ON THE HOLLOW ENCLOSED BY CONVEX SETS

Jenő Lehel

University of Louisville, and Alfréd Rényi Institute of Mathematics^{*} lehel@louisville.edu and

Géza Tóth[†]

Alfréd Rényi Institute of Mathematics, and Budapest University of Technology and Economics, SZIT geza@renyi.hu

March 3, 2021

Abstract

For $n \leq d$, a family $\mathscr{F} = \{C_0, C_1, \ldots, C_n\}$ of compact convex sets in \mathbb{R}^d is called an n-critical family provided any n members of \mathscr{F} have a non-empty intersection, but $\bigcap_{i=0}^n C_i = \emptyset$. If n = d then a lemma on the intersection of convex sets due to Klee implies that the d + 1 members of the d-critical family enclose a 'hollow' in \mathbb{R}^d , a bounded connected component of $\mathbb{R}^d \setminus \bigcup_{i=0}^n C_i$. Here we prove that the closure of the convex hull of a hollow in \mathbb{R}^d is a d-simplex.¹

Besides the Helly-theorem on intervals in \mathbb{R}^1 a less notable property is that two disjoint intervals can be separated by a point, in other words, there is a 'hollow' (an interval) between them, a gap, which cannot be bridged with two intervals having empty intersection. This separation or gap property, trivial as it is, helps characterize the intersection patterns of

^{*}Since September 1, 2019 the Alfréd Rényi Institute of Mathematics does not belong to the Hungarian Academy of Sciences.

[†]Supported by the National Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program) and National Research, Development and Innovation Office, NKFIH, K-13152.

¹Keywords: convex sets, critical family, intersection theorems, Klee's separation theorem, KKM lemma

convex sets in \mathbb{R}^1 in terms of 'interval graphs'. Actually, the gap property implies the foremost necessary condition that an interval graph must be chordal, namely, each cycle of length more than three has a chord (see [5]). Just as Helly's theorem is established in \mathbb{R}^d , for every $d \ge 1$, the separation or gap property has extensions to higher dimension.

A family of compact convex sets $C_0, C_1, \ldots, C_n \subset \mathbb{R}^d$ is called here an *n*critical family if $\bigcap_{i \neq j} C_i \neq \emptyset$, for every $j = 0, 1, \ldots, n$, but $\bigcap_{i=0}^n C_i = \emptyset$. The denotation 'critical'² becomes clear when in some finite family of sets with empty intersection we consider a 'smallest' subset with the same property, a 'critical subfamily'.

Convexity and compactness in the definition of a critical family was chosen here with combinatorial geometry applications in mind (see [13]). However, in intersection or covering theorems of topology, when a finite or infinite family of sets appears, the compactness requirement of the members might be relaxed (see [17]), and the condition $\bigcap_{i=0}^{n} C_i = \emptyset$ is usually replaced with its contrapositive that $\bigcup_{i=0}^{n} C_i$ is a convex set, which denies the hollow (see [14]). Meanwhile, the primary condition that $\bigcap_{i\neq j} C_i \neq \emptyset$, for every j = 0, 1, ..., n, is unchanged and displays a topology variation of *n*-criticality in the different contexts.

The role of *n*-critical families (or its variations) in Euclidean spaces was recognized by Klee [14, 15], Berge [3], and Ghouila-Houri [9] in the study of intersection properties of convex sets. These properties are closely related to fixed point theorems and minimax theorems as explored by Fan [6]. As a result, the intersection theorems and their applications were extended further in functional analysis and in topology by Balaj [1], Ben-El-Mechaiekh [2], Fan [6, 7], Horvath [12] and others, by replacing the Euclidean space with general topological vector spaces. All these investigations are originated in classical topology results such as the Sperner's lemma [20], and its generalizations starting with the Knaster, Mazurkievicz, Kuratowski-theorem [16, 17].

Observe that by Helly's theorem [11], there is no *n*-critical family in \mathbb{R}^d provided n > d. A fundamental lemma due to Klee [14] implies that for n = d there is a bounded domain $D \subseteq \mathbb{R}^d \setminus \bigcup_{i=0}^d C_i$ called here the *hollow* enclosed by the *d*-critical family in \mathbb{R}^d (Corollary 1.3). Section 1 contains different proofs of Klee's fundamental covering lemma displaying its many faceted connections to combinatorial topology. In Section 2 it is proved that the closure of the convex hull of a hollow in \mathbb{R}^d is a *d*-simplex (Theorem 2.1). An immediate corollary of the hollow theorem, related to an early result of Ghouila-Houri [9], is formulated in Section 3 (Theorem 3.2). The note concludes with a separation property of *n*-critical families in \mathbb{R}^d , actually a corollary of a more general separation result by Klee [14, Theorem 1], for the case n < d, when there is no hollow enclosed by the family (Theorem 3.3).

²The concept of criticality was introduced in graph theory by T. Gallai [8]

Given a set $X \subset \mathbb{R}^d$, the convex hull, the closure, and the boundary of *X* is denoted by Conv(X), cl(X), and ∂X , respectively.

1 Klee's lemma

A basic lemma discovered by Klee [14] and independently by Berge [3] captures a fundamental intersection property of *n*-critical families. We include here three proofs using different techniques and displaying a many faceted connections of the lemma to topology. The first purely geometry proof is using the standard separation theorem of disjoint compact convex sets (c.f. [15]). The second proof was outlined by Berge [3] and applies a combinatorial topology result deduced from Sperner's lemma [20]. The last proof uses the KKM lemma from fixed-point theory due to Knaster, Kuratowski, and Mazurkievicz [16].

Lemma 1.1. [Klee [14], Berge [3]]. Let $C_0, C_1, \ldots, C_n \subset \mathbb{R}^d$ be compact convex sets such that $\bigcap_{\substack{i=1\\i\neq j}}^n C_i \neq \emptyset$, for every $j = 0, 1, \ldots, n$. If $\bigcup_{i=0}^n C_i$ is convex, then $\bigcap_{i=0}^n C_i \neq \emptyset$.

Proof. The proof is induction on *n*. The case n = 0 is trivial; assume that $n \ge 1$ and the claim is true for *n* convex sets. If $\bigcap_{i=0}^{n} C_i = \emptyset$, then C_n and $A = \bigcap_{i=0}^{n-1} C_i$ are disjoint compact convex sets, thus they can be strictly separated with a hyperplane *H* such that $H \cap A = H \cap C_n = \emptyset$. Let $C'_i = H \cap C_i, 0 \le i \le n-1$.

For every
$$j = 0, ..., n-1$$
, the condition $\bigcap_{\substack{i=1\\i\neq j}}^{n} C_i = C_n \cap \left(\bigcap_{\substack{i=1\\i\neq j}}^{n-1} C_i\right) \neq \emptyset$
combined with $H \cap C_n = \emptyset$ imply that $H \cap \left(\bigcap_{\substack{i=1\\i\neq j}}^{n-1} C_i\right) = \bigcap_{\substack{i=1\\i\neq j}}^{n-1} C'_i \neq \emptyset$. Be-

cause $\bigcup_{i=0}^{n-1} C'_i = (H \cap C_n) \cup \left(\bigcup_{i=0}^{n-1} H \cap C_i\right) = H \cap \left(\bigcup_{i=0}^n C_i\right)$ is convex, we obtain by induction that $\bigcap_{i=0}^{n-1} C'_i = H \cap \left(\bigcap_{i=0}^{n-1} C_i\right) = H \cap A \neq \emptyset$, a contradiction.

Second proof of Lemma 1.1. Let $a_j \in \bigcap_{i \neq j} C_i$, for j = 0, 1, ..., n, and set $S = \text{Conv}(\{a_0, ..., a_n\})$ for the convex hull of these n + 1 points. If *S* is not a simplex, then they span an affine subspace of dimension n - 1 or less, then by Helly's theorem the claim $\bigcap_{i=0}^{n} C_i \neq \emptyset$ follows. We assume now that *S* is an *n*-simplex. Since the facet $S^{(j)} \subset S$ opposite a_j is included in C_j and $\bigcup_{i=0}^{n} C_i$ is convex, we have $S \subseteq \bigcup_{i=0}^{n} C_i$.

We take a simplicial subdivision of S with arbitrary small mesh³. A

 $^{^{3}}$ mesh = the maximum diameter of the simplices of the subdivision

Sperner coloring⁴ of the vertices of the subdivision is defined next. For a vertex v of the subdivision let the color of v be any index $j \in \{0, 1, ..., n\}$ such that $v \in C_{j-1} \setminus C_j$ (where $C_{-1} = C_n$). A color j exists for every $v \in S$, since otherwise, $v \in \bigcap_{i=0}^{n} C_i$, and the claim follows. Observe, if j is the color of $v \in \text{Conv}(\{a_{i_0}, a_{i_1}, ..., a_{i_k}\})$, then $j \in \{i_0, i_1, ..., i_k\}$ follows by the convexity of C_j , and because $v \notin C_j$. Then by Sperner's lemma, there is an *n*-simplex whose vertices are multicolored with n + 1 different colors.

By repeating the procedure with simplicial sudivisions of *S* with mesh $\varepsilon \searrow 0$, there is a convergent subsequence of the multicolored subdividing simplices approaching a point $p \in S$. This limit point satisfies $p \in C_{j-1}$, for every j = 0, 1, ..., n, thus $\bigcap_{i=0}^{n} C_i \neq \emptyset$ follows.

The KKM lemma due to Knaster, Kuratowski, and Mazurkievicz [16] is known as a remarkable intersection theorem for closed covers of a Euclidean simplex. Extending the Sperner lemma [20] the KKM lemma was the starting point of further generalizations to topological vector spaces [2, 12, 17]; these variations have been applied in mathematical fixed-point theory [7].

A set-valued map Γ of the points of an arbitrary set $X \subset \mathbb{R}^d$ into sets of \mathbb{R}^d is called a *KKM map on X* if for every finite subset $N \subseteq X$, $Conv(N) \subseteq \bigcup_{x \in N} \Gamma(x)$. Ben-El-Mechaiekh [2] proves a particular version of the KKM theorem stated as follows.

Theorem 1.2. If Γ is a KKM map on $X \subset \mathbb{R}^d$ such that, for every $x \in X$, $\Gamma(x)$ is a non-empty closed convex subset of \mathbb{R}^d , then the family $\mathscr{F} = {\Gamma(x)}_{x \in X}$ has the finite intersection property, that is the intersection of the members of any finite subfamily of \mathscr{F} is nonempty. \Box

For finite sets *X* the claim in Theorem 1.2 simply becomes $\bigcap_{x \in X} \Gamma(x) \neq \emptyset$. As observed by Ben-El-Mechaiekh [2], Klee's fundamental intersection theorem (Lemma 1.1) follows from the finite version of Theorem 1.2.

Third proof of Lemma 1.1. Let $a_j \in \bigcap_{i \neq j} C_i$, for j = 0, 1, ..., n. Define the map $\Gamma(a_i) \mapsto C_{i-1}$, for i = 0, 1, ..., n, (where $C_{-1} = C_n$). We verify that Γ is a KKM map on $A = \{a_0, a_1, ..., a_n\}$; let $N \subseteq A$.

For N = A, because $A \subset \bigcup_{i=0}^{n} C_i$ and $C = \bigcup_{i=0}^{n} C_i$ is convex, we obtain $\operatorname{Conv}(N) = \operatorname{Conv}(A) \subset C = \bigcup_{a_i \in N} \Gamma(a_i)$. For $N \neq A$, let j be an index such that $a_j \in N$, and $a_{j-1} \notin N$. Observe that $N \subset C_{j-1}$, and since C_{j-1} is convex, we obtain $\operatorname{Conv}(N) \subset C_{j-1} = \Gamma(a_j) \subset \bigcup_{a_i \in N} \Gamma(a_i)$. By Theorem $1.2, \bigcap_{a_i \in A} \Gamma(a_i) = \bigcap_{i=0}^{n} C_i \neq \emptyset$ follows.

Corollary 1.3. If $\{C_0, C_1, \ldots, C_d\}$ is a *d*-critical family in \mathbb{R}^d , then $\mathbb{R}^d \setminus$

⁴ a vertex v_i of the *n*-simplex (v_0, \ldots, v_n) is colored with $i, i = 0, 1, \ldots, n$, furthermore; if $v \in \text{Conv}(\{v_{i_0}, v_{i_1}, \ldots, v_{i_k}\})$ then the color of v is any index from $\{i_0, i_1, \ldots, i_k\}$

 $\bigcup_{i=0}^{d} C_i$ has a bounded connected component D, that is every ray emanating from any point of D intersects some C_i , $0 \le i \le d$.

Proof. Let $a_j \in \bigcap_{i \neq j} C_i$, for j = 0, 1, ..., d. If $E \subset \mathbb{R}^d$ is the affine space of dimension less than d, then the contradiction $\bigcap_{i=0}^n C_i \neq \emptyset$ is obtained by Helly's theorem. Let $S = \text{Conv}(\{a_0, ..., a_n\})$ be the d-simplex; notice that each face of S is contained in $\bigcup_{i=0}^n C_i$. The compact convex sets $C'_i = C_i \cap S$, i = 0, 1, ..., n, form a d-critical family, thus by Lemma 1.1 $\bigcup_{i=0}^d C'_i \subset S$ is not convex, which means that S does not cover $\bigcup_{i=0}^d C_i$. Let $p \in S \setminus \bigcup_{i=0}^d C_i$. Because $\partial S \subseteq \bigcup_{i=0}^d C_i$, every ray emanating from pintersects C_j , for some $0 \leq j \leq d$.

2 The Hollow theorem

Theorem 2.1. If $\mathscr{F} = \{C_0, ..., C_d\}$ is a *d*-critical family in \mathbb{R}^d , then one of the connected components of $\mathbb{R}^d \setminus \bigcup_{i=0}^d C_i$ is a non-empty bounded region *D*, and the closure of Conv(*D*) is a *d*-simplex.

Proof. The claim is true for d = 1; let $d \ge 2$ and assume that the claim is true for d - 1. By Corollary 1.3, the hollow D enclosed by \mathscr{F} exists. Furthermore, D is an open set, $\partial D \subseteq \partial C_0 \cup \ldots \cup \partial C_d$, and D is contained in any d-simplex S with vertices in $\bigcap_{h \ne j} C_h$, $j = 0, \ldots, d$. Since S is closed, $cl(Conv(D) \subset S$.

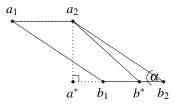
For j = 0, ..., d, let $p_j \in \bigcap_{h \neq j} C_h$ be a closest point of $\bigcap_{h \neq j} C_h$ to C_j . We claim that $p_0, ..., p_d$ are unique points of ∂D . Assume that this claim is true, and let *S* be the *d*-simplex with vertices $p_0, ..., p_d$. Because cl(Conv(D)) is convex and the vertices of *S* belong to ∂D , we have $S \subset cl(Conv(D))$. On the other hand, we know $cl(Conv(D)) \subset S$, thus cl(Conv(D)) = S follows.

1. We show that the simplex S is unique. Suppose that the points $a_1, a_2 \in \bigcap_{h \neq d} C_h$ and $b_1, b_2 \in C_d$ are such that the minimum distance between $\bigcap_{h \neq d} C_h$ and C_d is $m = |\overline{a_1 b_1}| = |\overline{a_2 b_2}|$.⁵ Let the position vectors of a_i and b_i be $\mathbf{a_i}$ and $\mathbf{b_i}$, respectively. By convexity, $\mathbf{a} = \frac{1}{2}(\mathbf{a_1} + \mathbf{a_2}) \in \bigcap_{h \neq d} C_h$ and $\mathbf{b} = \frac{1}{2}(\mathbf{b_1} + \mathbf{b_2}) \in C_d$, hence $(\mathbf{a} - \mathbf{b})^2 \ge m^2$. Using $(\mathbf{a_1} - \mathbf{b_1})^2 = (\mathbf{a_2} - \mathbf{b_2})^2 = m^2$ and setting γ for the angle between $\mathbf{a_1} - \mathbf{b_1}$ and $\mathbf{a_2} - \mathbf{b_2}$ we obtain

$$\begin{aligned} 2m^2 &\leq 2(\mathbf{a} - \mathbf{b})^2 &= \frac{1}{2}(\mathbf{a_1} - \mathbf{b_1} + \mathbf{a_2} - \mathbf{b_2})^2 \\ &= \frac{1}{2}[(\mathbf{a_1} - \mathbf{b_1})^2 + (\mathbf{a_2} - \mathbf{b_2})^2] + (\mathbf{a_1} - \mathbf{b_1})(\mathbf{a_2} - \mathbf{b_2}) \\ &= m^2 + m^2 \cos \gamma \leq 2m^2. \end{aligned}$$

⁵ \overline{ab} is the line segment between points *a* and *b*

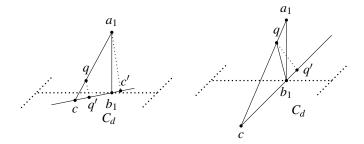
This implies $\cos \gamma = 1$, that is $\overline{a_1b_1} \parallel \overline{a_2b_2}$, hence either $\overline{a_1b_1} = \overline{a_2b_2}$ or (a_1, a_2, b_2, b_1) is a parallelogram.



Assume that $\overline{a_1b_1}$ and $\overline{a_2b_2}$ are distinct segments. If (a_1, a_2, b_2, b_1) is not a rectangle, then set $\alpha = \angle a_2b_2b_1 < \pi/2$. Let a^* be the orthogonal projection of a_2 on the line through b_1, b_2 , and let $b^* \in \overline{b_1b_2} \cap \overline{a^*b_2}$. Then $b^* \in C_d$, and in the right triangle (a_2, a^*, b_2) we have $|\overline{a_2b^*}| < |\overline{a_2b_2}| = m$, a contradiction. Thus we obtain that (a_1, a_2, b_2, b_1) is a rectangle.

The open ball of radius *m* centered at a_1 is disjoint from C_d , hence the hyperplane through b_1 , b_2 and perpendicular to $\overline{a_1b_1}$ is a supporting hyperplane to C_d . For every $j = 0, \ldots, d-1$, select a point $c_j \in \bigcap_{h \neq j} C_h$. Apply Radon's theorem [19] on the (d+2)-element set $R = \{a_1, a_2, c_0, \ldots, c_{d-1}\}$. Let $J_1 \cup J_2 = R$ be the Radon-partition, and let $q \in \text{Conv}(J_1) \cap \text{Conv}(J_2)$. If $c_j \notin J_1$, then $\text{Conv}(J_1) \subset C_j$, and if $c_j \notin J_2$, then $\text{Conv}(J_2) \subset C_j$; therefore, $q \in \text{Conv}(J_1) \cap \text{Conv}(J_2) \subset C_j$, for $j = 0, \ldots, d-1$. Thus we obtain that $q \in \bigcap_{j=0}^{d-1} C_j$, which implies $q \notin C_d$. Because $\text{Conv}(J_i \setminus \{a_1, a_2\}) \subset C_d$ and $q \notin C_d$, points a_1, a_2 are in distinct partition classes, say $a_i \in J_i$. Since $a_1 \neq a_2$, we may assume that $q \neq a_1$; denote m_0 the distance of q from C_d . Clearly, $m \leq m_0$.

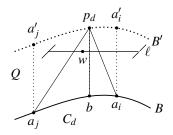
Because $\overline{a_1q} \subset \text{Conv}(J_1)$ and $\text{Conv}(J_1 \setminus \{a_1\}) \subseteq C_d$, the line through a_1 and q intersects C_d at some point $c \in C_d$. Our argument proceeds on the plane containing the triangle (a_1, b_1, c) . Let q' and c' be the points on the line through c and b_1 such that $\overline{qq'} \perp \overline{cb_1}$ and $\overline{a_1c'} \perp \overline{cb_1}$ (see the figures).



If $q' \in \overline{cb_1}$ then by convexity, $q' \in C_d$. This implies that $m_0 \leq |\overline{qq'}| < |\overline{a_1c'}| \leq |\overline{a_1b_1}| = m \leq m_0$, a contradiction (see the figure on the left). If $b_1 \in \overline{cq'}$ then we have $\angle b_1qa_1 = \pi - \angle cqb_1 \geq \pi - \angle cqq' > \pi/2$ (see on the right). Therefore, $m_0 \leq |\overline{qb_1}| < |\overline{a_1b_1}| = m \leq m_0$, a contradiction.

We conclude that $a_1 = a_2$, thus p_d is uniquely determined as the closest point in $\bigcap_{h \neq d} C_h$ to C_d . Similarly, each point $p_i \in \bigcup_{h \neq i} C_h$ closest to C_i , i = 0, ..., d - 1, is uniquely determined. Furthermore, because $\bigcap_{i=0}^{d} C_i = \emptyset$, $S = (p_0, ..., p_d)$ is a d-simplex.

2. Next we show that $p_d \in \partial H$. Let $b \in \partial C_d$ be the closest point in C_d to $p_d \in \bigcap_{h \neq d} C_h$. For i = 0, 1, ..., d - 1, let $a_i \in \partial C_d \cap (\bigcap_{h \neq i} C_h)$. We translate the point *b* to p_d , and assume that the same translation takes the points $a_0, ..., a_{d-1}$ into $a'_0, ..., a'_{d-1}$, respectively. Define $B = \partial C_d \cap$ $Conv(\{b, a_0, ..., a_{d-1}\} \cup \{p_d, a'_0, ..., a'_{d-1}\})$, and let *B'* be the translation of *B* sending *b* into p_d . Observe that $\bigcap_{h \neq d} C_h$ has no point in the interior of $Q = Conv(B \cup B')$.



Now we take a hyperplane ℓ strictly separating p_d from B and sufficiently close to p_d . The intersection of $C = \text{Conv}(\{p_d, a_0, \dots, a_{d-1}\})$ with ℓ is inside the interior of Q; let $L = \ell \cap C$. The convex sets $C'_i = C_i \cap L$, $i = 0, 1, \dots, d-1$, form a (d-1)-critical family \mathscr{F}' in the hyperplane ℓ . By induction, the hollow enclosed by \mathscr{F}' in ℓ contains a point $w \in L \setminus \left(\bigcup_{i=0}^{d-1} C_i\right)$. The simplex $\text{Conv}(\{p_d, a_0, \dots, a_{d-1}\})$ contains the hollow H enclosed by \mathscr{F} in \mathbb{R}^d , which implies that $w \in H$.

Because ℓ can be taken arbitrarily close to p_d , the point $w \in H$ becomes arbitrarily close to p_d . Thus we obtain $p_d \in \partial H$, and similarly, $p_i \in \partial H$, $0 \le i \le d-1$. Therefore, $cl(Conv(H))=Conv(\{p_0, p_1, \ldots, p_d\})$. \Box

3 Conclusion

Given a *d*-critical family $\mathscr{F} = \{C_0, \ldots, C_d\}$ in \mathbb{R}^d , a *cage* is defined as a closed set containing d + 1 base points, $a_i \in \bigcap_{h \neq i} C_h$, $0 \le i \le d$. A convex cage *M* carried by \mathscr{F} contains the hollow $D \subset \mathbb{R}^d \setminus \bigcup_{i=0}^d C_i$ enclosed by the family, because *D* is included in the convex hull of the base points of *M*. The generalization of Berge's theorem [3] due to Ghouila-Houri [9] implies the following property of a convex cage (as a special case).

Proposition 3.1. Let $\mathscr{F} = \{C_0, \ldots, C_d\}$ be a *d*-critical family in \mathbb{R}^d , and let *F* be a closed set containing the hollow *D* enclosed by \mathscr{F} . If *M* is a convex cage carried by \mathscr{F} , then $F \cap M$ is also a cage.

When applying Proposition 3.1 with F = cl(Conv(D)), then the d+1 base points of the cage $F \cap M$ may depend on the choice of M. Theorem 2.1 implies that this is not the case, Proposition 3.1 is true in a stronger form, namely, there is a unique convex cage minimal by inclusion, the d-simplex cl(Conv(D)).

Theorem 3.2. Let $\mathscr{F} = \{C_0, \ldots, C_d\}$ be a *d*-critical family in \mathbb{R}^d . Then there exist d+1 base points, which belong to every convex cage *M* carried by \mathscr{F} .

If n < d then there is no hollow enclosed by the members of an *n*-critical family in \mathbb{R}^d . In particular, the two compact convex members of a 1-critical family do not enclose a hollow in \mathbb{R}^2 ; nevertheless, since they are disjoint, they can be strictly separated by a line. A result due to Klee [14, Theorem 1] extends this separation property in \mathbb{R}^d for any *n*-sets.⁶ Klee's separation theorem has an immediate corollary for *n*-critical families below; a simple proof (extending easily the induction proof of Lemma 1.1 given above) is due to Breen [4].

Theorem 3.3. (Breen [4]). For $1 \le n \le d$, let $\{C_0, C_1, \ldots, C_n\}$ be an *n*-critical family in \mathbb{R}^d , and let $a_i \in \bigcap_{h \ne i} C_h$, $0 \le i \le n$. Then in \mathbb{R}^d there are two affine subspaces, W of dimension n and V of dimension d - n (called a stabbing affine subspace), meeting in a single point p and such that

- (a) $V \cap C_i = \emptyset$ and $a_i \in W$, for every $0 \le i \le n$, and
- (b) the set $W \cap (\bigcup_{i=0}^{n} C_i)$ surrounds⁷ $\{p\}$ in W.

The special version of Theorems 2.1 and 3.2 for d = 2 was originally developed and applied by Jobson et al. [13, Lemma 1] in the study of an extremal problem involving forbidden planar convex hypergraphs. It is worth noting that the characterization of *d*-dimensional convex hypergraphs⁸ is not known for $d \ge 2$. For d = 1 the convex hypergraphs are called interval graphs; and as it is well known, their characterization was done by Lekkerkerker and Boland [18] in terms of forbidden obstructions, and by Gilmore and Hoffman [10] using the ordering and the separation property of the real line.

Having Theorem 3.3, one could try to generalize the Hollow Theorem (Theorem 2.1), that is, for an *n*-critical family $\{C_0, C_1, \ldots, C_n\}$ in \mathbb{R}^d , one might ask for some kind of 'geombinatorial' description of the set of all stabbing (d-n)-dimensional affine spaces V. At this point we do not even have a reasonable conjecture.

⁶the concept of an *n*-set is a variation of *n*-criticality used by Klee [14]

⁷ Q surrounds P in A if $A \setminus Q$ has a connected component which is bounded and contains P

⁸vertices are convex sets in \mathbb{R}^d , and d + 1 vertices form a hyperedge if and only if they have nonempty intersection

References

- M. Balaj, Intersection properties for some families of convex sets. Pure Math. Appl. 8 (1997)195–201.
- [2] H. Ben-El-Mechaiekh, Intersection theorems for closed convex sets and applications. Missouri J. Math. Sci. 27 (2015) 47–63.
- [3] C. Berge, Sur une propriété combinatoire des ensembles convexes. C. R. Acad. Sci. Paris 248 (1959) 2698–2699.
- [4] M. Breen, Starshaped unions and nonempty intersections of convex sets in ℝ^d. Proc. Amer. Math. Soc. 108 (1990) 817–820.
- [5] G.A. Dirac, On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25 (1961) 71–76.
- [6] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U. S. A. 38, (1952) 121– 126.
- [7] K. Fan, Some properties of convex sets related to fixed point theorems. Math. Ann. 266 (1984) 519–537.
- [8] T. Gallai, Kritische Graphen. I., II. Magyar Tud. Akad. Mat. Kutat Int. Kzl. 8 (1963) 165–192 ibid. 373–395.
- [9] A. Ghouila-Houri, Sur l'étude combinatoire des familles de convexes. C. R. Acad. Sci. Paris 252 (1961) 494–496.
- [10] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs. Canad. J. Math. 16 (1964) 539–548.
- [11] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresbericht der Deutschen Mathematiker-Vereinigung, 32 (1923) 175–176.
- [12] C. Horvath, Contractibility and generalized convexity. J. Math. Anal. Appl. 156 (1991) 341–357.
- [13] A. Jobson, A. Kézdy, J. Lehel, T. Pervenecki, and G. Tóth, Petruska's question on planar convex sets. arXiv: 1912.08080 [math.CO], Dec. 2019.
- [14] V. Klee, On certain intersection properties of convex sets. Canadian J. Math. 3 (1951) 272–275.
- [15] V. Klee, Maximum separation theorems for convex sets. Trans. Amer. Math. Soc. 134 (1968) 133–147.
- [16] B. Knaster, C. Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunksatses fr ndimensionale Simplexe, Fundamenta Mathematicae, 14 (1929) pp. 132–137.
- [17] M. Lassonde, Sur le principe KKM. C. R. Acad. Sci. Paris Sr. I Math. 310 (1990) 573–576.

- [18] C. G. Lekkerkerker and J. Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962/63) 45–64.
- [19] J. Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Mathematische Annalen, 83 (1921) 113–115. doi:10.1007/BF01464231
- [20] E. Sperner, Neuer Beweis f
 ür die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Semin. Hamburg. Univ., Bd. 6 (1928) pp. 265–272.