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Abstract

There exists a 2-coloring of the plane with red and blue and a
configuration K of eight points (a regular heptagon plus center) such
that there are no two red points at distance 1 from each other, and
every configuration congruent to K has at least one red point. But in
this 2-coloring, for every five-point configuration K, there is a translate
of K all of whose points are blue.

The investigation of Ramsey-type problems in the Euclidean space was
initiated in a series of articles by Erdds, Graham, Montgomery, Rothschild,
Spencer and Straus in 1973 [2]. Solving a problem of Erdés (see [3 p.535]),
Rozélia Juhasz proved that given any coloring of the plane by two colors
(red and blue), and a four-point configuration K, one can find either two
red points at distance 1 from each other or a congruent copy of K all of
whose points are blue. However, Juhasz also proved that this theorem does
not remain true for all configurations K with at least 12 points.

The aim of this note is to find a counterexample with only eight points.

Theorem 1. There exists a 2-coloring of the plane with red and blue and a
configuration K of eight points such that (i) there are no two red points at
distance 1 from each other; (ii) every configuration congruent to K has at
least one red point.

We will use the following 2-coloring of the plane.

Definition. (Standard 2-Coloring). Consider a (fixed) regular triangular-
lattice where the minimum distance between two lattice points is 2. A point
P € R? will be colored red if and only if there is a lattice point whose
distance from P is smaller than 1/2. Every other point will be colored blue.



Lemma. Given a regular triangular lattice with minimum distance 2, any
closed disc of radius 2/\/3 necessarily contains at least one lattice point.

Proof. The radius of the circumscribed circle of the regular triangle of side

2 is 2//3.

Proof of Theorem 1. Consider the standard 2-coloring of the plane. It
is clear that there are no two red points at distance 1 from each other. Let
Aj1Ay.. A7 form a regular heptagon with center O of circumscribed radius
0.9. Let K = {A1, As, ..., A7,0}.

Assume now, in order to obtain a contradiction, that there is a congruent
copy K' of K, all of whose points are colored blue. Without the danger of
confusion let us denote the vertices of K’ also by Ay, As,...A7,O.

By the definition of the standard 2-coloring, there can be no lattice
points in the open discs of radius 1/2 around the elements of K’. The
circles of radius 1/2 around Aj, Ao, ..., A7 cover the entire circumference of
the circle around O, because 0.9 < cos(n/7). Hence these eight discs around
the elements of K’ all together cover the heptagon conv(K'). On the other
hand, by the Lemma, the closed disc of radius 2/+/3 centered at O contains
at least one lattice point Z. Hence Z must lie in one of the seven congruent
shaded moonlike regions shown in Fig 1 and Fig. 2, say, in the closed region
bounded by the circular arcs PR, RS and PS.
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Figure 1



Figure 2

It is easy to see that in this region there is no point whose distance from
S is larger than SP = SR. Denote the intersection points of the circles
around A7 and Ag, Ag and As, As and Ay, A4 and A3 by B, E,H, and F
(See Fig.2).

Let D (and G) denote the intersection point of the circle of radius 1/2
around Ag (resp. A4) and the line through B (resp. F') parallel to OS. Some
straightforward calculations show that (with r, = 0.9, ro = 1/2, rq = 2/V/3)

SO = ry, cos g + /12 — r2 sin? g ~ 1.123
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= arccos —— + arcsin (2 sin E) — 6—7T =~ 0.083,

SP = SR = 2r.sin

~ 0.041,
.27
SB =SF =250 sm7 =~ 1.756,

SE =SH =250sin 377r = 2.190.

Using that /SA4D = 3w /7 and LSDAy = /DSAs = 27 /7 we get:

2
SD = 2cos 2%\/502 + 27, S0 cos 77T + r2 & 2.276.

It is easy to see that BF = SE because we get BF by a rotation around
O from SE. Since BD||FG and DG = BF = SE, the arcs BD and FG are
separated by the parallel strip between the lines BD and FG whose width
is BF. Thus, the minimum distance between the arcs BD and GF, is BF'.
It is not hard to compute that

ZF<SF+SZ<SF+SR=~1797 < 2.
Similarly, ZB <1.797 < 2.
ZD>SD—-S5Z>5SD—-SR=~223 > 2.
Similarly, ZG >2.234 > 2.
ZE>SE—-SZ>SE—-SR~2148 > 2.
Similarly, ZH >2148 > 2.

Therefore, the circle of radius 2 around Z intersects the arcs BD and
FG. Let M and N denote the corresponding intersection points (See Fig.2).
The arc M N of this circle is completely covered by the discs of radius 1/2
around the elements of K'. Otherwise M N would intersect one of the arcs
ME, EH or HN; however, the nearest points of these arcs to Z are M, E,
H and N, and we have already seen that ZFE, ZH, ZD and ZG are greater
than 2, a contradiction. Since M N > BF > 2, the union of the discs of
radius 1/2 around the elements of K’ cover an arc of the circle of radius 2
around Z, whose angle is greater than m/3. So there is at least one lattice
point on this arc (because the circle of radius 2 around Z contains exactly
six lattice points). Thus one of the eight open discs of radius 1/2 around



the elements of K’ contains a lattice point, and the center of this disc must

be red. This contradiction completes the proof of Theorem 1.
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Figure 3

Proposition 2. Given any five-point configuration K = (ABCDE) in the
plane, one can find a translate of K all of whose vertices are blue in the
standard 2-coloring.

Proof of Proposition 2. Suppose that every translate of ABCDE has
at least one red point in the standard 2-coloring. Denote the set of the
red points by T. Let Tg,T¢c, Tp and Tk denote congruent copies of T
translated by the vectors BA, CA, DA and E A respectively. We claim that
the set T UTp U ... UTg covers the whole plane. Let O be any point of
the plane. Translate the configuration ABCDE so that A moves into O.
According to our assumption, this translate has at least one red point, say
B(= O + AB). However, in this case T covers O. The set T is periodic,
hence it has a density. The density of T' (see Fig.3.) is the shaded (red)
area divided by the area of the parallelogramm. That is 7/8v/3. Of course,
Tg,...,Tr have the same density. Thus the density of the covering T* =
TUTBU...UTg is 5w/ 8v/3. The set T* consists of congruent circles and covers
the plane. It is well-known (see e.g. [6,p. 172]) that if we cover the plane
with congruent circles, the density of this covering is at least 27/+/27. But
27 /+/27 > 5m/8+/3 a contradiction. This completes the proof. This supports
our conjecture that for any coloring and for any 5-point configuration K,
one can find either 2 red points at distance 1 from each other or an isometric
copy of K all of whose points are blue.

We would like to express our gratitude to Janos Pach for his help.
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