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Abstract

We show that every graph G with maximum degree three has a straight-line drawing in the plane
using edges of at most five different slopes. Moreover, if every connected component of G has at least
one vertex of degree less than three, then four directions suffice.

1 Introduction

A planar layout of a graph G is called a straight-line drawing if the vertices of G are represented by distinct
points in the plane and every edge is represented by a straight-line segment connecting the corresponding
pair of points and not passing through any other point representing a vertex. If it leads to no confusion,
in notation and terminology we make no distinction between a vertex and the corresponding point and
between an edge and the corresponding segment. The slope of an edge of the layout is the slope of
the segment representing it. Layouts with few slopes and few bends have been extensively studied in
“graph drawing” [2]. In particular, Ungar proved that every three-connected cubic planar graph (i.e.,
every vertex has degree three) can be drawn using only vertical and horizontal straight-line edges and
altogether at most three bends on the outer-face [11].

Wade and Chu [12] introduced the following graph parameter: The slope number of a graph G is
the smallest number s with the property that G has a straight-line drawing with edges of at most s
distinct slopes and with no bends. Obviously, if G has a vertex of degree d, then its slope number is at
least dd/2e, because, according to the above definitions, in a proper drawing two edges are not allowed
to partially overlap. The question arises whether the slope number can be bounded from above by any
function of the maximum degree d (see [4], [3] [5]). Barát, Matoušek, and Wood [1] and, independently,
Pach and Pálvölgyi [10] proved that the answer is no for d ≥ 5. Trivially, every graph of maximum
degree two has slope number at most three. What happens if d = 3 or 4?

The aim of this note is to establish the following theorem.
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Theorem 1. Every graph of maximum degree at most three has slope number at most five.

Our terminology is somewhat unorthodox: by the slope of a line `, we mean the angle α modulo π
such that a counterclockwise rotation through α takes the x-axis to a position parallel to `. The slope of
an edge (segment) is the slope of the line containing it. In particular, the slopes of the lines y = x and
y = −x are π/4 and −π/4, and they are called Northeast (or Southwest) and Northwest (or Southeast)
lines, respectively.

For any two points p1 = (x1, y1), p2 = (x2, y2) ∈ R2, we say that p2 is to the North (or to the South)
of p1 if x2 = x1 and y2 > y1 (or y2 < y1). Analogously, we say that p2 is to the Northeast (to the
Northwest) of p1 if y2 > y1 and p1p2 is a Northeast (Northwest) line. Directions are often abbreviated
by their first letters: N, NE, E, SE, etc. These four directions are referred to as basic. That is, a line `
is said to be of one of the four basic directions if ` is parallel to one of the axes or to one of the NE and
NW lines y = x and y = −x.

The main tool of our proof is the following result of independent interest.

Theorem 2. Let G be a connected graph that is not a cycle and whose every vertex has degree at most
three. Suppose that G has at least one vertex of degree less than three, and denote by v1, ..., vm the
vertices of degree at most two (m ≥ 1).

Then, for any sequence x1, x2, . . ., xm of real numbers, linearly independent over the rationals, G
has a straight-line drawing with the following properties:
(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);
(2) The slope of every edge is 0, π/2, π/4, or −π/4.
(3) No vertex is to the North of any vertex of degree two.
(4) No vertex is either to the North or to the Northwest of any vertex of degree one.

It was shown by Dujmović at al. [4] that every planar, cubic (3-regular), 3-connected graph has a
planar drawing such that every edge has slope π/4, π/2, or 3π/4, except for three edges on the outer
face.

Eppstein [8], Duncan et al. [6], and Barát et al. [1] studied another parameter, the geometric thickness
of a graph, which is closely related to the slope number.

Max Engelstein [7], a student from Stuyvesant High School, New York has shown that every graph
of maximum degree three that has a Hamiltonian cycle can be drawn with edges of at most five different
slopes.

2 Embedding cycles

Let C be a straight-line drawing of a cycle in the plane. A vertex v of C is said to be a turning point if
the slopes of the two edges meeting at v are not the same.

We start with two simple auxiliary statements.

Lemma 2.1. Let C be a straight-line drawing of a cycle such that the slope of every edge is 0, π/4, or
−π/4. Then the x-coordinates of the vertices of C are not independent over the rational numbers.
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Moreover, there is a vanishing linear combination of the x-coordinates of the vertices, with as many
nonzero (rational) coefficients as many turning points C has.

Proof. Let v1, v2, . . . , vn denote the vertices of C in cyclic order (vn+1 = v1). Let x(vi) and y(vi) be
the coordinates of vi. For any i (1 ≤ i ≤ n), we have y(vi+1) − y(vi) = λi (x(vi+1) − x(vi)) , where
λi = 0, 1, or −1, depending on the slope of the edge vivi+1. Adding up these equations for all i, the
left-hand sides add up to zero, while the sum of the right-hand sides is a linear combination of the
numbers x(v1), x(v2), . . . , x(vn) with integer coefficients of absolute value at most two.

Thus, we are done with the first statement of the lemma, unless all of these coefficients are zero.
Obviously, this could happen if and only if λ1 = λ2 = . . . = λn, which is impossible, because then all
points of C would be collinear, contradicting our assumption that in a proper straight-line drawing no
edge is allowed to pass through any vertex other than its endpoints.

To prove the second statement, it is sufficient to notice that the coefficient of x(vi) vanishes if and
only if vi is not a turning point. 2

Lemma 2.1 shows that Theorem 2 does not hold if G is a cycle. Nevertheless, according to the next
claim, cycles satisfy a very similar condition. Observe, that the main difference is that here we have an
exceptional vertex, denoted by v0.

Lemma 2.2. Let C be a cycle with vertices v0, v1, . . . , vm, in this cyclic order.
Then, for any real numbers x1, x2, . . . , xm, linearly independent over the rationals, C has a straight-

line drawing with the following properties:
(1) Vertex vi is mapped into a point with x-coordinate x(vi) = xi (1 ≤ i ≤ m);
(2) The slope of every edge is 0, π/4, or −π/4.
(3) No vertex is to the North of any other vertex.
(4) No vertex has a larger y-coordinate than y(v0).

Proof. We can assume without loss of generality that x2 > x1. Place v1 at any point (x1, 0) of the
x-axis. Assume that for some i < m, we have already determined the positions of v1, v2, . . . vi, satisfying
conditions (1)–(3). If xi+1 > xi, then place vi+1 at the (unique) point Southeast of vi, whose x-coordinate
is xi+1. If xi+1 < xi, then put vi+1 at the point West of xi, whose x-coordinate is xi+1. Clearly, this
placement of vi+1 satisfies (1)–(3), and the segment vivi+1 does not pass through any point vj with j < i.

After m steps, we obtain a noncrossing straight-line drawing of the path v1v2 . . . vm, satisfying condi-
tions (1)–(3). We still have to find a right location for v0. Let RW and RSE denote the rays (half-lines)
starting at v1 and pointing to the West and to the Southeast. Further, let R be the ray starting at
vm and pointing to the Northeast. It follows from the construction that all points v2, . . . , vm lie in the
convex cone below the x-axis, enclosed by the rays RW and RSE.

Place v0 at the intersection point of R and the x-axis. The segment vmv0 does not pass through
any other vertex vj (0 < j < m). Otherwise, we could find a drawing of the cycle vjvj+1 . . . vm with
slopes 0, π/4, and −π/4. By Lemma 2.1, this would imply that the numbers xj, xj+1, . . . , xm are not
independent over the rationals, contradicting our assumption. It is also clear that the horizontal segment
v0v1 does not pass through any vertex different from its endpoints because all other vertices are below
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the horizontal line determined by v0v1. Hence, we obtain a proper straight-line drawing of C satisfying
conditions (1),(2), and (4).

It remains to verify (3). The only thing we have to check is that x(v0) does not coincide with any
other x(vi). Suppose it does, that is, x(v0) = x(vi) = xi for some i > 0. By the second statement of
Lemma 2.1, there is a vanishing linear combination

λ0x(v0) + λ1x1 + λ2x2 + . . . + λmxm = 0

with rational coefficients λi, where the number of nonzero coefficients is at least the number of turning
points, which cannot be smaller than three. Therefore, if in this linear combination we replace x(v0) by
xi, we still obtain a nontrivial rational combination of the numbers x1, x2, . . . , xm. This contradicts our
assumption that these numbers are independent over the rationals. 2

v v1 0

2v

v7

x

R

Figure 1. The drawing of C.

3 The embedding procedure: Proof of Theorem 2

First we settle Theorem 2 in a special case.

Lemma 3.1 Let m, k ≥ 2 and let G be a graph consisting of two disjoint cycles, C = {v0, v1, . . . , vm}
and C ′ = {v′0, v′1, . . . , v′k}, connected by a single edge v0v

′
0. Then, for any sequence x1, x2, . . ., xm,

x′
1, x′

2, . . ., x′
k of real numbers, linearly independent over the rationals, G has a straight-line drawing

satisfying the following conditions:
(1) The vertices vi and v′j are mapped into points with x-coordinates x(vi) = xi (1 ≤ i ≤ m) and
x(vj) = x′

j (1 ≤ j ≤ k).
(2) The slope of every edge is 0, π/2, π/4, or −π/4.
(3) No vertex is to the North of any vertex of degree two.

Proof. Apply Lemma 2.2 to cycle C with vertices v0, v1, . . . , vm, with assigned x-coordinates x1, x2,
. . ., xm, and analogously, to the cycle C ′, with vertices v′0, v

′
1, . . . , v

′
k and assigned x-coordinates x′

1, x′
2,

. . ., x′
k. For simplicity, the resulting drawings are also denoted by C and C ′.
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Let x0 and x′
0 denote the x-coordinates of v0 ∈ C and v′0 ∈ C ′. It follows from Lemma 2.1 that x0 is a

linear combination of x1, x2, . . . , xm, and x′
0 is a linear combination of x′

1, x
′
2, . . . , x

′
k with rational coeffi-

cients. Therefore, if x0 = x′
0, then there is a nontrivial linear combination of x1, x2, . . . , xm, x′

1, x
′
2, . . . , x

′
k

that gives 0, contradicting the assumption that these numbers are independent over the rationals. Thus,
we can conclude that x0 6= x′

0. Assume without loss of generality that x0 < x′
0. Reflect C ′ about the

x-axis, and shift it in the vertical direction so that v ′
0 ends up to the Northeast from v0. Clearly, we

can add the missing edge v0v
′
0. Let D denote the resulting drawing of G. We claim that D meets all

the requirements of the Theorem. Conditions (1), (2), and (3) are obviously satisfied, we only have to
check that no vertex lies in the interior of an edge. It follows from Lemma 2.2 that the y-coordinates of
v1, . . . , vm are all smaller than or equal to the y-coordinate of v0 and the y-coordinates of v′1, . . . , v

′
k are

all greater than or equal to the y-coordinate of v ′
0. We also have y(v0) < y(v′0). Therefore, there is no

vertex in the interior of v0v
′
0. Moreover, no edge of C (resp. C ′) can contain any vertex of v′0, v

′
1, . . . , v

′
k

(resp. v0, v1, . . . , vm) in its interior. 2

v1

2v

v7

v0

v’ v’10

v’2

v’
5 C’

C

Figure 2. Drawing two cycles connected by one edge.

Return to the proof of Theorem 2. The rest of the proof is by induction on the number of vertices
of G. The statement is trivial if the number of vertices is at most two. Suppose that we have already
established Theorem 2 for all graphs with fewer than n vertices.

Suppose that G has n vertices, it is not a cycle and not the union of two cycles connected by one edge.
Let v1, v2, . . . , vm be the vertices of G with degree less than three, and let the x-coordinates assigned to
them be x1, x2, . . . , xm.

We distinguish several cases.
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Case 1: G has a vertex of degree one.

Assume, without loss of generality, that v1 is such a vertex. If G has no vertex of degree three, then
it consists of a simple path P = v1v2 . . . vm, say. Place vm at the point (xm, 0). In general, assuming
that vi+1 has already been embedded for some i < m, and xi < xi+1, place vi at the point West of vi+1,
whose x-coordinate is xi. If xi > xi+1, then put vi at the point Northeast of vi+1, whose x-coordinate
is xi. The resulting drawing of G = P meets all the requirements of the theorem. To see this, it is
sufficient to notice that if vj would be Northwest of vm for some j < m, then we could apply Lemma
2.1 to the cycle vjvj+1 . . . vm, and conclude that the numbers xj, xj+1, . . . , xm are dependent over the
rationals. This contradicts our assumption.

Assume next that v1 is of degree one, and that G has at least one vertex of degree three. Suppose
without loss of generality that v1v2 . . . vkw is a path in G, whose internal vertices are of degree two, but
the degree of w is three. Let G′ denote the graph obtained from G by removing the vertices v1, v2, . . . , vk.
Obviously, G′ is a connected graph, in which the degree of w is two.

If G′ is a cycle, then apply Lemma 2.2 to C = G′ with w playing the role of the vertex v0 which
has no preassigned x-coordinate. We obtain an embedding of G′ with edges of slopes 0, π/4, and −π/4
such that x(vi) = xi for all i > k and there is no vertex to the North, to the Northeast, or to the
Northwest of w. By Lemma 2.1, the numbers x(w), xk+1, . . . , xm are not independent over the rationals.
Therefore, x(w) 6= xk, so we can place vk at the point to the Northwest or to the Northeast of w, whose
x-coordinate is xk, depending on whether x(w) > xk or x(w) < xk. After this, embed vk−1, . . . , v1, in
this order, so that vi is either to the Northeast or to the West of vi+1 and x(vi) = xi. According to
property (4) in Lemma 2.2, the path v1v2 . . . vk lies entirely above G′, so that no point of G can lie to
the North or to the Northwest of v1.

If G′ is not a cycle, then use the induction hypothesis to find an embedding of G′ that satisfies all
conditions of Theorem 2, with x(w) = xk and x(vi) = xi for every i > k. Now place vk very far from w,
to the North of it, and draw vk−1, . . . , v1, in this order, in precisely the same way as in the previous case.
Now if vk is far enough, then none of the points vk, vk−1, . . . , v1 is to the Northwest or to the Northeast
of any vertex of G′. It remains to check that condition (4) is true for v1, but this follows from the fact
that there is no point of G whose y-coordinate is larger than that of v1.

From now on, we can and will assume that G has no vertex of degree one.
A graph with four vertices and five edges between them is said to be a Θ-graph.

Case 2: G contains a Θ-subgraph.

Suppose that G has a Θ-subgraph with vertices a, b, c, d, and edges ab, bc, ac, ad, bd. If neither c nor
d has a third neighbor, then G is identical to this graph, which can easily be drawn in the plane with
all conditions of the theorem satisfied.

If c and d are connected by an edge, then all four points of the Θ-subgraph have degree three, so
that G has no other vertices. So G is a complete graph of four vertices, and it has a drawing that meets
the requirements.

Suppose that c and d have a common neighbor e 6= a, b. If e has no further neighbor, then a, b, c, d, e
are the only vertices of G, and again we can easily find a proper drawing. Thus, we can assume that
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e has a third neighbor f . By the induction hypothesis, G′ = G \ {a, b, c, d, e} has a drawing satisfying
the conditions of Theorem 2. In particular, no vertex of G′ is to the North of f (and to the Northwest
of f , provided that the degree of f in G′ is one). Further, consider a drawing H of the subgraph of G
induced by the vertices a, b, c, d, e, which satisfies the requirements. We distinguish two subcases.

If the degree of f in G′ is one, then take a very small homothetic copy of H (i.e., similar copy in
parallel position), and rotate it about e in the clockwise direction through 3π/4. There is no point of
this drawing, denoted by H ′, to the Southeast of e, so that we can translate it into a position in which
e is to the Northwest of f ∈ V (G′) and very close to it. Connecting now e to f , we obtain a drawing
of G satisfying the conditions. Note that it was important to make H ′ very small and to place it very
close to f , to make sure that none of its vertices is to the North of any vertex of G ′ whose degree is at
most two, or to the Northwest of any vertex of degree one (other than f).

If the degree of f in G′ is two, then we follow the same procedure, except that now H ′ is a small
copy of H, rotated by π. We translate H ′ into a position in which e is to the North of f , and connect e
to f by a vertical segment. It is again clear that the resulting drawing of G meets the requirements in
Theorem 2. Thus, we are done if c and d have a common neighbor e.

Suppose now that only one of c and d has a third neighbor, different from a and b. Suppose, without
loss of generality, that this vertex is c, so that the degree of d is two. Then in G ′ = G \ {a, b, d}, the
degree of c is one. Apply the induction hypothesis to G′ so that the x-coordinate originally assigned to
d is now assigned to c (which had no preassigned x-coordinate in G). In the resulting drawing, we can
easily reinsert the remaining vertices, a, b, d, by adding a very small square whose lowest vertex is at c
and whose diagonals are parallel to the coordinate axes. The highest vertex of this square will represent
d, and the other two vertices will represent a and b.

b

d’
a

b

c d

v

c’ c’

d’

d’

c’c’

c’

c’ v d’ d’v

d’

b

a d

c

c
a

d

Figure 3. Replacing v by Θ.

We are left with the case when both c and d have a third neighbor, other than a and b, but these
neighbors are different. Denote them by c′ and d′, respectively. Create a new graph G′ from G, by
removing a, b, c, d and adding a new vertex v, which is connected to c′ and d′. Draw G′ using the
induction hypothesis, and reinsert a, b, c, d in a small neighborhood of v so that they form the vertex
set of a very small square with diagonal ab. (See Figure 3.) As before, we have to choose this square
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sufficiently small to make sure that a, b, c, d are not to the North of any vertex w 6= c ′, d′, v of G′, whose
degree is at most two, or to the Northwest of any vertex of degree one. Thus, we are done if G has a
Θ-subgraph.

So, from now on we assume that G has no Θ-subgraph.

Case 3: G has no cycle that passes through a vertex of degree two.

Since G is not three-regular, it contains at least one vertex of degree two. Consider a decomposition
of G into two-connected blocks and edges. If a block contains a vertex of degree two, then it consists of
a single edge. The block decomposition has a treelike structure, so that there is a vertex w of degree
two, such that G can be obtained as the union of two graphs, G1 and G2, having only the vertex w in
common, and there is no vertex of degree two in G1.

By the induction hypothesis, for any assignment of rationally independent x-coordinates to all vertices
of degree less than three, each of G1 and G2 has a straight-line drawing satisfying conditions (1)–(4) of the
theorem. The only vertex of G1 with a preassigned x-coordinate is w. Applying a vertical translation, if
necessary, we can achieve that in both drawings w is mapped into the same point. Using the induction
hypothesis, we obtain that in the union of these two drawings, there is no vertex in G1 or G2 to the
North or to the Northwest of w, because the degree of w in G1 and G2 is one (property (4)). This is
stronger than what we need: indeed, in G the degree of w is two, so that we require only that there is
no point of G to the North of w (property (3)).

The superposition of the drawings of G1 and G2 satisfies all conditions of the theorem. Only two
problems may occur:

1. A vertex of G1 may end up at a point to the North of a vertex of G2 with degree two.

2. The (unique) edges in G1 and G2, incident to w, may partially overlap.

Notice that both of these events can be avoided by scaling the drawing of G1, if necessary, from the
point w, and rotating it about w by π/4 in the clockwise direction. The latter operation is needed only
if problem 2 occurs. This completes the induction step in the case when G has no cycle passing through
a vertex of degree two.

It remains to analyze the last case.

Case 4: G has a cycle passing through a vertex of degree two.

By assumption, G itself is not a cycle. If there is a cut edge e of G such that one of the components
of G \ e is a cycle, then let C denote that cycle. Otherwise, let C be a shortest cycle that contains a
vertex of degree two.

Let v, u1, . . . , uk, denote the vertices of C in cyclic order, where the degree of v is two and the degree
of u1 is three. The length of C is k + 1.

It follows from the assumptions that ui and uj are not connected by an edge of G, for any |i− j| > 1.
Moreover, if |i − j| > 2, then ui and uj do not even have a common neighbor (1 ≤ i 6= j ≤ k). This
implies that any vertex v ∈ V (G \ C) has at most three neighbors on C, and these neighbors must be
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consecutive on C. However, three consecutive vertices of C, together with their common neighbor, would
form a Θ-subgraph in G (see Case 2). Hence, we can assume that every vertex belonging to G \ C is
joined to at most two vertices on C.

Let Bi denote the set of all vertices of G \C that have precisely i neighbors on C (i = 0, 1, 2). Thus,
we have V (G \ C) = B0 ∪ B1 ∪ B2. Further, B1 = B2

1 ∪ B3
1 , where an element of B1 belongs to B2

1 or
B3

1 , according to whether its degree in G is two or three.
Consider the list v1, v2, . . . , vm of all vertices of G with degree two. (Recall that we have already

settled the case when G has a vertex of degree one.) Assume without loss of generality that v1 = v and
that vi belongs to C if and only if 1 ≤ i ≤ l for some l ≤ m.

Let x denote the assignment of x-coordinates to the vertices of G with degree two, that is, x =
(x(v1), x(v2), . . . ,x(vm))= (x1, x2, . . . , xm). Given G, C, x, and a real parameter L, we define the
following so-called Embedding Procedure(G,C,x, L) to construct a drawing of G that meets all
requirements of the theorem, and satisfies the additional condition that the y-coordinate of every vertex
of C is at least L higher than the y-coordinates of all other vertices of G.

Step 1: If G′ := G \ C is not a cycle, then construct recursively a drawing of G′ := G \ C satisfying
the conditions of Theorem 2 with the assignment x′ of x-coordinates x(vi) = xi for l < i ≤ m, and
x(u′

1) = x1, where u′
1 is the unique vertex in G \ C, connected by an edge to u1 ∈ V (C).

If G′ = G\C is a cycle, then, by assumption, there are at least two edges between C and G ′, otherwise
we are done by Lemma 3.1. One of the edges between C and G′ connects u1 to u′

1. Let uαu′
α be another

such edge, where uα ∈ C and u′
α ∈ G′. Since the maximum degree is three, u′

1 6= u′
α. Now construct

recursively a drawing of G′ := G \ C satisfying the conditions of Lemma 2.2, with the assignment x′ of
x-coordinates x(vi) = xi for l < i ≤ m, x(u′

1) = x1, and with exceptional vertex u′
α.

Step 2: For each element of B2
1 ∪ B2, take two rays starting at this vertex, pointing to the Northwest

and to the North. Further, take a vertical ray pointing to the North from each element of B 3
1 and each

element of the set Bx := {(x2, 0), (x3, 0), . . . , (xl, 0)}. Let R denote the set of all of these rays. Set the
x-axis above all points of G′ and all intersection points between the rays in R.

For any uh (1 ≤ h ≤ k) whose degree in G is three, define N(uh) as the unique neighbor of uh in
G \ C. If uh has degree two in G, then uh = vi for some 1 ≤ i ≤ l, and let N(uh) be the point (xi, 0).

Step 3: Recursively place u1, u2, . . . uk on the rays belonging to R, as follows. Place u1 on the vertical
ray starting at N(u1) = u′

1 such that y(u1) = L. Suppose that for some i < k we have already placed
u1, u2, . . . ui, so that L ≤ y(u1) ≤ y(u2) ≤ . . . ≤ y(ui) and there is no vertex to the West of ui. Next we
determine the place of ui+1.

If N(ui+1) ∈ B2
1 , then let r ∈ R be the ray starting at N(ui+1) and pointing to the Northwest. If

N(ui+1) ∈ B3
1 ∪ Bx, let r ∈ R be the ray starting at N(ui+1) and pointing to the North. In both cases,

place ui+1 on r: if ui lies on the left-hand side of r, then put ui+1 to the Northeast of ui; otherwise, put
ui+1 to the West of ui.

If N(ui+1) ∈ B2, then let r ∈ R be the ray starting at N(ui+1) and pointing to the North, or, if we
have already placed a point on this ray, let r be the other ray from N(ui+1), pointing to the Northwest,
and proceed as before.
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Figure 4. Recursively place u1, u2, . . . uk on the rays belonging to R.

Step 4: Suppose we have already placed uk. It remains to find the right position for u0 := v, which has
only two neighbors, u1 and uk. Let r be the ray at u1, pointing to the North. If uk lies on the left-hand
side of r, then put u0 on r to the Northeast of uk; otherwise, put u0 on r, to the West of uk.

During the whole procedure, we have never placed a vertex on any edge, and all other conditions of
Theorem 2 are satisfied. 2

Remark that the y-coordinates of the vertices u0 = v, u1, . . . , uk are at least L higher than the y-
coordinates of all vertices in G \ C. If we fix G,C, and x, and let L tend to infinity, the coordinates of
the vertices given by the above Embedding Procedure(G,C,x, L) change continuously.

u

u1

k

u1

uk

u0

u0

Figure 5. Find the right position for u0.

4 Proof of Theorem 1

We are going to show that any graph G with maximum degree three permits a straight-line drawing
using only the four basic directions (of slopes 0, π/2, π/4, and −π/4), and perhaps one further direction,
which is almost vertical and is used for at most one edge in each connected component of G.

Denote the connected components of G by G1, G2, . . . , Gt. If a component Gs is not three-regular,
or if it is a complete graph with four vertices, then, by Theorem 2, it can be drawn using only the four
basic directions. If Gs has a Θ-subgraph, one can argue in the same way as in Case 2 of the proof of
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Theorem 2: Embed recursively the rest of the graph, and attach to it a small copy of this subgraph such
that all edges of the Θ-subgraph, as well as the edges used for the attachment, are parallel to one of the
four basic directions. Actually, in this case, Gs itself can be drawn using the four basic directions, so
the fifth direction is not needed.

Thus, in the rest of the proof we can assume that Gs is three-regular, it has more than four vertices,
and it contains no Θ-subgraph. For simplicity, we drop the subscript and we write G instead of Gs.
Choose a shortest cycle C = u0u1 . . . uk in G. Each vertex of C has precisely one neighbor in G \ C.
On the other hand, as in the proof of the last case of Theorem 2, all vertices in G \C have at most two
neighbors in C.

We distinguish two cases.

Case 1. G \ C is a cycle. Since G is three-regular, C and G \C are of the same size and the remaining
edges of G form a matching between the vertices of C and the vertices of G \ C. For any i, 0 ≤ i ≤ k,
let u′

i denote the vertex of G \C which is connected to ui. Denote the vertices of G \C by v0, v1, . . . , vk,
in cyclic order, so that v1 = u′

1. Then we have vi = u′
0, for some i > 1. Apply Lemma 2.2 to G \C with

a rationally independent assignment x of x-coordinates to the vertices v1, . . . , vk, such that x(v1) = 1,
x(vi) =

√
2, and the x-coordinates of the other vertices are all greater than

√
2. (Recall that v0 is an

exceptional vertex with no assigned x-coordinate.) It is not hard to see that if we follow the construction
described in the proof of Lemma 2.2, we also have x(v0) >

√
2.

Case 2. G \ C is not a cycle. Let u′
0 denote the neighbor of u0 in G \ C. Since G has no Θ-subgraph,

u′
0 cannot be joined to both u1 and uk. Assume without loss of generality that u′

0 is not connected to
u1. Let u′

1 denote the neighbor of u1 in G \ C.
Fix a rationally independent assignment x of x-coordinates to the vertices of degree at most two in

G \C, such that x(u′
0) =

√
2, x(u′

1) = 1, and the x-coordinates of the other vertices are all greater than√
2. Consider a drawing of G \ C, meeting the requirements of Theorem 2.

Now in both cases, let G′ denote the graph obtained from G after the removal of the edge u0u
′
0.

Clearly G \ C = G′ \ C, and for any L, Embedding Procedure(G′, C,x, L) gives a drawing of G′.
It follows from the construction, that x(u0) = x(u1) = x(u′

1) = 1, x(u′
0) =

√
2. Therefore, for any

sufficiently small ε > 0 there is an L > 0 such that Embedding Procedure(G′, C,x, L) gives a
drawing of G′, in which the slope of the line connecting u0 and u′

0 is π
2

+ ε.
We want to add the segment u0u

′
0 to this drawing. Since there is no vertex with x-coordinate between

1 and
√

2, the segment u0u
′
0 cannot pass through any vertex of G.

Summarizing: if ε is sufficiently small (that is, if L is sufficiently large), then each component of the
graph has a proper drawing in which all edges are of one of the four basic directions, with the exception
of at most one edge whose slope is π

2
+ ε. If we choose an ε > 0 that works for all components, then the

whole graph can be drawn using only at most five directions. This concludes the proof of Theorem 1. 2

5 Algorithm and concluding remarks

Based on the proof, it is not hard to design an algorithm to find a proper drawing, in quadratic time.
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First, if our graph is a circle, we have no problem drawing it in O(n) steps. If our graph has a vertex
of degree one then the procedure of Case 1 of the proof of Theorem 2 requires at most O(m) time when
we reinsert v1, . . . , vm.

We can check if our graph has any Θ-subgraph in O(n) time. If we find one, we can proceed by
induction as in Case 2 of the proof of Theorem 2. We can reinsert the Θ-subgraph as described in Case
2 in O(1) time.

Now assume that we have a vertex v of degree two. Consider the subgraph induced by all vertices of
degree two. It is a union of paths. For each path, check if its two endpoints have a common neighbor
in the original graph. If this is the case, we have a cut edge such that one of the components is a cycle.
Then proceed as in Case 4. Otherwise, there is no such cut edge. In this case, perform a breadth-first
search from any vertex, and take a minimal vertex of degree two, that is, a vertex v of degree two, all
of whose descendants are of degree three. If there is an edge in the graph connecting a descendant of v
with a non-descendant, then there is a cycle through v; we can find a minimal one, using breadth-first
search from v, and proceed as in Case 4. Otherwise, v can play the role of w in Case 3, and we can
proceed recursively.

Finally, if the graph is 3-regular, then we draw each component separately, except the last step, when
we have to pick an ε small enough simultaneously for all components, this takes O(n) steps. We only
have to find the greatest slope and pick an ε such that π

2
+ ε is even steeper.

We believe that this algorithm is far from being optimal. It may perform a breadth first search for
each induction step, which is probably not necessary. One may be able to replace this step by repeatedly
updating the results of the first search. We cannot even rule out that the problem can be solved in linear
time.
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[3] V. Dujmović, D. Eppstein, M. Suderman, and D.R. Wood: Drawings of planar graphs with few
slopes and segments, Computational Geometry: Theory and Applications, to appear.
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