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Abstract

A geometric graph is a graph drawn in the plane so that the vertices are represented by
points in general position, the edges are represented by straight line segments connecting
the corresponding points.

Improving a result of Pach and Tér6csik, we show that a geometric graph on n vertices
with no k + 1 pairwise disjoint edges has at most k*(n + 1) edges. On the other hand, we
construct geometric graphs with n vertices and approximately %(k — 1)n edges, containing
no k + 1 pairwise disjoint edges.

We also improve both the lower and upper bounds of Goddard, Katchalski and Kleitman
on the maximum number of edges in a geometric graph with no four pairwise disjoint edges.

1 Introduction

A geometric graph G is a graph drawn in the plane by (possibly crossing) straight line segments,
i.e., it is defined as a pair G = (V, E), where V is a set of points in general position in the
plane and E is a set of closed segments whose endpoints belong to V.

The following problem was raised by Avital and Hanani [AH], Kupitz [K], Erdés and Perles.
Determine the smallest number ex(n) such that any geometric graph with n vertices and
m > eg(n) edges contains k+ 1 pairwise disjoint edges. By a result of Hopf and Pannwitz [HP]
and Erdds, e;(n) = n. Alon and Erd8s [AE] showed that ea(n) < 6n — 5 which was improved
by Goddard, Katchalski and Kleitman [GKK] to ez(n) < 3n. The best known lower bound,
e2(n) > 2.5n—4, is due to Perles (see [PA], [MP]). It is also known that 3.5n—10 < e3(n) < 10n
[GKK]. For any fixed k, Pach and T6r8csik [PT] were first to prove that eg(n) is linear in n;
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their bound was eg(n) < k'n. It follows from a result of Kupitz [K] that ex(n) > kn. In this
paper we further improve both the upper and lower bounds for general k.

Theorem 1 For k < n/2,

(k —1)n —2k* < ex(n) < k3(n +1).
We also improve the above mentioned bounds on e3(n).

Theorem 2 For any n > 6,
4n — 9 < ez(n) < 8.5n.

Theorem 1 and Theorem 2 are proved in Sections 2 and 3, respectively. Throughout the
paper, we do not make any notational distinction between an edge and the segment representing
it.

Recently, using similar methods, the first named author has further improved the upper
bound in Theorem 1 to e; < 2°k%n [T]. For the corresponding problem concerning pairwise
crossing edges, see [V] and for another related problem see [LMPT)].

2 The general case

2.1 The upper bound
Our proof, as the proof of Pach and Torécsik [PT], is based on Dilworth’s theorem [D].

Dilworth’s Theorem. Let P be a partially ordered set containing no chain (totally ordered
subset) of size k+ 1. Then P can be covered by k antichains (subsets of pairwise incomparable
elements).

Let G = (V, E) be a geometric graph on n vertices, containing no k + 1 pairwise disjoint
edges. For a vertex v, let z(v) and y(v) denote its z- and y-coordinate, respectively. We can
assume without loss of generality that no two vertices have the same z-coordinate.

An edge e is said to lie below an edge €', if no vertical line crossing both e and e’ crosses e
strictly above €'. Finally, let 7(e) denote the orthogonal projection of e to the z-axis.

Define four binary relations <; (i = 1,...,4) on the edge set E as follows (see also [PT,
PA]). Let e = v1v9, €' = vjvh be two disjoint edges of G, where z(v1) < z(v2) and z(v]) < z(vh).
Then (see Fig. 1)
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Figure 1: The relations ;.

e<se, if  z(n)<z(v)), z(ve) > z(vh), and e lies below ¢,
e=<qe, if  z(v1)>z(v]), z(ve) < z(vy), and e lies below €.

Obviously, each of the relations <; is a partial ordering, and any pair of disjoint edges in
G is comparable by at least one of them.

Since G does not contain k+1 disjoint edges, (E, <1) does not contain a chain of length k+1.
Therefore, by Dilworth’s theorem, E can be covered by k antichains with respect to <;. Let E;
be the largest of these antichains, thus |E1| > |E|/k. Applying Dilworth’s theorem on (E1, <2),
we similarly get an antichain (with respect to <o) By C E; of size |Es| > |E1|/k > |E|/k%. In
the rest of the proof we estimate the size of Eo from above.

Since Fs is an antichain with respect to <1 and <o, 7(e) N7w(e’) # 0 for any e, e’ € Es.
Therefore, N cp, 7(e) # 0, so there is a vertical line £ which intersects all edges in Ej.

Let C_v'z) = (V,E;) be a directed geometric graph obtained from (V, E3) by replacing each



edge e = v1v9 in Ey by the two oriented edges o105 and vz01. For two edges e; = vgvi, e2 = T
forming a path in G2, we say that ey is a zag of eq, if the following two conditions hold:

(i) m(e1) Nm(e2) has positive length,

(ii) for any z € (w(e1) Nw(e2)) \ {7(v1)}, the vertical line through z intersects es below eq,
and it intersects no other edge going from v, between e; and es.

Observe that each edge in 52) has at most one zag. We call an oriented path ejes...e, in 5;
a zigzag path, if e; 11 is the zag of e;, for each i =1,...,r — 1 (see Fig. 2).

all 5 maximal zigzag paths in 672)

Figure 2: Maximal zigzag paths.

Lemma 3 FEvery zigzag path in CT; has at most 2k edges.
Lemma 4 CT; has at most n + 1 mazimal zigzag paths.

Lemmas 3 and 4 immediately give Theorem 1: every edge in 672) is contained in a maximal
zigzag path; therefore, by Lemmas 3 and 4,

|By| < 2k(n + 1),



and, consequently, N
|E| < k?|Eo| = K2|E3|/2 < K*(n +1).
It remains to prove Lemmas 3 and 4.
Proof of Lemma 3. Let P = ejes...e, be a zigzag path in 672), and let e; = 7,17, for
1=1,...,7. We need the following claim.

Claim One of the two sequences
So = z(vg), z(va), . .. S1 = z(v1),z(vs),. ..

is decreasing, and the other one is increasing.

Proof of Claim. Suppose the claim is false. Then there is an index ¢ such that either
z(vi—1) < z(viy1) and z(v;) < x(viy2), or z(v;i—1) > z(vi+1) and z(v;) > z(viye). Conse-
quently, e; 12 <1 €; or e; 1o <9 €; (see Fig. 3 for all four possible cases), which is a contradiction

Vi—1
e
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€it+2
€it+2
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Figure 3: e;12 <1 €; or e;412 <2 €;.

with the definition of Fy. The claim is proved. O

The length of P is at most 2k since otherwise ej,es,...,est1 would be k + 1 disjoint edges
according to Claim (see Fig. 4). O

Proof of Lemma 4. Let v € V be a vertex lying to the right of £, and let P;, P> be two
different zigzag paths in CT; ending in v. If the slope of the last edge in P; is, say, smaller than
the slope of the last edge in P», then the last edge of P; has a zag and, consequently, P; can
be extended to a longer zigzag path. It follows that at most one maximal zigzag path ends in
v, and this is similarly true for any vertex not lying on £. Similarly, at most two zigzag paths
end in any vertex v on £ (one coming to v from the left, the other one from the right). The
lemma now follows from the assumption that no pair of vertices lies on a vertical line. O

2.2 The lower bound

For simplicity, suppose that k is even and n is odd. Set z = (n — k 4+ 1)/2. Let P be a set of
z points p1,...,p, placed equidistantly in this order from left to right on a horizontal line p.
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Figure 4: ej,es,...,eg;y1 are disjoint.

Let Q@ = {q1,.--,q.} be a translation of P such that g; always corresponds to p; and p1p,q.q:
is a square. Let g be the line containing (), and let r be the line parallel to p and ¢, halfway
between them. Let E; be the set of all segments (edges) p;g; with —k/2 <i+j—(2+1) <k/2
(see Fig. b).

The segments of E intersect the line r in k + 1 points 7_g/0,7_j/241,--.,7/2 such that
¢ always lies on the segments p;q; with i +j — (2 + 1) = t. Let R be the set of the centers
of the segments ryry11 (t = —k/2,—k/2+1,...,k/2 — 2), and let Es be the set of all edges
(segments) joining vertices of R with vertices of P U @ (see Fig. 5).

We now show that the geometric graph G = (PUQ U R, E1 U E3) gives the lower bound in
Theorem 1.

First, observe that G has z + z 4+ (kK — 1) = n vertices and

m—k+1)(k+1)—41+2+...+k/2)
2

3k 1 kE(k+2) 3 9
—(n—k+1)(?—§)—T > §(k—1)n—2k
edges. It remains to show that G contains no k + 1 pairwise disjoint edges. Suppose that D
is a set of disjoint edges in G. If |D N E;| < 1, then |D| < |R| + 1 = k. Otherwise, let the
leftmost edge of D N Eq, eq, intersects r in a point rs, and the rightmost one, es, in a point
. Since there are s + k/2 vertices of R to the left of e;, D contains at most s+ k/2 edges to
the left of e;. Similarly, D contains at most k/2 — ¢t edges to the right of es. Since there are
t — s — 2 vertices of P U @ between e; and es, D contains at most ¢t — s — 2 edges between e;
and ey. Altogether, D contains at most (s +k/2) + (k/2 —t) + (t —s —2) + 2 =k edges. O

|Er| + || =

+(n—k+1)(k—-1)
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Figure 5: The edges of E; and Es (for k =4, n = 15, z = 6).

3 The case £k = 3

3.1 The upper bound

We use the following result.

Lemma 5 ([GKK]) If a geometric graph G of n vertices does not contain 4 pairwise disjoint
edges and there is a line which intersects every edge of G and contains no vertex of G, then G
has at most Tn edges.

Lemma 5 is not stated in [GKK] explicitly. However, its proof (relatively long case-analysis)
is readily contained in the proof of Theorem 2 in [GKK].

Let G = (V, E) be a geometric graph without 4 pairwise disjoint edges. Denote the vertices
by v1,...,v, from left to right, and assume that no pair of them lies on a vertical line. For
any 1 < i < n let G; be the subgraph of G which contains only those edges vavg of G where
a<i<p.

It follows from Lemma 5 and the assumption that for any 1 < i < n |E(G;)| < Tn. For
any 1 <i<mn,let G; and G;r be the subgraph of G induced by the vertices v1,...,v; and by
Vi, - - - , Up, Tespectively. Let

I = max {z | G; does not contain 2 disjoint edges} .
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Since G, contains two disjoint edges, G}'_i_z does not. Suppose without loss of generality
that I < n/2. Then

E(G) = E(G7) UE(G},,) UE(Gr41) U {vvr41 € E(G) | i < I}.

Therefore,
IE(G)| <ei(I)+ei(n—I—-1)+Tn+I < 8.5n.

O

3.2 The lower bound

First, let n be odd. Take the vertices of a regular (n — 2)-gon, and join each of them with
the furthermost 4 vertices. Add two vertices near the center of the (n — 2)-gon, and join each
of them by an edge to all the other vertices. The resulting geometric graph on n vertices has
4(n—2)/242(n—1)—1 = 4n—T7 edges. It is easy to see that no 4 edges are pairwise disjoint,
see Fig. 6.

Figure 6: A geometric graph with no 4 pairwise disjoint edges.

For n even, we take the above geometric graph on n + 1 vertices, and remove a vertex and
the six edges incident to it. The resulting graph on n vertices has 4n — 9 edges. O



4 Remarks

By a little modification, it is possible to slightly improve the upper bound of Theorem 1.

Theorem 6 For any k < n/2,

4
ex(n) < ﬁk?’n + O(k?n).

Proof. (Sketch) We use the same partial orderings, <1, <2, <3, <4, as in the proof of Theorem 1
(see Fig. 1). For any edge e of a geometric graph G = (V, E), let Rankj (e) be the maximum
number a > 0 such that there exist e1,es,...¢e,,E E, e <3 €1 <3 €3 <3 e3--- <3 €4, and let
Rankj (e) be the maximum number b > 0 such that there exist e1,es,...,ep € E, e1 <4 €3 <4
€3+ <4 €y <4 €.

Lemma 7 Let G = (V, E) be a geometric graph with n vertices and with no k + 1 pairwise
disjoint edges. Suppose that there is a line which avoids all vertices and crosses all edges of G.
Then

1
|E| < Ek?’n + O(k?n).
Proof of Lemma 7. For any 0 < a,b<k —1 let

Eop = {e € E | Rankj (e) = a, Rankj (e) = b} .

Clearly, E, is an antichain with respect to <3 and <4. We can define m and its maximal
zigzag paths just as in the proof Theorem 1. It is easy to see that there are at most n maximal
zigzag paths and every edge of E,j is contained in at least one of them (in fact, in exactly one
of them, but here we do not need that). Suppose that there is a zigzag path ef,es,...,e; of
z = 2(k —a —b) + 1 edges. Then ef,e3,e2,...,e5 are k —a — b+ 1 pairwise disjoint edges.
Moreover, we can add a edges above ef and b edges below e to get k + 1 pairwise disjoint
edges, contradicting our assumption. (See Fig. 7.)
Therefore, every maximal zigzag path of E,; has at most 2(k — a — b) edges, so

|Eap| < n(k—a—0),

B= Y |Bul<n Y (k—a—b)=<’“‘§2)n.

0<a,b 0<a,b
a+b<k a+b<k



a edges

b edges

Figure 7: k + 1 disjoint edges.

Return to the proof of Theorem 6. It is not hard to see that there is a line £ which avoids all
vertices of G and on one side of £ there are [n/2] vertices and at most [k/2] pairwise disjoint
edges, while on the other side of ¢ there are |n/2]| vertices and at most |k/2]| pairwise disjoint
edges of G. We get the recursion

1
ex(n) < Ek?’n +O(K*)n + eg 21 (In/2]) + k) ([1/2])
and Theorem 6 follows. O

If the number of edges in a geometric graph is at least (n?), then Theorem 1 guarantees
Q(n'/?) pairwise disjoint edges. This is improved by the following result of Pach [P].

Theorem 8 ([P]) For any c > 0 there is a ¢’ > 0 such that every geometric graph of n vertices
and at least cn? edges has at least c!\/n pairwise disjoint edges.
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