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Abstract

For n ≤ d, a family F = {C0,C1, . . . ,Cn} of compact convex sets in

R
d is called an n-critical family provided any n members of F have a

non-empty intersection, but
⋂n

i=0 Ci = ∅. If n = d then a lemma on the

intersection of convex sets due to Klee implies that the d +1 members of

the d-critical family enclose a ‘hollow’ in R
d , a bounded connected com-

ponent of Rd \
⋃n

i=0 Ci. Here we prove that the closure of the convex hull

of a hollow in R
d is a d-simplex.1

Besides the Helly-theorem on intervals in R
1 a less notable property is

that two disjoint intervals can be separated by a point, in other words,

there is a ‘hollow’ (an interval) between them, a gap, which cannot be

bridged with two intervals having empty intersection. This separation or

gap property, trivial as it is, helps characterize the intersection patterns of
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convex sets in R
1 in terms of ‘interval graphs’. Actually, the gap property

implies the foremost necessary condition that an interval graph must be

chordal, namely, each cycle of length more than three has a chord (see

[5]). Just as Helly’s theorem is established in R
d , for every d ≥ 1, the

separation or gap property has extensions to higher dimension.

A family of compact convex sets C0,C1, . . . ,Cn ⊂ R
d is called here an n-

critical family if
⋂

i 6= j Ci 6= ∅, for every j = 0,1, . . . ,n, but
⋂n

i=0 Ci = ∅.

The denotation ‘critical’2 becomes clear when in some finite family of

sets with empty intersection we consider a ‘smallest’ subset with the same

property, a ‘critical subfamily’.

Convexity and compactness in the definition of a critical family was

chosen here with combinatorial geometry applications in mind (see [13]).

However, in intersection or covering theorems of topology, when a fi-

nite or infinite family of sets appears, the compactness requirement of

the members might be relaxed (see [17]), and the condition
⋂n

i=0 Ci = ∅

is usually replaced with its contrapositive that
⋃n

i=0 Ci is a convex set,

which denies the hollow (see [14]). Meanwhile, the primary condition

that
⋂

i 6= j Ci 6= ∅, for every j = 0,1, . . . ,n, is unchanged and displays a

topology variation of n-criticality in the different contexts.

The role of n-critical families (or its variations) in Euclidean spaces

was recognized by Klee [14, 15], Berge [3], and Ghouila-Houri [9] in

the study of intersection properties of convex sets. These properties are

closely related to fixed point theorems and minimax theorems as explored

by Fan [6]. As a result, the intersection theorems and their applications

were extended further in functional analysis and in topology by Balaj

[1], Ben-El-Mechaiekh [2], Fan [6, 7], Horvath [12] and others, by re-

placing the Euclidean space with general topological vector spaces. All

these investigations are originated in classical topology results such as the

Sperner’s lemma [20], and its generalizations starting with the Knaster,

Mazurkievicz, Kuratowski-theorem [16, 17].

Observe that by Helly’s theorem [11], there is no n-critical family in

R
d provided n > d. A fundamental lemma due to Klee [14] implies that

for n = d there is a bounded domain D ⊆ R
d \

⋃d
i=0 Ci called here the

hollow enclosed by the d-critical family in R
d (Corollary 1.3). Section 1

contains different proofs of Klee’s fundamental covering lemma display-

ing its many faceted connections to combinatorial topology. In Section 2

it is proved that the closure of the convex hull of a hollow in R
d is a d-

simplex (Theorem 2.1). An immediate corollary of the hollow theorem,

related to an early result of Ghouila-Houri [9], is formulated in Section

3 (Theorem 3.2). The note concludes with a separation property of n-

critical families in R
d , actually a corollary of a more general separation

result by Klee [14, Theorem 1], for the case n < d, when there is no hol-

low enclosed by the family (Theorem 3.3).

2The concept of criticality was introduced in graph theory by T. Gallai [8]



Given a set X ⊂ R
d , the convex hull, the closure, and the boundary of X

is denoted by Conv(X), cl(X), and ∂X , respectively.

1 Klee’s lemma

A basic lemma discovered by Klee [14] and independently by Berge [3]

captures a fundamental intersection property of n-critical families. We in-

clude here three proofs using different techniques and displaying a many

faceted connections of the lemma to topology. The first purely geometry

proof is using the standard separation theorem of disjoint compact convex

sets (c.f. [15]). The second proof was outlined by Berge [3] and applies

a combinatorial topology result deduced from Sperner’s lemma [20]. The

last proof uses the KKM lemma from fixed-point theory due to Knaster,

Kuratowski, and Mazurkievicz [16].

Lemma 1.1. [Klee [14], Berge [3]]. Let C0,C1, . . . ,Cn ⊂ R
d be compact

convex sets such that
n
⋂

i=1
i 6= j

Ci 6= ∅, for every j = 0,1, . . . ,n. If
⋃n

i=0 Ci is

convex, then
⋂n

i=0 Ci 6=∅.

Proof. The proof is induction on n. The case n = 0 is trivial; assume

that n ≥ 1 and the claim is true for n convex sets. If
⋂n

i=0 Ci = ∅, then

Cn and A =
⋂n−1

i=0 Ci are disjoint compact convex sets, thus they can be

strictly separated with a hyperplane H such that H ∩A = H ∩Cn =∅. Let

C′
i = H ∩Ci, 0 ≤ i ≤ n−1.

For every j = 0, . . . ,n−1, the condition
n
⋂

i=1
i 6= j

Ci =Cn ∩





n−1
⋂

i=1
i 6= j

Ci



 6=∅

combined with H ∩Cn = ∅ imply that H ∩





n−1
⋂

i=1
i 6= j

Ci



 =
n−1
⋂

i=1
i 6= j

C′
i 6= ∅. Be-

cause
⋃n−1

i=0 C′
i = (H ∩Cn)∪

(
⋃n−1

i=0 H ∩Ci

)

= H ∩ (
⋃n

i=0 Ci) is convex, we

obtain by induction that
n−1
⋂

i=0

C′
i = H ∩

(
⋂n−1

i=0 Ci

)

= H ∩A 6= ∅, a contra-

diction.

Second proof of Lemma 1.1. Let a j ∈
⋂

i 6= j Ci, for j = 0,1, . . . ,n, and set

S = Conv({a0, . . . ,an}) for the convex hull of these n+ 1 points. If S is

not a simplex, then they span an affine subspace of dimension n− 1 or

less, then by Helly’s theorem the claim
⋂n

i=0 Ci 6=∅ follows. We assume

now that S is an n-simplex. Since the facet S( j) ⊂ S opposite a j is included

in C j and
⋃n

i=0 Ci is convex, we have S ⊆
⋃n

i=0 Ci.

We take a simplicial subdivision of S with arbitrary small mesh3. A

3 mesh = the maximum diameter of the simplices of the subdivision



Sperner coloring4 of the vertices of the subdivision is defined next. For a

vertex v of the subdivision let the color of v be any index j ∈ {0,1, . . . ,n}
such that v ∈ C j−1 \C j (where C−1 = Cn). A color j exists for every

v ∈ S, since otherwise, v ∈
⋂n

i=0 Ci, and the claim follows. Observe, if j is

the color of v ∈ Conv({ai0 ,ai1 , . . . ,aik}), then j ∈ {i0, i1, . . . , ik} follows

by the convexity of C j, and because v /∈ C j. Then by Sperner’s lemma,

there is an n-simplex whose vertices are multicolored with n+1 different

colors.

By repeating the procedure with simplicial sudivisions of S with mesh

ε ց 0, there is a convergent subsequence of the multicolored subdividing

simplices approaching a point p ∈ S. This limit point satisfies p ∈ C j−1,

for every j = 0,1, . . . ,n, thus
⋂n

i=0 Ci 6=∅ follows.

The KKM lemma due to Knaster, Kuratowski, and Mazurkievicz [16]

is known as a remarkable intersection theorem for closed covers of a Eu-

clidean simplex. Extending the Sperner lemma [20] the KKM lemma was

the starting point of further generalizations to topological vector spaces

[2, 12, 17]; these variations have been applied in mathematical fixed-point

theory [7].

A set-valued map Γ of the points of an arbitrary set X ⊂R
d into sets of

R
d is called a KKM map on X if for every finite subset N ⊆ X , Conv(N)⊆

⋃

x∈N Γ(x). Ben-El-Mechaiekh [2] proves a particular version of the KKM

theorem stated as follows.

Theorem 1.2. If Γ is a KKM map on X ⊂ R
d such that, for every x ∈ X,

Γ(x) is a non-empty closed convex subset of Rd , then the family F =
{Γ(x)}x∈X has the finite intersection property, that is the intersection of

the members of any finite subfamily of F is nonempty.

For finite sets X the claim in Theorem 1.2 simply becomes
⋂

x∈X Γ(x) 6=
∅. As observed by Ben-El-Mechaiekh [2], Klee’s fundamental intersec-

tion theorem (Lemma 1.1) follows from the finite version of Theorem 1.2.

Third proof of Lemma 1.1. Let a j ∈
⋂

i 6= j Ci, for j = 0,1, . . . ,n. Define the

map Γ(ai) 7→Ci−1, for i = 0,1, . . . ,n, (where C−1 =Cn). We verify that Γ
is a KKM map on A = {a0,a1, . . . ,an}; let N ⊆ A.

For N = A, because A ⊂
⋃n

i=0 Ci and C =
⋃n

i=0 Ci is convex, we obtain

Conv(N) = Conv(A) ⊂ C =
⋃

ai∈N Γ(ai). For N 6= A, let j be an index

such that a j ∈ N, and a j−1 /∈ N. Observe that N ⊂C j−1, and since C j−1 is

convex, we obtain Conv(N)⊂C j−1 = Γ(a j)⊂
⋃

ai∈N Γ(ai). By Theorem

1.2,
⋂

ai∈A Γ(ai) =
⋂n

i=0 Ci 6=∅ follows.

Corollary 1.3. If {C0,C1, . . . ,Cd} is a d-critical family in R
d , then R

d \

4 a vertex vi of the n-simplex (v0, . . . ,vn) is colored with i, i = 0,1, . . . ,n, furthermore;

if v ∈ Conv({vi0 ,vi1 , . . . ,vik}) then the color of v is any index from {i0, i1, . . . , ik}



⋃d
i=0 Ci has a bounded connected component D, that is every ray emanat-

ing from any point of D intersects some Ci, 0 ≤ i ≤ d.

Proof. Let a j ∈
⋂

i 6= j Ci, for j = 0,1, . . . ,d. If E ⊂ R
d is the affine space

of dimension less than d, then the contradiction
⋂n

i=0 Ci 6= ∅ is obtained

by Helly’s theorem. Let S = Conv({a0, . . . ,an}) be the d-simplex; notice

that each face of S is contained in
⋃n

i=0 Ci. The compact convex sets

C′
i = Ci ∩ S, i = 0,1, . . . ,n, form a d-critical family, thus by Lemma 1.1

⋃d
i=0 C′

i ⊂ S is not convex, which means that S does not cover
⋃d

i=0 Ci.

Let p ∈ S \
⋃d

i=0 Ci. Because ∂S ⊆
⋃d

i=0 Ci, every ray emanating from p

intersects C j, for some 0 ≤ j ≤ d.

2 The Hollow theorem

Theorem 2.1. If F = {C0, . . . ,Cd} is a d−critical family in R
d , then

one of the connected components of Rd \
⋃d

i=0 Ci is a non-empty bounded

region D, and the closure of Conv(D) is a d-simplex.

Proof. The claim is true for d = 1; let d ≥ 2 and assume that the claim is

true for d−1. By Corollary 1.3, the hollow D enclosed by F exists. Fur-

thermore, D is an open set, ∂D ⊆ ∂C0 ∪ . . .∪ ∂Cd , and D is contained in

any d-simplex S with vertices in
⋂

h 6= j Ch, j = 0, . . . ,d. Since S is closed,

cl(Conv(D)⊂ S.

For j = 0, . . . ,d, let p j ∈
⋂

h 6= j Ch be a closest point of
⋂

h 6= j Ch to

C j. We claim that p0, . . . , pd are unique points of ∂D. Assume that this

claim is true, and let S be the d-simplex with vertices p0, . . . , pd . Be-

cause cl(Conv(D)) is convex and the vertices of S belong to ∂D, we have

S ⊂ cl(Conv(D)). On the other hand, we know cl(Conv(D))⊂ S, thus

cl(Conv(D)) = S follows.

1. We show that the simplex S is unique. Suppose that the points

a1,a2 ∈
⋂

h 6=d Ch and b1,b2 ∈Cd are such that the minimum distance be-

tween
⋂

h 6=d Ch and Cd is m = |a1b1| = |a2b2|.
5 Let the position vec-

tors of ai and bi be ai and bi, respectively. By convexity, a = 1
2
(a1 +

a2) ∈
⋂

h 6=d Ch and b = 1
2
(b1 + b2) ∈ Cd , hence (a− b)2 ≥ m2. Using

(a1 −b1)
2 = (a2 −b2)

2 = m2 and setting γ for the angle between a1 −b1

and a2 −b2 we obtain

2m2 ≤ 2(a−b)2 = 1
2
(a1 −b1 +a2 −b2)

2

= 1
2
[(a1 −b1)

2 +(a2 −b2)
2]+ (a1 −b1)(a2 −b2)

= m2 +m2 cosγ ≤ 2m2.

5 ab is the line segment between points a and b



This implies cosγ = 1, that is a1b1 ‖ a2b2, hence either a1b1 = a2b2 or

(a1,a2,b2,b1) is a parallelogram.

a1

a∗ b1

a2

b2b∗
α

Assume that a1b1 and a2b2 are distinct segments. If (a1,a2,b2,b1) is

not a rectangle, then set α = ∠a2b2b1 < π/2. Let a∗ be the orthogonal

projection of a2 on the line through b1,b2, and let b∗ ∈ b1b2 ∩a∗b2. Then

b∗ ∈Cd , and in the right triangle (a2,a
∗,b2) we have |a2b∗|< |a2b2|= m,

a contradiction. Thus we obtain that (a1,a2,b2,b1) is a rectangle.

The open ball of radius m centered at a1 is disjoint from Cd , hence

the hyperplane through b1, b2 and perpendicular to a1b1 is a support-

ing hyperplane to Cd . For every j = 0, . . . ,d − 1, select a point c j ∈
⋂

h 6= j Ch. Apply Radon’s theorem [19] on the (d + 2)−element set R =
{a1,a2,c0, . . . ,cd−1}. Let J1 ∪ J2 = R be the Radon-partition, and let q ∈
Conv(J1) ∩ Conv(J2). If c j /∈ J1, then Conv(J1) ⊂ C j, and if c j /∈ J2,

then Conv(J2) ⊂ C j; therefore, q ∈ Conv(J1) ∩ Conv(J2) ⊂ C j, for j =

0, . . . ,d −1. Thus we obtain that q ∈
⋂d−1

j=0 C j, which implies q /∈Cd . Be-

cause Conv(Ji \ {a1,a2}) ⊂ Cd and q /∈ Cd , points a1,a2 are in distinct

partition classes, say ai ∈ Ji. Since a1 6= a2, we may assume that q 6= a1;

denote m0 the distance of q from Cd . Clearly, m ≤ m0.

Because a1q ⊂ Conv(J1) and Conv(J1 \{a1}) ⊆Cd , the line through

a1 and q intersects Cd at some point c ∈ Cd . Our argument proceeds on

the plane containing the triangle (a1,b1,c). Let q′ and c′ be the points

on the line through c and b1 such that qq′ ⊥ cb1 and a1c′ ⊥ cb1 (see the

figures).

a1

b1c

q

q′

c′

Cd

a1

b1

c

q

q′

Cd

If q′ ∈ cb1 then by convexity, q′ ∈Cd . This implies that m0 ≤ |qq′|<
|a1c′| ≤ |a1b1| = m ≤ m0, a contradiction (see the figure on the left). If

b1 ∈ cq′ then we have ∠b1qa1 = π −∠cqb1 ≥ π −∠cqq′ > π/2 (see on

the right). Therefore, m0 ≤ |qb1|< |a1b1|= m ≤ m0, a contradiction.



We conclude that a1 = a2, thus pd is uniquely determined as the clos-

est point in
⋂

h 6=d Ch to Cd . Similarly, each point pi ∈
⋃

h 6=i Ch closest

to Ci, i = 0, . . . ,d − 1, is uniquely determined. Furthermore, because
⋂d

i=0 Ci =∅, S = (p0, . . . , pd) is a d−simplex.

2. Next we show that pd ∈ ∂H. Let b ∈ ∂Cd be the closest point

in Cd to pd ∈
⋂

h 6=d Ch. For i = 0,1, . . . ,d − 1, let ai ∈ ∂Cd ∩
(
⋂

h 6=i Ch

)

.

We translate the point b to pd , and assume that the same translation takes

the points a0, . . . ,ad−1 into a′0, . . .a
′
d−1, respectively. Define B = ∂Cd∩

Conv({b,a0, . . . ,ad−1}∪ {pd ,a
′
0, . . .a

′
d−1}), and let B′ be the translation

of B sending b into pd . Observe that
⋂

h 6=d Ch has no point in the interior

of Q = Conv(B∪B′).

a′i

aib

pd

a j

a′j

w
ℓ

Cd

Q

B′

B

Now we take a hyperplane ℓ strictly separating pd from B and suf-

ficiently close to pd . The intersection of C = Conv({pd ,a0, . . . ,ad−1})
with ℓ is inside the interior of Q; let L = ℓ∩C. The convex sets C′

i =
Ci ∩L, i = 0,1, . . . ,d −1, form a (d −1)-critical family F ′ in the hyper-

plane ℓ. By induction, the hollow enclosed by F ′ in ℓ contains a point

w ∈ L \
(

⋃d−1
i=0 Ci

)

. The simplex Conv({pd ,a0, . . . ,ad−1}) contains the

hollow H enclosed by F in R
d , which implies that w ∈ H.

Because ℓ can be taken arbitrarily close to pd , the point w ∈ H be-

comes arbitrarily close to pd . Thus we obtain pd ∈ ∂H, and similarly, pi ∈
∂H, 0 ≤ i ≤ d−1. Therefore, cl(Conv(H))=Conv({p0, p1, . . . , pd}).

3 Conclusion

Given a d−critical family F = {C0, . . . ,Cd} in R
d , a cage is defined as a

closed set containing d+1 base points, ai ∈
⋂

h 6=i Ch, 0 ≤ i ≤ d. A convex

cage M carried by F contains the hollow D ⊂ R
d \

⋃d
i=0 Ci enclosed by

the family, because D is included in the convex hull of the base points of

M. The generalization of Berge’s theorem [3] due to Ghouila-Houri [9]

implies the following property of a convex cage (as a special case).

Proposition 3.1. Let F = {C0, . . . ,Cd} be a d−critical family in R
d , and

let F be a closed set containing the hollow D enclosed by F . If M is a

convex cage carried by F , then F ∩M is also a cage.



When applying Proposition 3.1 with F = cl(Conv(D)), then the d+1

base points of the cage F ∩M may depend on the choice of M. Theorem

2.1 implies that this is not the case, Proposition 3.1 is true in a stronger

form, namely, there is a unique convex cage minimal by inclusion, the

d-simplex cl(Conv(D)).

Theorem 3.2. Let F = {C0, . . . ,Cd} be a d−critical family in R
d . Then

there exist d+1 base points, which belong to every convex cage M carried

by F .

If n < d then there is no hollow enclosed by the members of an n-

critical family in R
d . In particular, the two compact convex members

of a 1-critical family do not enclose a hollow in R
2; nevertheless, since

they are disjoint, they can be strictly separated by a line. A result due to

Klee [14, Theorem 1] extends this separation property in R
d for any n-

sets.6 Klee’s separation theorem has an immediate corollary for n-critical

families below; a simple proof (extending easily the induction proof of

Lemma 1.1 given above) is due to Breen [4].

Theorem 3.3. (Breen [4]). For 1 ≤ n ≤ d, let {C0,C1, . . . ,Cn} be an n-

critical family in R
d , and let ai ∈

⋂

h 6=i Ch, 0 ≤ i ≤ n. Then in R
d there are

two affine subspaces, W of dimension n and V of dimension d −n (called

a stabbing affine subspace), meeting in a single point p and such that

(a) V ∩Ci =∅ and ai ∈W, for every 0 ≤ i ≤ n, and

(b) the set W
⋂

(
⋃n

i=0 Ci) surrounds7 {p} in W.

The special version of Theorems 2.1 and 3.2 for d = 2 was originally

developed and applied by Jobson et al. [13, Lemma 1] in the study of

an extremal problem involving forbidden planar convex hypergraphs. It

is worth noting that the characterization of d-dimensional convex hyper-

graphs8 is not known for d ≥ 2. For d = 1 the convex hypergraphs are

called interval graphs; and as it is well known, their characterization was

done by Lekkerkerker and Boland [18] in terms of forbidden obstructions,

and by Gilmore and Hoffman [10] using the ordering and the separation

property of the real line.

Having Theorem 3.3, one could try to generalize the Hollow Theorem

(Theorem 2.1), that is, for an n-critical family {C0,C1, . . . ,Cn} in R
d , one

might ask for some kind of ‘geombinatorial’ description of the set of all

stabbing (d − n)-dimensional affine spaces V . At this point we do not

even have a reasonable conjecture.

6the concept of an n-set is a variation of n-criticality used by Klee [14]
7 Q surrounds P in A if A\Q has a connected component which is bounded and contains P
8vertices are convex sets in R

d , and d +1 vertices form a hyperedge if and only if they

have nonempty intersection
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[3] C. Berge, Sur une propriété combinatoire des ensembles convexes.

C. R. Acad. Sci. Paris 248 (1959) 2698–2699.

[4] M. Breen, Starshaped unions and nonempty intersections of convex

sets in R
d . Proc. Amer. Math. Soc. 108 (1990) 817–820.

[5] G.A. Dirac, On rigid circuit graphs. Abh. Math. Sem. Univ. Ham-

burg 25 (1961) 71–76.

[6] K. Fan, Fixed-point and minimax theorems in locally convex topo-

logical linear spaces. Proc. Nat. Acad. Sci. U. S. A. 38, (1952) 121–

126.

[7] K. Fan, Some properties of convex sets related to fixed point theo-

rems. Math. Ann. 266 (1984) 519–537.

[8] T. Gallai, Kritische Graphen. I., II. Magyar Tud. Akad. Mat. Kutat

Int. Kzl. 8 (1963) 165–192 ibid. 373–395.

[9] A. Ghouila-Houri, Sur l’étude combinatoire des familles de con-

vexes. C. R. Acad. Sci. Paris 252 (1961) 494–496.

[10] P.C. Gilmore and A.J. Hoffman, A characterization of comparability

graphs and of interval graphs. Canad. J. Math. 16 (1964) 539–548.
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