
TOWARDS THE ALBERTSON CONJECTURE

JÁNOS BARÁT AND GÉZA TÓTH

Abstract. Albertson conjectured that if a graph G has chromatic number r

then its crossing number is at least as much as the crossing number of Kr.
Albertson, Cranston, and Fox verified the conjecture for r ≤ 12. In this note
we prove it for r ≤ 16.

Dedicated to the memory of Michael O. Albertson.

1. Introduction

Graphs in this paper are without loops and multiple edges. Every planar graph
is four-colorable by the Four Color Theorem [2, 23]. Efforts to solve the Four Color
Problem had a great effect on the development of graph theory, and it is one of the
most important theorems of the field.

The crossing number cr(G) of a graph G is the minimum number of edge cross-
ings in a drawing of G in the plane. It is a natural relaxation of planarity, see [24]
for a survey. The chromatic number χ(G) of a graph G is the minimum number
of colors in a proper coloring of G. The Four Color Theorem states if cr(G) = 0
then χ(G) ≤ 4. Oporowski and Zhao [18] proved that every graph with crossing
number at most two is 5-colorable. Albertson et al. [5] showed that if cr(G) ≤ 6,

then χ(G) ≤ 6. It was observed by Schaefer that if cr(G) = k then χ(G) = O( 4
√

k)
and this bound cannot be improved asymptotically [4].

It is well-known that graphs with chromatic number r do not necessarily contain
Kr as a subgraph, they can have clique number 2 [26]. The Hajós conjecture
proposed that graphs with chromatic number r contain a subdivision of Kr. This
conjecture, whose origin is unclear but attributed to Hajós, turned out to be false
for r ≥ 7. Moreover, it was shown by Erdős and Fajtlowicz [9] that almost all
graphs are counterexamples. Albertson conjectured the following.

Conjecture 1. If χ(G) = r, then cr(G) ≥ cr(Kr).

This statement is weaker than Hajós’ conjecture, since if G contains a subdivision
of Kr then cr(G) ≥ cr(Kr).

For r = 5, Albertson’s conjecture is equivalent to the Four Color Theorem.
Oporowski and Zhao [18] verified it for r = 6, Albertson, Cranston, and Fox [4]
proved it for r ≤ 12. In this note we take one more little step.

Theorem 2. For r ≤ 16, if χ(G) = r, then cr(G) ≥ cr(Kr).
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In their proof, Albertson, Cranston, and Fox combined lower bounds for the
number of edges of r-critical graphs, and lower bounds on the crossing number of
graphs with given number of vertices and edges. Our proof is very similar, but we
use better lower bounds in both cases.

Albertson, Cranston, and Fox proved that any minimal counterexample to Al-
bertson’s conjecture should have less than 4r vertices. We slightly improve this
result as follows.

Lemma 3. If G is an r-critical graph with n ≥ 3.57r vertices, then cr(G) ≥
cr(Kr).

In Section 2 we review lower bounds for the number of edges of r-critical graphs,
in Section 3 we discuss lower bounds on the crossing number, and in Section 4 we
combine these bounds to obtain the proof of Theorem 2. In Section 5 we prove
Lemma 3.

The letter n always denotes the number of vertices of G. In notation and termi-
nology we follow Bondy and Murty [6]. In particular, the join of two disjoint graphs
G and H arises by adding all edges between vertices of G and H. It is denoted by
G ∨ H. A vertex v is called simplicial if it has degree n − 1. If a graph G contains
a subdivision of H, then we also say that G contains a topological H. A vertex v is
adjacent to a vertex set X means that each vertex of X is adjacent to v.

2. Color-critical graphs

Around 1950, Dirac introduced the concept of color criticality in order to simplify
graph coloring theory, and it has since led to many beautiful theorems. A graph
G is r-critical if χ(G) = r but all proper subgraphs of G have chromatic number
less than r. In what follows, let G denote an r-critical graph with n vertices and
m edges.

Since G is r-critical, every vertex has degree at least r − 1 and therefore,
2m ≥ (r − 1)n. Dirac [7] proved that for r ≥ 3, if G is not complete, then
2m ≥ (r − 1)n + (r − 3). For r ≥ 4, Dirac [8] gave a characterization of r-critical
graphs with excess r − 3. For any fixed r ≥ 3 let ∆r be the family of graphs G
whose vertex set consists of three non-empty, pairwise disjoint sets A,B1, B2 with
|B1| + |B2| = |A| + 1 = r − 1 and two additional vertices a and b such that A and
B1∪B2 both span cliques in G, they are not connected by any edge, a is connected
to A∪B1 and b is connected to A∪B2. See Figure 1. Graphs in ∆r are called Hajós
graphs of order 2r − 1. Observe that that these graphs have chromatic number r
and they contain a topological Kr, hence they satisfy Hajós’ conjecture.

Gallai [10] proved that r-critical graphs with at most 2r − 2 vertices are the
join of two smaller graphs, i.e. their complement is disconnected. Based on this
observation, he proved that non-complete r-critical graphs on at most 2r−2 vertices
have much larger excess than in Dirac’s result.

Lemma 4. [10] Let r, p be integers satisfying r ≥ 4 and 2 ≤ p ≤ r − 1. If G is an

r-critical graph with n = r + p vertices, then 2m ≥ (r − 1)n + p(r − p) − 2, where

equality holds if and only if G is the join of Kr−p−1 and G ∈ ∆p+1.

Since every G ∈ ∆p+1 contains a topological Kp+1, the join of Kr−p−1 and G
contains a topological Kr. This yields a slight improvement for our purposes.
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Figure 1. The family ∆r

Corollary 5. Let r, p be integers satisfying r ≥ 4 and 2 ≤ p ≤ r − 1. If G is an

r-critical graph with n = r + p vertices, and G does not contain a topological Kr,

then 2m ≥ (r − 1)n + p(r − p) − 1.

We call the bound given by Corollary 5 the Gallai bound.
For r ≥ 3, let Er denote the family of graphs G, whose vertex set consists of four

non-empty pairwise disjoint sets A1, A2, B1, B2, where |B1| + |B2| = |A1| + |A2| =
r − 1 and |A2| + |B2| ≤ r − 1, and one additional vertex c such that A = A1 ∪ A2

and B = B1 ∪B2 are cliques in G, NG(c) = A1 ∪B1 and a vertex a ∈ A is adjacent
to a vertex b ∈ B if and only if a ∈ A2 and b ∈ B2.

Clearly Er ⊃ ∆r, and every graph G ∈ Er is r-critical with 2r − 1 vertices.
Kostochka and Stiebitz [15] improved the bound of Dirac as follows.

Lemma 6. [15] Let r ≥ 4 and G be an r-critical graph. If G is neither Kr nor a

member of Er, then 2m ≥ (r − 1)n + (2r − 6).

It is not difficult to prove that any member of Er contains a topological Kr.
Indeed, A and B both span a complete graph on r − 1 vertices. We only have
to show that vertex c is connected to A2 or B2 by vertex-disjoint paths. To see
this, we observe that |A2| or |B2| is the smallest of {|A1|, |A2|, |B1|, |B2|}. Indeed,
if |B1| was the smallest, then |A2| > |B1| and |B2| > |B1| implies |A2| + |B2| >
|B1|+ |B2| = r − 1 contradicting our assumption. We may assume that |A2| is the
smallest. Now c is adjacent to A1, and there is a matching of size |A2| between
B1 and B2 and between B2 and A2, respectively. That is, we can find a set S of
disjoint paths from c to A2. In this way A ∪ c ∪ S is a topological r-clique.

Corollary 7. Let r ≥ 4 and G be an r-critical graph. If G does not contain a

topological Kr then 2m ≥ (r − 1)n + (2r − 6).
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Figure 2. The family Er

Let us call this the Kostochka, Stiebitz bound, or KS-bound for short.
In what follows, we obtain a complete characterization of r-critical graphs on

r + 3 or r + 4 vertices.

Lemma 8. For r ≥ 8, there are precisely two r-critical graphs on r + 3 vertices.

They can be constructed from two 4-critical graphs on seven vertices by adding

simplicial vertices.

Figure 3. The two 4-critical graphs on seven vertices

Proof. The proof is by induction on r. For the base case r = 8, there are precisely
two 8-critical graphs on 11 vertices, see Royle’s complete search [21].

Let G be an r-critical graph with r ≥ 9 and n = r + 3 ≥ 12. We know that the
minimum degree is at least r − 1 = n − 4. If G has a simplicial vertex v, then we
use induction. So we may assume that every vertex in G, the complement of G has
degree 1, 2 or 3. By Gallai’s theorem, G is disconnected. Observe the following:
if there are at least four independent edges in G, then χ(G) ≤ n − 4 = r − 1, a
contradiction. That is, there are at most three independent edges in G. Therefore,
G has two or three components. If there is a triangle in the complement, then we
can save two colors. If there were two triangles, then χ(G) ≤ n − 4 = r − 1, a
contradiction.

Assume that there are three components in G. Since each degree is at least one,
there are at least three independent edges. Therefore, there is no triangle in G and



5

no path with three edges. That is, the complement consists of three stars. Since
the degree is at most three and there are at least 12 vertices, there is only one
possibility: G = K1,3 ∪ K1,3 ∪ K1,3, see Figure 4.

Figure 4. The complement and a removable edge

We have to check whether this concrete graph is indeed critical. We observe,
that the edge connecting two centers of these stars is not critical, a contradiction.

In the remaining case, G has two components H1 and H2. Since there are at
most three independent edges, there is one in H1 and two in H2. It implies that
H1 has at most four vertices. Therefore, H2 has at least eight vertices. Consider a
spanning tree T of H2 and remove two adjacent vertices of T , one of them being
a leaf. It is easy to see that the remainder of T contains a path with three edges.
Therefore, in total we found three independent edges of H2, a contradiction. �

We need the following result of Gallai.

Theorem 9. [10] Let r ≥ 3 and n < 5
3r. Then every r-critical, n-vertex graph

contains at least
⌈

3
2

(

5
3r − n

)⌉

simplicial vertices.

Lemma 10. For r ≥ 6, there are precisely twenty-two r-critical graphs on r+4 ver-

tices. They can be constructed by adding simplicial vertices to one of the following:

a 3-critical graph on seven vertices,

four 4-critical graphs on eight vertices,

sixteen 5-critical graphs on nine vertices, or

a 6-critical graphs on ten vertices.

Proof. For the base of induction, we use Royle’s table again, see [21]. The full
computer search shows that there are precisely twenty-two 6-critical graphs on ten
vertices. For the induction step, we use Lemma 9 and see that there are at least
r−6 simplicial vertices. Since r ≥ 7, there is always a simplicial vertex. We remove
it and use the induction hypothesis to finish the proof. �

There is an explicit list of twenty-one 5-critical graphs on nine vertices [21]. We
have checked, partly manually, partly using Mader’s extremal result [16], that each
of those graphs contains a topological K5. Also the above mentioned 6-critical
graph on ten vertices contains a topological K6. These results imply the following

Corollary 11. Any r-critical graph on at most r + 4 vertices satisfy the Hajós

conjecture.



6 J. BARÁT AND G. TÓTH

We conjecture that the following slightly more general statement can be proved
with similar methods.

Conjecture 12. Let G be an r-critical graph on r+o(r) vertices. Then G satisfies

the Hajós conjecture.

3. The crossing number

It follows from Euler’s formula that a planar graph can have at most 3n − 6
edges. Suppose that G has m ≥ 3n − 6 edges. By deleting crossing edges one by
one, it follows by induction that for n ≥ 3,

(1) cr(G) ≥ m − 3(n − 2)

Pach et. al. [19] generalized it and proved the following lower bounds. Each one
holds for any graph G with n ≥ 3 vertices and m edges.

(2) cr(G) ≥ 7m/3 − 25(n − 2)/3

(3) cr(G) ≥ 3m − 35(n − 2)/3

(4) cr(G) ≥ 4m − 103(n − 2)/6

(5) cr(G) ≥ 5m − 25(n − 2)

Inequality (1) is the best for m ≤ 4(n − 1), (2) is the best for 4(n − 2) ≤
m ≤ 5(n − 2), (3) is the best for 5(n − 2) ≤ m ≤ 5.5(n − 2), (4) is the best for
5.5(n − 2) ≤ m ≤ 47(n − 2)/6, and (5) is the best for 47(n − 2)/6 ≤ m.

It was also shown in [19] that (1) can not be improved in the range m ≤ 4(n−1),
and (2) can not be improved in the range 4(n − 2) ≤ m ≤ 5(n − 2), apart from
an additive constant. The other inequalities are conjectured to be far from opti-
mal. Using the methods in [19] one can obtain an infinite family of such linear
inequalities, of the form am − b(n − 2).

The most important inequality for crossing numbers is undoubtedly the Crossing

Lemma, first proved by Ajtai, Chvátal, Newborn, Szemerédi [1], and independently
by Leighton [13]. If G has n vertices and m ≥ 4n edges, then

(6) cr(G) ≥ 1

64

m3

n2
.

The original constant was much larger, the constant 1
64 comes from the well-known

probabilistic proof of Chazelle, Sharir, and Welzl [3]. The basic idea is to take a
random spanned subgraph and apply inequality (1) for that.

The order of magnitude of this bound can not be improved, see [19], the best
known constant is obtained in [19]. If G has n vertices and m ≥ 103

16 n edges, then

(7) cr(G) ≥ 1

31.1

m3

n2
.

The proof is very similar to the proof of (6), the main difference is that instead of
(1), inequality (4) is applied for the random subgraph. The proof of the following
technical lemma is based on the same idea.
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Lemma 13. Suppose that n ≥ 10, and 0 < p ≤ 1. Let

cr(n,m, p) =
4m

p2
− 103n

6p3
+

103

3p4
− 5n2(1 − p)n−2

p4
.

Then for any graph G with n vertices and m edges

cr(G) ≥ cr(n,m, p).

Proof. Observe that inequality (4) does not hold for graphs with at most two ver-
tices. For any graph G, let

cr′(G) =















cr(G) if n ≥ 3
4 if n = 2
18 if n = 1
35 if n = 0

It is easy to see that for any graph G

(8) cr′(G) ≥ 4m − 103

6
(n − 2).

Let G be a graph with n vertices and m edges. Consider a drawing of G with
cr(G) crossings. Choose each vertex of G independently with probability p, and
let G′ be a subgraph of G spanned by the selected vertices. Consider the drawing
of G′ inherited from the drawing of G, that is, each edge of G′ is drawn exactly as
it is drawn in G. Let n′ and m′ be the number of vertices and edges of G′, and let
x be the number of crossings in the present drawing of G′. Using that E(n′) = pn,
E(m′) = p2m, E(x) = p4cr(G), and the linearity of expectations,

E(x) ≥ E(cr(G′)) ≥ E(cr′(G′)) − 4P (n′ = 2) − 18P (n′ = 1) − 35P (n′ = 0) ≥

≥ 4p2m − 103

6
pn +

103

3
− 4

(

n

2

)

p2(1 − p)n−2 − 18np(1 − p)n−1 − 35(1 − p)n ≥

≥ 4p2m − 103

6
pn +

103

3
− 5n2(1 − p)n−2.

Dividing by p4 we obtain the statement of the Lemma. �

Note that in our applications p will be at least 1/2, n will be at least 13, therefore,

the last term in the inequality, 5n2(1−p)n−2

p4 , will be negligible.

We also need some bounds on the crossing number of the complete graph,
cr(Kr). It is not hard to see that

(9) cr(Kr) ≤ Z(r) =
1

4

⌊r

2

⌋

⌊

r − 1

2

⌋⌊

r − 2

2

⌋⌊

r − 3

2

⌋

,

see e. g. [22]. Guy conjectured [11] that cr(Kr) = Z(r). This conjecture has been
verified for r ≤ 12 but still open for r > 12. The best known lower bound is due to
de Klerk et. al. [14]: cr(Kr) ≥ 0.86Z(r).
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4. Proof of Theorem 2

Suppose that G is an r-critical graph. If G contains a topological Kr, then clearly
cr(G) ≥ cr(Kr). Suppose in the sequel that G does not contain a topological Kr.

Therefore, we can apply the Kostochka, Stiebitz, and the Gallai bounds on the
number of edges. Then we use Lemma 13 to get the desired lower bound on the
crossing number. Albertson et. al. [4] used the same approach, but they used a
weaker version of the Kostochka, Stiebitz, and the Gallai bounds, and instead of
Lemma 13 they applied the weaker inequality (4). In the next table, we include the
results of our calculations. For comparison, we also included the result Albertson
et al. might have had using (4). In the Appendix we present our simple Maple
program performing all calculations.

1. Let r = 13. By (9) we have cr(K13) ≤ 225.

n e bound (4) p ⌈cr(n, m, p)⌉

18 128 238 0.719 288
19 135 249 0.732 296
20 141 255 0.751 298
21 146 258 0.774 294

If n ≥ 22, then the KS-bound combined with (4) gives the desired result.
2m ≥ 12n + 20 ⇒ cr(G) ≥ 4(6n + 10) − 103/6(n − 2) ≥ 224.67, if n ≥ 22.

2. Let r = 14. By (9) we have cr(K14) ≤ 315.

n e bound (4) p ⌈cr(n, m, p)⌉

19 146 293 0.659 388
20 154 307 0.670 402
21 161 318 0.684 407
22 167 325 0.702 406
23 172 328 0.723 398
24 176 327 0.747 384
25 179 322 0.775 366
26 181 312 0.807 344

If n ≥ 27, then the KS-bound combined with (4) gives the desired result.
2m ≥ 13n + 22 ⇒ cr(G) ≥ 4(6.5n + 11) − 103/6(n − 2) ≥ 316, if n ≥ 27.

3. Let r = 15. By (9) we have cr(K15) ≤ 441.

n e bound (4) p ⌈cr(n, m, p)⌉

20 165 351 0.610 510
21 174 370 0.617 531
22 182 385 0.623 542
23 189 396 0.642 545
24 195 403 0.659 539
25 200 406 0.678 526
26 204 404 0.700 508
27 207 399 0.725 484

Suppose now that G is 15-critical and n ≥ 28. By the KS-bound we have
m ≥ 7n + 12. Apply Lemma 13 with p = 0.764 and a straightforward calculation
gives cr(G) ≥ cr(n,m, 0.764) ≥ 441.
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4. Let r = 16. By (9) we have cr(K16) ≤ 588.

n e bound (5) p ⌈cr(n, m, p)⌉

21 185 450 0.567 657
22 195 475 0.573 687
23 204 495 0.581 706
24 212 510 0.592 714
25 219 520 0.605 712
26 225 525 0.621 701
27 230 525 0.639 683
28 234 520 0.659 658
29 237 510 0.681 628
30 239 495 0.706 593
31 246 505 0.713 601

Suppose now that G is 16-critical and n ≥ 32. By the KS-bound we have
m ≥ 7.5n + 13. Apply Lemma 13 with p = 0.72 and again a straightforward
calculation gives cr(G) ≥ cr(n,m, 0.72) ≥ 588.

This concludes the proof of Theorem 2.

Remark.

For r ≥ 17 we could not completely verify Albertson’s conjecture. The next
table contains our calculations for r = 17. There are three cases, n = 32, 33, 34, for
which our approach is not sufficient. By (9) we have cr(K17) ≤ 784.

n e bound from p bound using
equation 5 cr(n, e, p)

22 206 530 0.530 832
23 217 560 0.534 874
24 227 585 0.541 902
25 236 605 0.550 917
26 244 620 0.560 920
27 251 630 0.573 913
28 257 635 0.588 897
29 262 635 0.604 872
30 266 630 0.622 840
31 269 620 0.643 802

32 271 605 0.665 759
33 278 615 0.672 765
34 286 630 0.677 779

Lemma 14. Let G be a 17-critical graph on n vertices. If n ≥ 35, then cr(G) ≥
784 ≥ cr(K17).

Proof. Let p = 0.681. Then cr(G) ≥ cr(n,m, 0.681) ≥ 14.64n+280.38. Therefore,
if n ≥ 784−280.38

14.64 ≥ 34.4, then we are done. (Without the probabilistic argument,
the same result holds with n ≥ 44.) �

Lemma 15. Let G be a 17-critical graph on 32 vertices. Then cr(G) ≥ cr(K17).

Proof. Gallai [10] proved that any r-critical graph on at most 2r − 2 vertices is a
join of two smaller critical graphs. This is a structural version of the Gallai bound.
In our case, r = 17, and n = 2r − 2 = 32. Assume that G = G1 ∨ G2, where G1 is
r1-critical on n1 vertices, G2 is r2-critical on n2 vertices, where 17 = r1 + r2 and
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32 = n1 + n2. The sum of the degrees of G can be estimated as the sum of the
degrees of the vertices in Gi, for i = 1, 2, plus twice the number of edges between
G1 and G2: 2m ≥ (r1 − 1)n1 + (r2 − 1)n2 + 2(r − 3) + 2n1n2.

How much do we gain with this calculation compared to the direct application
of the Gallai bound on G? That is seen after a simple subtraction:
(r1−1)n1+(r2−1)n2+2(r−3)+2n1n2−(r−1)n−2(r−3) = (n1−r1)n2+(n2−r2)n1.
This value is minimal if n2 = r2 = 1. In that case, we gain n1 − r1 = 15. That is,
in our calculation we can add ⌈15/2⌉ edges, after which cr(G) ≥ 834 arises. �

It is clear that our improvement on Gallai’s result relies on the fact that Kos-
tochka and Stiebitz improved Dirac’s result.

5. Proof of Lemma 3

Suppose that r ≥ 17 and G is an r-critical graph with n vertices and m edges.
If n ≥ 4r then the statement holds by [4]. Suppose that 3.57r ≤ n ≤ 4r. In order
to estimate the crossing number of G, instead of the probabilistic argument in the
proof of Lemma 13, we apply inequality (4) for each spanned subgraph of G with
exactly 52 vertices. Let k =

(

n
52

)

and let G1, G2, . . . , Gk be the spanned subgraphs
of G with 52 vertices. Suppose that Gi has mi edges. Then for any i, by (4) we
have

cr(Gi) ≥ 4mi −
103

6
· 50,

consequently,

cr(G) ≥ 1
(

n−4
48

)

k
∑

i=1

(

4mi −
103

6
· 50

)

=
4m

(

n−4
48

)

(

n − 2

50

)

− 50
(

n−4
48

)

103

6

(

n

52

)

=

=
4(n − 2)(n − 3)m

50 · 49
− 103

6

n(n − 1)(n − 2)(n − 3)

52 · 51 · 49
=

≥ 2(n − 2)(n − 3)n(r − 1)

50 · 49
− 103

6

n(n − 1)(n − 2)(n − 3)

52 · 51 · 49
=

=
n(n − 2)(n − 3)

49

(

r − 1

25
− 103(n − 1)

6 · 52 · 51

)

since we counted each possible crossing at most
(

n−4
48

)

times, and each edge of G

exactly
(

n−2
50

)

times.
Finally, some calculation shows that it is greater than

1

64
r(r − 1)(r − 2)(r − 3) > cr(Kr)

which proves the lemma. 2

Remarks

1. As we have already mentioned, see (7), the best known constant in the
Crossing Lemma 1/31.1 is obtained in [19]. Montaron [17] managed to improve it
slightly for dense graphs, that is, in the case when m = O(n2). His calculations are
similar to the proof of Lemmas 3 and 13.

2. Our attack of the Albertson conjecture is based on the following philosophy.
We calculate a lower bound for the number of edges of an r-critical n-vertex graph
G. Then we substitute this into the lower bound given by Lemma 13. Finally, we
compare the result and the Zarankiewicz number Z(r). For large r, this method
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is not sufficient, but it gives the right order of magnitude, and the constants are
roughly within a factor of 4.

Let G be an r-critical graph with n vertices, where r ≤ n ≤ 3.57r. Then
2m ≥ (r − 1)n. We can apply (7):

cr(G) ≥ 1

31.1

((r − 1)n/2)3

n2
=

(r − 1)3n

31.1 · 8 ≥ 1

250
r(r − 1)3 ≥ Z(r)

4
.

3. Let G = G(n, p) be a random graph with n vertices and edge probability
p = p(n). It is known (see [12]) that there is a constant C0 > 0 such that if
np > C0 then asymptotically almost surely we have

χ(G) <
np

log np
.

Therefore, asymptotically almost surely

cr(Kχ(G)) ≤ Z(χ(G)) <
n4p4

64 log4 np
.

On the other hand, by [20], if np > 20 then almost surely

cr(G) ≥ n4p2

20000
.

Consequently, almost surely we have cr(G) > cr(Kχ(G)), that is, roughly speaking,
unlike in the case of the Hajós conjecture, a random graph almost surely satisfies
the statement of the Albertson conjecture.

4. If we do not believe in Albertson’s conjecture, we have to look for a coun-
terexample in the range n ≤ 3.57r. Any candidate must also be a counterexample
for the Hajós Conjecture. It is tempting to look at Catlin’s graphs.

Let Ck
5 denote the graph arising from C5 by repeating each vertex k times. That

is, each vertex of C5 is blown up to a complete graph on k vertices and any edge of
C5 is blown up to a complete bipartite graph Kk,k.

Lemma 16. Catlin’s graphs satisfy the Albertson conjecture.

Proof. It is known that χ(Ck
5 ) = ⌈ 5

2k⌉. To draw Ck
5 , there must be two copies of

K2k, a Kk and three copies of Kk,k drawn. Therefore

cr(Ck
5 ) ≥ 2Z(2k) + Z(k) + 3cr(Kk,k) ∼ 2

1

4
k4 +

1

4

(

k

2

)4

+ 3

(

k

2

)4

> 0.70k4.

On the other hand

(10) cr(Kχ(Ck

5
)) ∼ cr(K 5

2
k) ≤ 1

4

(

5

4
k

)4

< 0.62k4

which proves the claim. �
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[19] J. Pach, R. Radoičić, G. Tardos, G. Tóth, Improving the crossing lemma by finding more

crossings in sparse graphs, Discrete Comput. Geom. 36 (2006), 527–552.
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Appendix

start:=proc(r,n)

local p,m,eredm,f,g,h,cr;

if (n<=2*r-2) then

p:=n-r;

m:=ceil(((r-1)*n+p*(r-p)-1)/2);

else

m:=ceil(((r-1)*n+2*(r-3))/2);

fi;
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g:= ceil(5*m-25*(n-2));

print(m,g);

f:= 4*m*x^2-(103/6)*n*x^3+(103/3)*x^4;

eredm:=[solve((diff(f,x)/x)=0, x)];

print(evalf(eredm));

cr := min(eredm[1], eredm[2]);

print(evalf(1/cr));

h:= f-(5*n^2*(1-1/x)^(n-2))/(1/x)^4;

evalf((subs(x=cr, h)));

end:
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