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Abstract

For n <d, a family % = {Cy,Cy,...,Cy} of compact convex sets in
R? is called an n-critical family provided any n members of F have a
non-empty intersection, but (\i_oC; = @. If n = d then a lemma on the
intersection of convex sets due to Klee implies that the d + 1 members of
the d-critical family enclose a ‘hollow’ in RY, a bounded connected com-
ponent of R¢ \ ULy Ci. Here we prove that the closure of the convex hull
of a hollow in R? is a d-simplex.!

Besides the Helly-theorem on intervals in R! a less notable property is
that two disjoint intervals can be separated by a point, in other words,
there is a ‘hollow’ (an interval) between them, a gap, which cannot be
bridged with two intervals having empty intersection. This separation or
gap property, trivial as it is, helps characterize the intersection patterns of
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convex sets in R! in terms of ‘interval graphs’. Actually, the gap property
implies the foremost necessary condition that an interval graph must be
chordal, namely, each cycle of length more than three has a chord (see
[51). Just as Helly’s theorem is established in R4, for every d > 1, the
separation or gap property has extensions to higher dimension.

A family of compact convex sets Cy,Cy,...,C, C R? is called here an n-
critical family if (;; C; # &, for every j=0,1,...,n, but (L, C; = @.
The denotation ‘critical’> becomes clear when in some finite family of
sets with empty intersection we consider a ‘smallest’ subset with the same
property, a ‘critical subfamily’.

Convexity and compactness in the definition of a critical family was
chosen here with combinatorial geometry applications in mind (see [13]).
However, in intersection or covering theorems of topology, when a fi-
nite or infinite family of sets appears, the compactness requirement of
the members might be relaxed (see [17]), and the condition N, C; = &
is usually replaced with its contrapositive that |Ji_,C; is a convex set,
which denies the hollow (see [14]). Meanwhile, the primary condition
that (;;Ci # 9, for every j = 0,1,...,n, is unchanged and displays a
topology variation of n-criticality in the different contexts.

The role of n-critical families (or its variations) in Euclidean spaces
was recognized by Klee [14, 15], Berge [3], and Ghouila-Houri [9] in
the study of intersection properties of convex sets. These properties are
closely related to fixed point theorems and minimax theorems as explored
by Fan [6]. As a result, the intersection theorems and their applications
were extended further in functional analysis and in topology by Balaj
[1], Ben-El-Mechaiekh [2], Fan [6, 7], Horvath [12] and others, by re-
placing the Euclidean space with general topological vector spaces. All
these investigations are originated in classical topology results such as the
Sperner’s lemma [20], and its generalizations starting with the Knaster,
Mazurkievicz, Kuratowski-theorem [16, 17].

Observe that by Helly’s theorem [11], there is no n-critical family in
R4 provided n > d. A fundamental lemma due to Klee [14] implies that
for n = d there is a bounded domain D C R4 \ Uflzo C; called here the
hollow enclosed by the d-critical family in R? (Corollary 1.3). Section 1
contains different proofs of Klee’s fundamental covering lemma display-
ing its many faceted connections to combinatorial topology. In Section 2
it is proved that the closure of the convex hull of a hollow in R? is a d-
simplex (Theorem 2.1). An immediate corollary of the hollow theorem,
related to an early result of Ghouila-Houri [9], is formulated in Section
3 (Theorem 3.2). The note concludes with a separation property of n-
critical families in R?, actually a corollary of a more general separation
result by Klee [14, Theorem 1], for the case n < d, when there is no hol-
low enclosed by the family (Theorem 3.3).

2The concept of criticality was introduced in graph theory by T. Gallai [8]



Given a set X C RY, the convex hull, the closure, and the boundary of X
is denoted by Conv(X), cl(X), and dX, respectively.

1 Klee’s lemma

A basic lemma discovered by Klee [14] and independently by Berge [3]
captures a fundamental intersection property of n-critical families. We in-
clude here three proofs using different techniques and displaying a many
faceted connections of the lemma to topology. The first purely geometry
proof is using the standard separation theorem of disjoint compact convex
sets (c.f. [15]). The second proof was outlined by Berge [3] and applies
a combinatorial topology result deduced from Sperner’s lemma [20]. The
last proof uses the KKM lemma from fixed-point theory due to Knaster,
Kuratowski, and Mazurkievicz [16].

Lemma 1.1. [Klee [14], Berge [3]]. Let Cy,Cy,...,C, C R? be compact

n
convex sets such that (\ C; # &, for every j=0,1,....n. If U,C; is
i=1
i#)
convex, then (i_yC; # 2.

Proof. The proof is induction on n. The case n = 0 is trivial; assume
that n > 1 and the claim is true for n convex sets. If L,C; = &, then
C,and A = ﬂ?;ol C; are disjoint compact convex sets, thus they can be
strictly separated with a hyperplane H such that HNA =HNC, = . Let
Ci=HNC,0<i<n—1.

n n—1

Forevery j =0,...,n—1, the condition N G;=C,N| N Ci | # 92
i=1 i=1
i#) i

n—1 n—1

combined with HNC, = @ imply that HN | N G; | = N C} # &. Be-
L Ll
% %

cause =) C/ = (HNC,) U (Ul'-’;ol HNC;) =HN (UL C) is convex, we

n—1

obtain by induction that | C/ = HN (N2 C;) = HNA # @, a contra-
i=0

diction. O

Second proof of Lemma 1.1. Let a; € (;4;C;, for j=0,1,...,n, and set
S = Conv({ay,...,an}) for the convex hull of these n+ 1 points. If S is
not a simplex, then they span an affine subspace of dimension n — 1 or
less, then by Helly’s theorem the claim ., C; # @ follows. We assume
now that S is an n-simplex. Since the facet S\ Jcs opposite a; is included
in C;j and ;L C; is convex, we have S C 1L C;.

We take a simplicial subdivision of S with arbitrary small mesh®. A

3 mesh = the maximum diameter of the simplices of the subdivision



Sperner coloring* of the vertices of the subdivision is defined next. For a
vertex v of the subdivision let the color of v be any index j € {0,1,...,n}
such that v € Cj_ \Cj (where C_1 = C,;). A color j exists for every
v € S, since otherwise, v € (i_ C;, and the claim follows. Observe, if j is
the color of v € Conv({ay,aj,...,a;}), then j € {io,i1,...,ix} follows
by the convexity of C;, and because v ¢ C;. Then by Sperner’s lemma,
there is an n-simplex whose vertices are multicolored with n+ 1 different
colors.

By repeating the procedure with simplicial sudivisions of § with mesh
€\, 0, there is a convergent subsequence of the multicolored subdividing
simplices approaching a point p € S. This limit point satisfies p € Cj_1,
forevery j=0,1,...,n, thus N, C; # & follows. O

The KKM lemma due to Knaster, Kuratowski, and Mazurkievicz [16]
is known as a remarkable intersection theorem for closed covers of a Eu-
clidean simplex. Extending the Sperner lemma [20] the KKM lemma was
the starting point of further generalizations to topological vector spaces
[2, 12, 17]; these variations have been applied in mathematical fixed-point
theory [7].

A set-valued map I of the points of an arbitrary set X C R into sets of
R? is called a KKM map on X if for every finite subset N C X, Conv(N) C
Uren IT'(x). Ben-El-Mechaiekh [2] proves a particular version of the KKM
theorem stated as follows.

Theorem 1.2. IfT is a KKM map on X C R such that, for every x € X,
['(x) is a non-empty closed convex subset of RY, then the family F =
{T'(x) }xex has the finite intersection property, that is the intersection of
the members of any finite subfamily of .F is nonempty. O

For finite sets X the claim in Theorem 1.2 simply becomes (N cx I'(x) #
. As observed by Ben-El-Mechaiekh [2], Klee’s fundamental intersec-
tion theorem (Lemma 1.1) follows from the finite version of Theorem 1.2.

Third proof of Lemma 1.1. Let aj € (;.;C;, for j=0,1,...,n. Define the
map I'(a;) — Ci_y, fori=0,1,...,n, (where C_; = C,). We verify that T
isa KKM map on A = {ag,ai,...,a,}; let N C A.

For N = A, because A C U C; and C = |JI C; is convex, we obtain
Conv(N) = Conv(A) C C = U,enT(a;). For N # A, let j be an index
such thata; € N,and a;_; ¢ N. Observe that N C C;_1, and since C;_; is
convex, we obtain Conv(N) C Cj—y =T'(a;) C U,enI(a;). By Theorem
1.2, Ngeal(a@i) = NiZo Ci # @ follows. O

Corollary 1.3. If {Cy,C\,...,Cy} is a d-critical family in RY, then R\

4 a vertex v; of the n-simplex (vo,-.-,vn) is colored with i, i = 0, 1,...., n, furthermore;

if v e Conv({vj,,vi,,-..,vi, }) then the color of v is any index from {ig, ij,..., i}



Uj-i:() C; has a bounded connected component D, that is every ray emanat-
ing from any point of D intersects some C;, 0 < i <d.

Proof. Letaj € (ix;C;, for j=0,1,...,d. If E C R? is the affine space
of dimension less than d, then the contradiction (., C; # & is obtained
by Helly’s theorem. Let S = Conv({ay,...,a,}) be the d-simplex; notice
that each face of S is contained in |J/_,C;. The compact convex sets
Cl{ =CNS,i=0,1,...,n, form a d-critical family, thus by Lemma 1.1
UL, C/ C S is not convex, which means that S does not cover %, C:.
Let p € S\ UL C;. Because dS C UL, C;, every ray emanating from p
intersects C;, for some 0 < j < d. O]

2 The Hollow theorem

Theorem 2.1. If # = {Cy,...,C;} is a d—critical family in RY, then
one of the connected components of RY \ Uflzo C; is a non-empty bounded
region D, and the closure of Conv(D) is a d-simplex.

Proof. The claim is true for d = 1; let d > 2 and assume that the claim is
true for d — 1. By Corollary 1.3, the hollow D enclosed by .% exists. Fur-
thermore, D is an open set, dD C dCyU...UdCy, and D is contained in
any d-simplex S with vertices in ﬂh# Cp, j=0,...,d. Since S is closed,
cl(Conv(D) C S.

For j=0,...,d, let p; € ,;Cp be a closest point of (;.;C to
C;. We claim that py,..., pg are unique points of dD. Assume that this
claim is true, and let S be the d-simplex with vertices py,...,ps. Be-
cause cl(Conv(D)) is convex and the vertices of S belong to dD, we have
S C cl(Conv(D)). On the other hand, we know cl(Conv(D))C S, thus
cl(Conv(D)) = S follows.

1. We show that the simplex S is unique. Suppose that the points
ay,ap € ﬂh;ﬁd Cy, and by, by € Cy are such that the minimum distance be-
tween (V;,.4Cp and Cg is m = |abi| = laxbs|.> Let the position vec-
tors of a; and b; be a; and by, respectively. By convexity, a = %(31 +
a3) € MzaCn and b = L (by +by) € Cy, hence (a—b)? > m?. Using
(a1 —by)? = (a3 —by)? = m? and setting y for the angle between a; — by
and a; — b, we obtain

2m*<2(a—b)> = L(aj—by+a;—bhy)?

—_

= 3[(a1—b1)*+ (a2 —b2)*] + (a1 —by)(az — b2)

= m?4m*cosy < 2m?.

> ab is the line segment between points a and b



This implies cosy = 1, that is a;b; || axby, hence either a;by = axb; or
(ay,az,by,by) is a parallelogram.

ai a

...... (08,
a* b] b* b2

Assume that a;b; and a»b, are distinct segments. If (aj,as,bs,by) is
not a rectangle, then set o = Zaxbrby < m/2. Let a* be the orthogonal
projection of a» on the line through by, b,, and let b* € bib> Na*b,. Then
b* € C4, and in the right triangle (a,a*,by) we have |axb*| < |aaba| = m,
a contradiction. Thus we obtain that (a;,a;,by,b) is a rectangle.

The open ball of radius m centered at a; is disjoint from C,, hence
the hyperplane through by, b, and perpendicular to a;b; is a support-
ing hyperplane to C;. For every j =0,...,d — 1, select a point ¢; €
MizjCr- Apply Radon’s theorem [19] on the (d +2)—element set R =
{a1,az,cq,...,cq4—1}. Let Jy UJ, = R be the Radon-partition, and let ¢ €
Conv(J;) N Conv(JSp). If ¢j ¢ Ji, then Conv(J;) C Cj, and if ¢; ¢ Jo,
then Conv(J2) C Cj; therefore, ¢ € Conv(J;) N Conv(J2) C Cj, for j =
0,...,d — 1. Thus we obtain that g € ﬂ;té C;, which implies g ¢ C,. Be-
cause Conv(J; \ {a1,a2}) C C; and q ¢ C,, points aj,a, are in distinct
partition classes, say a; € J;. Since a; # ap, we may assume that g # a;;
denote my the distance of g from C,. Clearly, m < my.

Because a1g C Conv(J;) and Conv(J; \ {a;}) C Cy, the line through
aj and ¢ intersects C; at some point ¢ € C;. Our argument proceeds on
the plane containing the triangle (aj,by,c). Let ¢’ and ¢’ be the points
on the line through ¢ and b such that gq’ L chb; and a;¢’ L ¢b| (see the
figures).

If ¢’ € cb; then by convexity, ¢’ € C,. This implies that mg < |¢q'| <
laic’| < |a1b1| = m < my, a contradiction (see the figure on the left). If
by € cq' then we have /byqa, = T — Zcqby > m— Zcqq' > 7/2 (see on
the right). Therefore, mo < |gb;| < |a1b1| = m < my, a contradiction.




We conclude that a; = ay, thus p, is uniquely determined as the clos-
est point in [,y Gy to C4. Similarly, each point p; € Uy Cp closest
to Cj, i =0,...,d — 1, is uniquely determined. Furthermore, because
NLoCi=2,S=(po,...,pa) is a d—simplex.

2. Next we show that p; € dH. Let b € dC,; be the closest point
in Cy to pg € NpzqCp- Fori=0,1,...,d —1,let a; € IC4 N (ﬂh;ﬁ,’ch).
We translate the point b to p;, and assume that the same translation takes
the points ay,...,a,—; into ay,...a), ,, respectively. Define B = dCyN
Conv({b,aq,...,a4—1}U{pa,ap,...a, ,}), and let B’ be the translation
of B sending b into p,. Observe that (.., Gy, has no point in the interior
of 0 = Conv(BUB').

aj Cd

Now we take a hyperplane ¢ strictly separating p; from B and suf-
ficiently close to p,. The intersection of C = Conv({py4,ao,...,ad4-1})
with ¢ is inside the interior of Q; let L = ¢NC. The convex sets C; =
C,NL,i=0,1,...,d—1, form a (d — 1)-critical family .% in the hyper-
plane £. By induction, the hollow enclosed by %’ in £ contains a point
weL\ (Uf;ol C,-). The simplex Conv({pg,ao,...,as—1}) contains the

hollow H enclosed by .% in R, which implies that w € H.

Because ¢ can be taken arbitrarily close to p,, the point w € H be-
comes arbitrarily close to p;. Thus we obtain p; € dH, and similarly, p; €
dH,0 <i<d-1. Therefore, cl(Conv(H))=Conv({po, p1,...,pa}). O

3 Conclusion

Given a d—critical family . = {Cy,...,C,;} in R?, a cage is defined as a
closed set containing d + 1 base points, a; € ﬂh#Ch, 0<i<d. A convex
cage M carried by .% contains the hollow D C R¢\ U,d:o C; enclosed by
the family, because D is included in the convex hull of the base points of
M. The generalization of Berge’s theorem [3] due to Ghouila-Houri [9]
implies the following property of a convex cage (as a special case).

Proposition 3.1. Let % = {Cy,...,C;} be a d—critical family in RY, and
let F be a closed set containing the hollow D enclosed by %. If M is a
convex cage carried by ¥, then F N\M is also a cage. O



When applying Proposition 3.1 with F = cl(Conv(D)), then the d + 1
base points of the cage F' N M may depend on the choice of M. Theorem
2.1 implies that this is not the case, Proposition 3.1 is true in a stronger
form, namely, there is a unique convex cage minimal by inclusion, the
d-simplex cl(Conv(D)).

Theorem 3.2. Let F = {Cy,...,Cy} be a d—critical family in RY. Then
there exist d+ 1 base points, which belong to every convex cage M carried
by Z. O

If n < d then there is no hollow enclosed by the members of an n-
critical family in R?. In particular, the two compact convex members
of a 1-critical family do not enclose a hollow in R?: nevertheless, since
they are disjoint, they can be strictly separated by a line. A result due to
Klee [14, Theorem 1] extends this separation property in R? for any n-
sets.® Klee’s separation theorem has an immediate corollary for n-critical
families below; a simple proof (extending easily the induction proof of
Lemma 1.1 given above) is due to Breen [4].

Theorem 3.3. (Breen [4]). For 1 <n <d, let {Cy,C},...,Cy} be an n-
critical family in RY, and let a; € ﬂh#iCh, 0<i<n. TheninR? there are
two affine subspaces, W of dimension n and V of dimension d — n (called
a stabbing affine subspace), meeting in a single point p and such that

(@ VNCi=oanda; €W, for every 0 <i <n, and
(b) the set W\ (UL C;) surrounds’ {p} in W. O

The special version of Theorems 2.1 and 3.2 for d = 2 was originally
developed and applied by Jobson et al. [13, Lemma 1] in the study of
an extremal problem involving forbidden planar convex hypergraphs. It
is worth noting that the characterization of d-dimensional convex hyper-
graphs® is not known for d > 2. For d = 1 the convex hypergraphs are
called interval graphs; and as it is well known, their characterization was
done by Lekkerkerker and Boland [18] in terms of forbidden obstructions,
and by Gilmore and Hoffman [10] using the ordering and the separation
property of the real line.

Having Theorem 3.3, one could try to generalize the Hollow Theorem
(Theorem 2.1), that is, for an n-critical family {Co,C1,...,C,} in R?, one
might ask for some kind of ‘geombinatorial’ description of the set of all
stabbing (d — n)-dimensional affine spaces V. At this point we do not
even have a reasonable conjecture.

Sthe concept of an n-set is a variation of n-criticality used by Klee [14]

7 Q surrounds P in A if A \ O has a connected component which is bounded and contains P

8vertices are convex sets in R?, and d + 1 vertices form a hyperedge if and only if they
have nonempty intersection
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