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Abstract

We prove that for every k > 1, there exist k-fold coverings of the plane (1) with strips, (2)
with axis-parallel rectangles, and (3) with homothets of any fixed concave quadrilateral, that
cannot be decomposed into two coverings. We also construct, for every k > 1, a set of points
P and a family of disks D in the plane, each containing at least k elements of P , such that no
matter how we color the points of P with two colors, there exists a disk D ∈ D, all of whose
points are of the same color.

1 Multiple arrangements: background and motivation

The notion of multiple packings and coverings was introduced independently by Davenport and
László Fejes Tóth (see notes in [Fe53], [He55]). Given a system S of subsets of an underlying set
X, we say that they form a k-fold packing (covering) if every point of X belongs to at most (at
least) k members of S. A 1-fold packing (covering) is simply called a packing (covering). Clearly,
the union of k packings (coverings) is always a k-fold packing (covering). Today there is a vast
literature on this subject [FTG83], [FTK93].

Many results are concerned with the determination of the maximum density δk(C) of a k-fold
packing (minimum density θk(C) of a k-fold covering) with congruent copies of a fixed convex
body C. The same question was studied for multiple lattice packings (coverings), giving rise to the
parameter δk

L(C) (θk
L(C)). Recall that a lattice Λ is the set of all linear combinations of a fixed

collection of linearly independent vectors with integer coefficients. The system of all translates of
a convex body C through vectors in Λ is called a lattice packing (covering) if it forms a packing
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(covering). Throughout this paper, unless it is stated otherwise, all geometric arrangements, pack-
ings, and coverings under consideration are locally finite, that is, any bounded region intersects
only finitely many members of the arrangement.

Because of the strongly combinatorial flavor of the definitions, it is not surprising that com-
binatorial methods have played an important role in these investigations. For instance, Erdős
and Rogers [ER62] used the “probabilistic method” to show that Rd can be covered with con-
gruent copies (actually, with translates) of a convex body so that no point is covered more than
e(d ln d + ln ln d + 4d) times (see [PA95], and [FuK05] for another combinatorial proof based on
Lovász’ Local Lemma). Note that this easily implies that there exist positive constants θd, δd,
depending only on d, such that

k ≤ θk(C) ≤ kθ(C) ≤ kθd,

kδd ≤ kδ(C) ≤ δk(C) ≤ k.

Here δ(C) and θ(C) are shorthands for δ1(C) and θ1(C)).
To establish almost tight density bounds, at least for lattice arrangements, it would be sufficient

to show that any k-fold packing (covering) splits into roughly k packings (coverings), or into about
k/l disjoint l-fold packings (coverings) for some l < k. The initial results were promising. Blundon
[Bl57] and Heppes [He59] proved that for unit disks C = B2, we have

θ2

L(C) = 2θL(C), δk
L(C) = kδL(C) for k ≤ 4,

and these results were extended to arbitrary centrally symmetric convex bodies in the plane by
Dumir and Hans-Gill [DuH72] and by G. Fejes Tóth [FTG77], [FTG84]. In fact, a bit more is true:
every 3-fold lattice packing of the plane can be decomposed into 3 packings, and every 4-fold lattice
packing into two 2-fold ones. This simple scheme breaks down for larger values of k. As k tends to
infinity, Cohn [Co76] and Bolle [Bo89] proved that

lim
k→∞

θk
L(C)

k
= lim

k→∞

θk(C)

k
= 1 ≤ θ(C),

lim
k→∞

δk
L(C)

k
= lim

k→∞

δk(C)

k
= 1 ≥ δ(C).

For convex bodies C with a “smooth” boundary, the inequalities on the right-hand side are strict
[Sch61], [Fl78].

The situation becomes slightly more complicated if we do not restrict our attention to lattice
arrangements. In reply to a question raised by László Fejes Tóth, the senior author noted [P80] that
any 2-fold packing of homothetic copies of a plane convex body splits into 4 packings. Furthermore,
any k-fold packing C with not too “elongated” convex sets splits into at most 9λk packings, where

λ := max
C∈C

(circumradius(C))2π

area(C)
.
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(Here the constant factor 9λ can be improved. See also [Ko04].)
One would expect that similar results hold for coverings rather than packings. However, in

this respect we face considerable difficulties. For any k, it is easy to construct a k-fold covering
of the plane with not too elongated convex sets (of different shapes but of roughly the same size)
that cannot be decomposed even to two coverings [P80]. The problem is far from being trivial
even for coverings with congruent disks. In an unpublished manuscript, P. Mani-Levitska and Pach
have shown that every 33-fold covering of the plane with congruent disks splits into two coverings
[MP87]. It is also known that

Theorem 1.1. [P86] For any centrally symmetric convex polygon P , there exists a constant k =
k(P ) such that every k-fold covering of the plane with translates of P can be decomposed into two
coverings.

At first glance, one may believe that approximating a disk by centrally symmetric polygons,
the last theorem implies that any sufficiently thick covering with congruent disks is decomposable.
The trouble is that, as we approximate a disk with polygons P , the value k(P ) tends to infinity.
Nevertheless, it follows from Theorem 1.1 that if k = k(ε) is sufficiently large, then any k-fold
covering with disks of radius 1 splits into a covering and an “almost covering” in the sense that it
becomes a covering if we replace each of its members by a concentric disk whose radius is 1 + ε.

Recently, Tardos and Tóth [TaT07] have managed to extend Theorem 1.1 to triangles in the
place of centrally symmetric convex polygons P . Here the assumption that P is convex cannot be
dropped.

Surprisingly, the analogous decomposition result is false for multiple coverings with balls in
three and higher dimensions.

Theorem 1.2. [MP87] For any k, there exists a k-fold covering of R3 with unit balls that cannot
be decomposed into two coverings.

Somewhat paradoxically, it is the very heavily covered points that create problems. Pach [P80],
[AS00] (p. 68) noticed that by the Lovász Local Lemma we obtain

Theorem 1.3. [AS00] Any k-fold covering of R3 with unit balls, no c2k/3 of which have a point
in common, can be decomposed into two coverings. (Here c is a positive constant.)

Similar theorems hold in Rd (d > 3), except that the value 2k/3 must be replaced by 2k/d.

2 Cover-decomposable families: statement of results

These questions can be reformulated in a slightly more general combinatorial setting.

Definition 2.1. A family F of sets in Rd is called cover-decomposable if there exists a positive
integer k = k(F) such that any k-fold covering of Rd with members from F can be decomposed into
two coverings.
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In particular, Theorem 1.1 above can be rephrased as follows. The family consisting of all
translates of a given centrally symmetric convex polygon in the plane is cover-decomposable. The-
orem 1.2 states that the family of translates of a unit ball in 3-space is not cover-decomposible.
These results are valid for both open and closed polygons and balls.

Note that Theorem 1.1 has an equivalent “dual” form. Given a system S of translates of P , let
C(S) denote the set of centers of all members of S. Clearly, S forms a k-fold covering of the plane
if and only if every translate of P contains at least k elements of C(S). Recall that, by assumption,
S is a locally finite arrangement. Therefore, any bounded region contains only finitely many points
of C(S). We call such a point set locally finite.

The fact that the family of translates of P is cover-decomposable can be expressed by saying
that there exists a positive integer k satisfying the following condition: any locally finite set C of
points in the plane such that |P ′ ∩ C| ≥ k for all translates P ′ of P can be partitioned into two
disjoint subsets C1 and C2 with

|C1 ∩ P ′| 6= ∅ and |C2 ∩ P ′| 6= ∅ for every translate P ′ of P.

We can think of C1 and C2 as “color classes.”
This latter condition, in turn, can be reformulated as follows. Let H(C) denote the (infinite)

hypergraph whose vertex set is C and whose (hyper)edges are precisely those subsets of C that can
be obtained by taking the intersection of C by a translate of P . By assumption, every hyperedge
of H(C) is of size at least k. The fact that C can be split into two color classes C1 and C2 with
the above properties is equivalent to saying that H(C) is two-colorable.

Definition 2.2. A hypergraph is two-colorable if its vertices can be colored by two colors such that
no edge is monochromatic.

A hypergraph is called two-edge-colorable if its edges can be colored by two colors such that every
vertex is contained in edges of both colors.

Obviously, a hypergraph H is two-edge-colorable if and only if its dual hypergraph H∗ is two-
colorable. (By definition, the vertex set and the edge set of H∗ are the edge set and the vertex set
of H, respectively, with the containment relation reversed.)

Summarizing, Theorem 1.1 can be rephrased in two equivalent forms. For any centrally sym-
metric convex polygon P in the plane, there is a k = k(P ) such that

1. any k-fold covering of R2 with translates of P (regarded as an infinite hypergraph on the
vertex set R2) is two-edge-colorable;

2. for any locally finite set of points C ⊂ R2 with the property that each translate of P covers
at least k elements of C, the hypergraph H(C) whose edges are the intersections of C with
all translates of P is two-colorable.
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Clearly, the above two statements are also equivalent for translates of any set P , that is, we do not
have to assume here that P is a polygon or that it is convex or connected. However, if instead of
translates, we consider congruent, similar, or homothetic copies of P , then assertions 1 and 2 do
not necessarily remain equivalent.

The aim of this paper is to give various geometric constructions showing that certain families
of sets in the plane are not cover-decomposable. We also deal with the dual problem.

Let Tk denote a rooted k-ary tree of depth k−1. That is, Tk has 1+k+k2+k3+. . .+kk−1 = kk−1

k−1

vertices. The only vertex at level 0 is the root v0. For 0 ≤ i < k − 1, each vertex at level i has
precisely k children. The kk−1 vertices at level k − 1 are all leaves.

Definition 2.3. For any rooted tree T , let H(T ) denote the hypergraph on the vertex set V (T ),
whose hyperedges are all sets of the following two types:
1. Sibling hyperedges: for each vertex v ∈ V (T ) that is not a leaf, take the set S(v) of all children
of v;
2. Descendent hyperedges: for each leaf v ∈ V (T ), take all vertices along the unique path from the
root to v.

Obviously, Hk := H(Tk) is a k-uniform hypergraph with the following property. No matter
how we color the vertices of Hk by two colors, red and blue, say, at least one of the edges will be
monochromatic. In other words, Hk is not two-colorable. Indeed, assume without loss of generality
that the root v0 is red. The children of the root form a sibling hyperedge S(v0). If all points of
S(v0) are blue, we are done. Otherwise, pick a red point v1 ∈ S(v0). Similarly, there is nothing to
prove if all points of S(v1) are blue. Otherwise, there is a red point v2 ∈ S(v1). Proceeding like
this, we either find a sibling hyperedge S(vi), all of whose elements are blue, or we construct a red
descendent hyperedge {v0, v1, . . . , vk−1}.

Definition 2.4. Given any hypergraph H, a planar realization of H is defined as a pair (P,S),
where P is a set of points in the plane and S is a system of sets in the plane such that the hypergraph
obtained by taking the intersections of the members of S with P is isomorphic to H.

A planar realization of the dual hypergraph of H is called a dual realization of H.

In the sequel, we show that for any rooted tree T , the hypergraph H(T ) defined above has
both a planar and a dual realization, in which the members of S are open strips (Lemmas 3.1–4.1).
In particular, the hypergraph Hk = H(Tk) permits such realizations for every positive k. These
results easily imply the following

Theorem 2.5. The family of open strips in the plane is not cover-decomposable.

Indeed, fix a positive integer k, and assume that we have shown that Hk = H(Tk) has a dual
realization with strips (see Lemma 4.1). This means that the set of vertices of Tk can be represented
by a collection S of strips, and the set of (sibling and descendent) hyperedges by a point set P ⊂ R2

whose every element is covered exactly by the corresponding k strips. Recall that Hk is not two-
colorable, hence its dual hypergraph H∗

k is not two-edge-colorable. In other words, no matter how
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we color the strips in S with two colors, at least one point in P will be covered only by strips of
the same color. Add now to S all open strips that do not contain any element of P . Clearly, the
resulting (infinite) family of strips, S ′ (and, as it can be easily seen, a locally finite subfamily of S ′),
forms a k-fold covering of the plane, and it does not split into two coverings. This proves Theorem
2.5.

In fact, the following “degenerate” version of Theorem 2.5 is also true, in which strips are
replaced by straight-lines (that is, by “strips of width zero”). This is the only place where the
coverings we consider are not assumed to be locally finite.

Theorem 2.6. The family of straight lines in the plane is not cover-decomposable.

We prove this theorem in Section 4. The proof implies the following generalization of Theo-
rem 2.5: The family of open strips of unit width in the plane is not cover-decomposable. A similar
proof was found independently by Gilles Pesant, a Master Student at McGill University.

The main result of Section 5, Lemma 5.1 was originally established in the manuscript [MP87],
available only on the web. For convenience, its simplified proof is included here. The somewhat
stronger, original form of Lemma 5.1 implies that, for any d ≥ 3, the family of open unit balls in
Rd is not cover-decomposable, for any d ≥ 3 (Theorem 1.2).

In Section 6, we show that the hypergraph Hk = H(Tk) permits a dual realization in the plane
with axis-parallel rectangles, for every positive k (Lemma 6.1). This implies, in exactly the same
way as outlined in the paragraph below Theorem 2.5, that the following theorem is true.

Theorem 2.7. The family of axis-parallel open rectangles in the plane is not cover-decomposable.

We cannot decide whether Hk permits a planar realization with axis-parallel rectangles. How-
ever, it can be shown [CPST07] that a sufficiently large randomly and uniformly selected point set
P in the unit square with large probability has the following property. No matter how we color the
points of P with two colors, there is an axis-parallel rectangle containing at least k elements of P ,
all of the same color.

Recall that the family of translates of any triangle or any centrally symmetric convex polygon
Q is cover-decomposable (see [TaT07] and Theorem 1.1). The next result shows that this certainly
does not hold for concave polygons Q.

Theorem 2.8. The family of all translates of a given (open) concave quadrilateral is not cover-
decomposable.

The proofs presented in the next five sections also yield that Theorems 2.5, 2.7, and 2.8 remain
true for closed strips, rectangles, and quadrilaterals. Most arguments follow the same general
inductional scheme, but the subtleties require separate treatment.
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3 Planar realization with strips

A strip is a connected open set S in the plane, bounded by two parallel lines. The counterclockwise
angle α (−π

2
< α ≤ π

2
) from the x-axis to these lines is called the direction or slope of S.

Lemma 3.1. For any rooted tree T , the hypergraph H(T ) permits a planar realization with strips.
That is, there is a set of points P and a set of strips S in the plane such that the hypergraph on
the vertex set P whose hyperedges are the sets S ∩ P (S ∈ S) is isomorphic to H(T ).

Proof: We prove the lemma by induction on the number of vertices of T . The statement is trivial
if T has only one vertex. Suppose that T has n vertices and that the statement has been proved
for all rooted trees with fewer vertices. Let v0 be the root of T , and let v0v1 . . . vm be a path of
maximum length starting at v0. Let U = {u1, u2, . . . uk} be the set of children of vm−1. Each
member of U is a leaf of T , and one of them is vm. Delete the members of U from T , and let T ′

denote the resulting rooted tree. Clearly, vm−1 is a leaf of T ′. By the induction hypothesis, there
is a planar realization (P,S) of H(T ′) with open strips. We can assume without loss of generality
that no element of P lies on the boundary of any strip in S, otherwise we could slightly decrease
the widths of some strips without changing the containment relation.

Let S ∈ S be the strip representing the descendent hyperedge {v0, v1, . . . , vm−1}, i.e., a strip that
contains precisely the points corresponding to these vertices of T ′. (See Definition 2.3.) Rotating
S through very small angles, the resulting strips S1, S2, . . . , Sk contain the same points of P as S
does. Moreover, we can make sure that the new strips are not parallel to each other or to any old
strip. Hence, we can choose a line ℓ, not passing through any element of P , such that S1, S2, . . . , Sk

intersect ℓ in pairwise disjoint intervals that are also disjoint from all members of S. For each i,
1 ≤ i ≤ k, pick a point pi in ℓ ∩ Si, and add these points to P . Replace S in S by the strips
S1, S2, . . . , Sk, and add another member to S: a very narrow strip S̄ around ℓ, which contains all
pi, but no other point of P .

In this way, we obtain a planar realization of H(T ), where p1, p2, . . . , pk represent the vertices
(leaves) u1, u2, . . . uk ∈ V (T ), the strip S̄ represents the sibling hyperedge U = {u1, u2, . . . uk} of
H(T ), while S1, S2, . . . , Sk represent the descendent hyperedges, corresponding to the paths from
v0 to u1, u2, . . . uk, respectively. 2

One can achieve that all strips in the above construction have unit width. A hypergraph is
k-uniform if all of its hyperedges have precisely k vertices.

Corollary 3.2. For any k ≥ 2, there exists a k-uniform hypergraph which is not two-colorable and
which permits a planar realization by open strips of width one. 2
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4 Dual realization with strips: Proofs of Theorems 2.5 and 2.6

Recall that a dual realization of a hypergraph H is a planar realization of its dual H∗. That
is, given a tree T , a dual realization of H(T ) is a pair (P,S), where P is a set of points in the
plane representing the (sibling and descendent) hyperedges of H(T ), and S is a system of regions
representing the vertices of T such that a region S ∈ S covers a point p ∈ P if and only if the
vertex corresponding to S is contained in the hyperedge corresponding to p.

Lemma 4.1. For any rooted tree T , the hypergraph H(T ) permits a dual realization with strips.

Proof: Most of our proof is identical to the proof of Lemma 3.1. We establish the statement by
induction on the number of vertices of T . The statement is trivial if T has only one vertex. Suppose
that T has n vertices and that the statement has been proved for all rooted trees with fewer than
n vertices. Let v0 be the root of T , and let v0v1 . . . vm be a path of maximum length starting at
v0. Let U = {u1, u2, . . . uk} denote the set of children of vm−1. Clearly, each element of U is a leaf
of T , one of them is vm, and U is a sibling hyperedge of H(T ). Let T ′ denote the tree obtained by
deleting from T all elements of U . The vertex vm−1 is then a leaf of T ′.

By the induction hypothesis, H(T ′) permits a dual realization (P,S) with open strips. We can
assume without loss of generality that no element of P lies on the boundary of any strip in S,
otherwise we could slightly decrease the widths of some strips without changing the containment
relation.

Let p ∈ P be the point corresponding to the descendent hyperedge {v0, v1, . . . , vm−1} of H(T ′).
Let p1, p2, . . . , pk be distinct points so close to p that they are contained in exactly the same strips
from S as p (namely, in the ones corresponding to v0, v1, . . . , vm−1). The point pi will correspond to
the descendent hyperedge of T containing ui. Choose a point q such that all lines piq for 1 ≤ i ≤ k
are distinct and they do not pass through any element of P . This point will correspond to the
sibling hyperedge {u1, . . . , uk} of T . For 1 ≤ i ≤ k, let Si be an open strip around the line piq that
is narrow enough so that it does not contain any element of P or any point pj with j 6= i. This
strip represents the vertex ui of T .

Add S1, S2, . . . , Sk to S. Delete p from P , and add p1, . . . , pk, and q. The resulting configuration
is a dual realization of H(T ) with open strips, so we are done. 2

Proof of Theorem 2.6: Let Cn
k be a k × k × . . .× k piece of the n-dimensional integer grid, that

is,
Cn

k = {(x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , k − 1}} .

A k-line is a set of k collinear points of Cn
k . Denote by Hn

k the k-uniform hypergraph on the
vertex set Cn

k , whose hyperedges are the k-lines. The following statement is a special case of the
Hales-Jewett theorem.

Lemma 4.2. [HaJ63] The hypergraph Hn
k is not two-colorable.
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Our goal is to construct an indecomposable covering of the plane by (continuum many) straight
lines such that every point is covered at least k times. Project Cn

k to a “generic” plane so that
no two elements of Cn

k are mapped into the same point and no three noncollinear points become
collinear.

Applying a duality transformation, we obtain a family L of kn lines and a set P of so-called
k-points, dual to the k-lines, such that each k-point belongs to precisely k members of L. It follows
from Lemma 4.2 that for any two-coloring of the members of L, there is a k-point p ∈ P such that
all lines passing through p are of the same color.

It remains to extend the family L into a k-fold covering of the whole plane with lines without
destroying the last property. This can be achieved by simply adding to L all straight lines that do
not pass through any point in P . 2

5 Planar realization with disks

In this section, all disks are assumed to be open. A pair (P,D) consisting of a point set P and
a system of disks D in the plane is said to be in general position, if no element of P lies on the
boundary of a disk D ∈ D, no two members of D are tangent to each other, and no three circles
bounding members of D pass through the same point.

In order to facilitate the induction, we prove a slightly stronger lemma than what we need.

Lemma 5.1. For any rooted tree T , the hypergraph H(T ) permits a planar realization (P,D) with
disks in general position such that every disk D ∈ D has a boundary point on its boundary that does
not belong to the closure of any other disk D′ ∈ D.

Proof: By induction on the number of vertices of T . The statement is trivial if T has only one
vertex. Suppose that T has n vertices and that the statement has already been proved for all
rooted trees with fewer than n vertices. Let v0 denote the root of T , and let v0v1 . . . vm be a path
of maximum length starting at v0. Let U = {u1, u2, . . . uk} be the set of children of vm−1. Each
element of U is a leaf of T , and one of them is vm. Remove all elements of U from T , and let T ′

denote the resulting rooted tree. Clearly, vm−1 is a leaf of T ′. By the induction hypothesis, H(T ′)
permits a planar realization (P,D) with disks satisfying the conditions in the lemma.

Let D denote the disk representing the descendent hyperedge {v0, v1, . . . , vm−1} of H(T ′). Let
v be a point on the boundary of D, which does not belong to the closure of any other disk D′ ∈ D.
Choose a small neighborhood N(v, ε) of v, which is still disjoint from any disk D′ ∈ D other than
D.

To obtain a planar realization of H(T ), we have to add k new points to P that will represent
the vertices u1, u2, . . . uk ∈ V (T ), and replace D by k new disks that will represent the descending
hyperedges of H(T ), corresponding to the paths connecting the root to u1, u2, . . . uk. We also need
to add a disk representing the sibling hyperedge U = {u1, u2, . . . uk} of H(T ). This can be achieved,
as follows.

9



Let ℓ denote the straight line connecting the center of D to v, and let w be the point on ℓ, outside
of D, at distance ε/2 from v. Let D(1),D(2), . . . ,D(k) be k disks obtained from D by rotating it
about the point w through very small angles, so that D(i) ∩ P = D ∩ P holds for any 1 ≤ i ≤ k.
Further, let D′ denote the disk of radius ε/2, centered at w. Then D(i) and D are tangent to each
other; let p(i) denote their point of tangency (1 ≤ i ≤ k). Add the points p(1), p(2), . . . , p(k) to P ;
they will represent u1, u2, . . . , uk ∈ V (T ), respectively. Remove D from D, and replace it by the
disks D(1),D(2), . . . ,D(k) and D′.

Now we are almost done: the new pair (P,D) is almost a planar realization of H(T ), with the
disk D′ representing the sibling hyperedge {u1, u2, . . . uk} of H(T ). The only problem is that the
points p(i) lie on the boundaries of D(i) and D′, rather than in their interiors. This can be easily
fixed by increasing the radii of the disks D(i) (1 ≤ i ≤ k) and D′ by a very small positive number
δ < ε/2, so that the enlarged disks contain the same points of P than the closures of the original
ones.

ε/2

D’

D(1)
D

p(1)

p(2)
p(3)

D(3)D(2)

v w

Figure 1. Replace D by D(1),D(2), . . . ,D(k).

It remains to verify that the new realization (P,D) meets the extra requirements stated in the
lemma: it is in general position and each disk D ∈ D has a boundary point that does not belong
to the closure of any other disks in D. However, these conditions are automatically satisfied if δ is
sufficiently small. For instance, each disk D(i) has point on its boundary, very close to p(i), which
is not covered by any other disk in D. To see that the same property holds for D′, notice that
any boundary point of D′, “sufficiently far” from p(1), p(2), . . . , p(k), will do. This completes the
induction step, and hence the proof of the lemma. 2
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Corollary 5.2. For any k ≥ 2, there exists a k-uniform hypergraph which is not two-colorable and
which permits a planar realization by open disks. 2

6 Dual realization with axis-parallel rectangles

All rectangles in this section are assumed to be closed, but our results and proofs also apply to
open rectangles.

Lemma 6.1. For any rooted tree T , the hypergraph H(T ) permits a dual realization with axis-
parallel rectangles.

Proof: Let σ0 and σ1 denote the segments y = x, 1 ≤ x ≤ 2 and y = x + 2, 0 ≤ x ≤ 1. First,
consider the sub-hypergraph H ′ of H(T ), consisting of all descendent hyperedges. We claim that
it permits a dual realization with closed intervals and points of σ1. To see this, choose an arbitrary
interval in σ1 to represent the root of T . If an interval I represents a vertex v of T and v has k ≥ 1
children, choose any k pairwise disjoint sub-intervals of I to represent them. Finally, for every leaf
v, pick any point of the interval representing v to represent the descendent hyperedge of H ′ that
contains v. It is straightforward to check that the resulting system is indeed a dual realization of
H ′.

Now we construct a dual realization of H(T ) with axis-parallel rectangles. Let the descendent
hyperedges be represented by the same point in σ1 as in the construction above. For the sibling
hyperedges, we choose distinct points of σ0 to represent them. Let any vertex x of T be represented
by the axis-parallel rectangle whose lower right corner is the point that represents the sibling
hyperedge containing x, and whose intersection with σ1 is the interval that represented x in the
previous construction. (Note that the root of T is not contained in any sibling hyperedge. Therefore,
if x is the root, we have to modify the above definition. In this case, let the lower right vertex
of the corresponding rectangle be any point of σ0 that does not represent any sibling hyperedge.)
Clearly, the resulting system of points and rectangles is a dual representation of H(T ). 2

7 Planar and dual realizations with concave quadrilaterals

The aim of this section is to prove Theorem 2.8. For the proof, it is irrelevant whether we consider
closed or open quadrilaterals.

One of the two diagonals of a concave quadrilateral Q is inside Q, the other is outside Q. We
call the line of the diagonal outside Q the supporting line of Q.

Lemma 7.1 For any rooted tree T and for any concave quadrilateral Q, the hypergraph H(T )
permits both planar and dual realizations with translates of Q. Moreover, we can achieve that all

11



translates of Q used in the planar realization can be obtained from Q by translations parallel to its
supporting line, while all points used in the dual realization lie on the supporting line.

Proof: The two realizations are dual to each other, so it is enough to prove the existence of a
planar realization. Let the vertices of Q be a, b, c, and d in this order, and assume b is the concave
vertex. The supporting line of Q is the line ac. We start with a planar realization (P,S), in which
each member of S is a translate parallel to ac of one of the two infinite wedges Wa,Wc. Here the
sides of Wa are the rays ad and ab, while the sides of the Wc are the rays cd and cb. Once we have
such a planar realization, we can shrink the point set so that the wedges can be replaced by Q,
without changing the containment relation.

In our planar realization, all sibling hyperedges will be represented by translates of Wa, while all
descendent hyperedges will be represented by translates of Wc. We construct the planar realization
by induction on the depth of T , starting with the trivial case of depth 0.

For the inductive step, let v0 be the root of T , let v1, . . . , vk denote its children, and let T i be the
tree rooted at vi, for 1 ≤ i ≤ k. By the inductive hypothesis, for every i, H(T i) permits a planar
realization (Pi,Si), meeting the requirements. We assume that the following three additional
conditions are also satisfied.

1. W ∩ Pj = ∅, whenever W ∈ Si and i 6= j.

2. Pi ∩ Wa = ∅, for all i.

3. For any i, there exists a point xi ∈ Wa such that, for any W ∈ Sj , we have xi ∈ W if and
only if i = j and W is a translate of Wc.

To verify that one can make the above assumptions, note that H(T i) can also be realized by any
translate of (Pi,Si). Translating (Pi,Si) through sufficiently fast increasing multiples of the vector
ac, as i increases, makes all of the above three properties satisfied.

It is easy to see that one can find a point x, common to all translates of Wc in any of the
families Si, with the property that x is not contained in Wa or in any of its translates considered.
Let yi ∈ Pi denote the point representing the root vi of T i.

Now we are in a position to define the pair (P,S) realizing T : let

P = ((∪iPi) ∪ {xi|1 ≤ i ≤ k} ∪ {x}) \ {yi|1 ≤ i ≤ k},

and let S = (∪iSi) ∪ {Wa}. It is straightforward to check now that (P,S) is a planar realization
of H(T ), where sibling hyperedges are represented by translates of Wa parallel to the line ac and
descendent hyperedges are represented by translates of Wc parallel to the same line. 2

Proof of Theorem 2.8: Let Q be a concave quadrilateral and let k ≥ 1 be arbitrary. We need to
show that not all k-fold coverings of the plane by translates of Q can be split into two coverings.
Let us start with a dual realization (P,S) of the k-uniform hypergraph Hk = H(Tk) with translates
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of Q. We consider the set S ′ obtained from S by adding all translates of Q disjoint from P . Clearly,
S ′ cannot be split into two covering, as every point of P can be covered only by members of S, and
we know that Hk is not two-edge-colorable. (More precisely, to keep S ′ locally finite, instead of
adding all translates of Q disjoint from P , we only add a maximal collection of translates with the
property that the Hausdorff distance of any two is at least a sufficiently small positive constant.)

It remains to check that S ′ is a k-fold covering of the plane. For this, we use the fact that the
dual realization (P,S) of Hk, whose existence is guaranteed by Lemma 7.1, satisfies that all points
of P lie on the supporting line of Q. Clearly, any point that does not belong to this line is covered
by infinitely many translates of Q that are disjoint from the line. For a point r /∈ P that belongs
to the supporting line we can still find infinitely many translates of Q which cover r and which are
disjoint from the finite set P . If a is a vertex of Q on the supporting line then any translation that
carries a point a′ 6= a of Q to r, where a′ is sufficiently close to a, will do here. Finally, each point
of P is covered by exactly k members of S, as Hk is a k-uniform hypergraph. 2

The proof of Lemma 7.1 applies not only to concave quadrilaterals, but to many other concave
polygons Q′, as well, implying that the families of translates of these polygons are not cover-
decomposable. However, the statement is not true for all concave polygons. For instance, it is easy
to see that if Q′ can be expressed as a finite union of translates of a given convex polygon, then
the family of translates of Q′ must be cover-decomposable. It would be interesting to find an exact
criterion for deciding whether the family of translates of a polygon Q′ is cover-decomposable. For
many other related problems, see [BMP05].
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