3. (i) H has no k + 2 pairwise crossing edges.
(ii) |E(H)| < 32(k + 1)n, i.e., the number of different types of segments is

smaller than 32(k + 1)n.

Proof. To prove part (i), observe that if two edges of H cross each other, then

the “features” of T̃ corresponding to their endpoints alternate in the clockwise order
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around the boundary of D. Therefore, if H had k + 2 pairwise crossing edges, they
would correspond to k + 2 pairwise crossing edges in E, which is a contradiction.

Part (ii) immediately follows from part (i) and the Capoyleas-Pach theorem
[CP92] quoted in the introduction, because we have

|E(H)| ≤ 2

(

2(k + 1)|V (H)| −

(

2k + 3

2

))

< 32(k + 1)n.

Note that each undirected edge corresponds to two directed edges. �

For any two oriented edges, a and b, crossing at some point X , we say that
a crosses b from left to right if the direction of a at X can be obtained from the
direction of b at X by a clockwise turn of less than π.

Consider a directed edge −−→xixj ∈ E(H), where xi, the tail, represents a feature

fi (edge or vertex) along the boundary of R
2 \ T̃ . Consider all segments of type

−−→xixj . If fi is a vertex v, then order all segments according to the counterclockwise
order as they emanate from v. If fi is an edge, take an orientation of fi such that
fi crosses each of the segments (more precisely, the corresponding edges) from left
to right, and order the segments according to the order they cross fi.

This order is called the tail order of the segments of a given type.
A segment s ∈ S is said to be shielded if there are at least 5k4k segments of

the same type, belonging to different edges of E, preceding s and at least 5k4k such
edges coming after s in the tail order. Otherwise, s is called exposed. An edge e ∈ E

is called exposed if at least one of its segments is exposed. Otherwise, it is shielded.
In view of Claim 3 (ii), there are fewer than 32(k + 1)n different types of

segments. The maximum number of exposed segments of a given type which belong
to different edges is 10k4k + 2. Thus, we have obtained

Claim 4. The number of exposed edges of E = E(G̃ \ T ) is at most 320(k +
1)24kn. �

In order to prove the theorem, it is sufficient to show that there are no shielded
edges (Claim 6).

Consider a shielded edge e = −→uv ∈ E. Let e1, e2, . . . , em−1 denote the edges of

T̃ cutting e, listed according to the orientation of e. They cut e into m segments,
s1, s2, . . . , sm, of types τ1, τ2, . . . , τm, respectively.

For a fixed 1 ≤ i ≤ m, take a segment r of type type(r) = τi that belongs to
a directed edge f ∈ E. Consider all segments of type τi strictly between si and r

in the tail order, and assume that they altogether belong to d(r) different edges of
E. We need a simple relation between the values of d for two consecutive segments
along the same edge. If i < m (i > 1, resp.), then let r+ (resp., r−) denote the
segment immediately following (resp., immediately preceding) r along the directed
edge f .

Claim 5. Suppose that d(r) ≤ 4k4k.
(i) If i < m, then type(r+) = τi+1 and d(r+) ≤ d(r) + 2k.
(ii) If i > 1, then type(r−) = τi−1 and d(r−) ≤ d(r) + 2k.

Proof. By symmetry, it is sufficient to prove part (i). We can assume without
loss of generality that si precedes r in the tail order of all segments of type τi.

Let α and β denote the heads of r and si, respectively. Assume without loss of
generality that α comes after β in the tail order along ei. (The other case can be
treated similarly.) Let B and A denote the sets of segments of type τi+1 that come
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before si+1 and after si+1, resp., in the tail order. Furthermore, let A1 (and A2)
consist of all elements of A whose tails lie strictly between α and β (come after α,
respectively).

Suppose, in order to obtain a contradiction, that type(r+) 6= τi+1. It is easy to
see, using Claim 1, that now r+ must cross either all elements of B or all elements
of A2 (see Fig. 2).

In the first case, note that, since e (and therefore si+1) is shielded, the segments
in B belong altogether to at least 5k4k > k different edges of E. These edges,
together with ei and f , would form a forbidden configuration.

So we are left with the case when r+ intersects all segments in A2. If these
segments belong to at least k different edges of E, then again we are done. If
they belong to fewer than k edges, then the elements of A1 must belong altogether
to more than 5k4k − k different edges. All of these edges leave the quadrilateral
enclosed by ei−1, ei, r, and si, through its side lying on ei. If at least k of them
cross f or at least k of them cross e, then they, together with ei and f (resp., e),
form a forbidden configuration. Therefore, all but at most 2k − 2 of them must
once enter the quadrilateral through ei−1. However, in this case, there are at least
5k4k − k + 1− (2k− 2) > 4k4k different edges containing a segment of type τi that
lies between si and r. That is, we have d(r) > 4k4k, contradicting our assumption.

Thus, we have shown that type(r+) = τi+1. Recall that A1 denotes the set of
all segments of this type that lie strictly between si+1 and r+ in the tail order of
all edges of this type. Then d(r+) is equal to the number of different edges that
contribute at least one segment to A1. Suppose, in order to obtain a contradiction,
that d(r+) > d(r)+2k, i.e., there are more than d(r)+2k different edges in E that
leave the quadrilateral enclosed by ei−1, ei, r, and si, through its side that belongs
to ei. Just like before, we find that at most k − 1 of them can cross r and at most
k − 1 can cross si. Therefore, more than d(r) + 2k − 2(k − 1) > d(r) edges must
cross the side belonging to ei−1. This contradicts the definition of d(r). �
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Figure 2. type(r+) = τi+1 and d(r+) ≤ d(r) + 2k.

Now we are in a position to complete the proof of the theorem by proving the
following assertion.

Claim 6. There are no shielded edges in E.

Proof. As before, suppose that there exists a shielded edge e = −→uv with
segments si of type τi (1 ≤ i ≤ m). Consider all segments of type τ1. The tail of
each of them is u, so they cannot cross one another, by Claim 1.

Let t1 be the segment that follows immediately after s1 in the tail order of
all segments of type τ1, so that we have d(t1) = 0. Denote by g the edge of E
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that contains t1, and let t2, . . . , tν denote the other segments of g. By repeated
application of Claim 5 (i), we obtain that ti is of type τi for all 1 ≤ i ≤ 4k.
Consequently, we have 4k < m, 4k < ν, and d(t4k ) ≤ 2k4k.

The graph G has no parallel edges, so the endpoint (head) of g is different from
v, the endpoint of e. Thus, there exists a smallest integer µ (4k < µ), for which the
type of tµ is not τµ. By Claim 5 (i), we have d(tµ−1) > 4k4k. Choose an integer
λ (4k ≤ λ < µ) such that d(tλ) ≤ 2k4k and d(tλ) < d(tλ+1). Consider all edges
that have a segment of type τλ+1 between sλ+1 and tλ+1 in the tail order. All of
these edges leave the quadrilateral Q enclosed by eλ−1, eλ, sλ, and tλ through its
side belonging to eλ. Since d(tλ) < d(tλ+1), at least one of them must have entered
Q either through sλ or through tλ. Suppose, for instance, that there is such an
edge f ∈ E intersecting tλ (the other case can be handled similarly). Let r1, r2, . . .

denote the segments of f . Then f intersects g and, for some κ, the segment rκ+1

is of type τλ+1 (see Fig. 3).
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Figure 3. f and g cross each other and both of them cross eλ, eλ−1, . . . , eλ−4k .

Since

d(rκ+1) ≤ d(tλ+1) ≤ 2k4k + 2k,

by repeated application of Claim 5 (ii), we can conclude that κ ≥ 4k and for
0 ≤ i < 4k, type(rκ−i) = τλ−i. In particular, we obtain that f and g cross each
other and both of them cross eλ, eλ−1, . . . , eλ−4k . Let

ḡ =

4k
−1

⋃

i=1

tλ−i.

We show that any edge that crosses ḡ, must also cross either f , or eλ−4k . For
0 < i < 4k, let Qi be the quadrilateral bounded by eλ−i, tλ−i, eλ−i−1, and rκ−i. Let
Q0 be the triangular region bounded by eλ−1, tλ, and rκ (recall that, by assumption,
tλ and rκ cross each other.) Suppose that there is an edge h that intersects ḡ but
does not intersect f . Then, for some j, 0 < j < 4k, h crosses tλ−j , so, depending on
its orientation, h enters or leaves Qj , through its side tλ−j . Suppose that it enters
Qj through tλ−j , the other case is analogous. Since there is no vertex in Qj , h must
leave it through one of its sides. It cannot leave through tλ−j , because then h and
tλ−j would form an empty lens, contradicting Claim 1. It cannot leave through
rκ−j , since h does not cross f . So it leaves either through eλ−j−1, or through eλ−j .



A GENERALIZATION OF QUASI-PLANARITY 7

Case 1: h leaves Qj through eλ−j . Then h enters Qj−1. It cannot leave Qj−1

through eλ−j or through tλ−j+1, because then it would create an empty lens, and
it cannot leave through rκ−j+1, since h does not cross f . Therefore, h must leave
Qj−1 through eλ−j+1, and then it must enter Qj−2. By repeated application of the
above argument, we conclude that h enters Q0 through eλ−1. However, it cannot
leave Q0 through any of its sides, which is a contradiction.

Case 2: h leaves Qj through eλ−j−1. Then it enters Qj+1. We can argue
exactly as in Case 1 that h crosses eλ−j−2, eλ−j−3, and eventually it must cross
eλ−4k .

We know that there are at least 4k crossings on ḡ, so by Claim 2 they corre-
spond to at least 2k different edges. Each of them also crosses either f or eλ−4k .
Thus, either at least k of them cross f or at least k of them cross eλ−4k . These k

edges, together with g, and either with f or with eλ−4k , would form a forbidden
configuration. �
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