Comment on Fox News

Janos Pach* and Géza Téth'
Rényi Institute, Hungarian Academy of Sciences

Abstract

Does there exist a constant ¢ > 0 such that any family
of n continuous arcs in the plane, any pair of which intersect
at most once, has two disjoint subfamilies A and B with
|A|,|B| > en with the property that either every element of
A intersects all elements of B or no element of A intersects
any element of B? Based on a recent result of Fox, we show
that the answer is no if we drop the condition that two arcs
can cross at most once.

1 Introduction

It was shown in [4] that any family of n segments in the plane has
two disjoint subfamilies A and B, each of size at least constant times
n, such that either every element of A intersects all elements of B
or no element of A intersects any element of B. In [1], this result
was extended to families of algebraic curves with bounded degree at
most D, where the corresponding constant depends on D.

More generally, let GG be the intersection graph of n d-dimensional
semialgebraic sets of degree at most D. Then there exist two disjoint
subsets A, B C V(G) such that |A|,|B| > ¢(d, D)n and one of the

following two conditions is satisfied:

1. ab€e E(G) for alla € A,b € B,
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2. ab¢ E(G) for alla € A)b € B.

Here ¢(d, D) is a positive constant depending only on d and D.

It is not completely clear whether the assumption that the sets
are semialgebraic can be weakened. For example, a similar result
may hold for intersection graphs of plane convex sets. Clearly, the
same theorem is false for intersection graphs of three-dimensional
convex bodies, because any finite graph can be represented in such
a way, and a random graph GG with n vertices almost surely does not
have A, B C V(G) satisfying conditions 1 or 2 with |A|, |B| > clogn,
if ¢ is large enough.

It would be interesting to analyze intersection graphs of continu-
ous arcs in the plane. (These are often called “string graphs” in the
literature [2].) We have been unable to answer the following question
even for k = 1, that is, for pseudo-segments.

Problem 1.1. Is it true that any family of n continuous arcs in
the plane, any pair of which intersect at most k times, has two
disjoint subfamilies A and B with |A|,|B| > c¢n such that either
every element of A intersects all elements of B or no element of A
intersects any element of B? (Here ¢, > 0 is a suitable constant.)

It follows from a beautiful recent result of Jacob Fox [3] (see
Theorem 2.2 below) that the answer to the above question is negative
if we drop the condition on pairwise intersections.

Proposition 1.2. Fix e € (0,1). For every n, there is a family of
n continuous real functions defined on [0, 1] such that their inter-
section graph G has no complete bipartite subgraph with at least

c(s)@ vertices in each of its vertex classes, and every vertex of G

is connected to all but at most n® other vertices.

Obviously, the last condition implies that G has no two disjoint
nonempty sets of vertices A and B with |[A U B| > n® such that no
vertex in A is connected to any element of B by an edge.

2 Proof of Proposition 1.2

We need a simple representation lemma.



Lemma 2.1. The elements of every finite partially ordered set

({p1,pa, - ..}, <) can be represented by continuous real functions f1, fa, ...

defined on the interval [0, 1] such that fi(z) < f;(z) for every z if
and only if p; < p; (1 # Jj).

Moreover, we can assume that the graphs of any pair of functions
fi and f; are either disjoint or have finitely many points in common,
at which they properly cross.

Proof. Let P = {p1,ps,...pe}. We describe a recursive construction
with the additional property that for any extension of (P, <) to a
total order py1) < pre2) < ... < Pr(, there exists & € [0, 1] such that
fray (@) < fre) (@) < ..o < fre().

The proof is by induction on the number of elements of P. For
¢ =1, there is nothing to prove. For ¢ = 2, there are two possibilities.
If p; < po, then the functions f; = 1, fo = 2 meet the requirements.
If p; and py are incomparable, then let fi(z) = z, fo(x) = 1 — x.
Now (P, <) can be extended to a total order in two different ways.
Accordingly, fi(z) < fo(x) at x =0 and fo(z) < fi(x) at x = 1.

Let ¢ > 3, and suppose without loss of generality that p, is a
minimal element of P. Assume recursively that we have already
constructed continuous real functions fi, fo,..., fr_1 with the re-
quired properties representing the elements of the partially ordered
set (P \ {p¢},<). Consider now an extension of (P, <) to a total
order pr1y < pr(2) < --- < Pr()- Clearly, p, appears in this sequence,
i.e., £ = k(m) for some 1 < m < ¢. By our assumption, there exists
x € [0,1] such that

fk(1)(37) <... < fk(mfl)(x) < fk(m+1)(l’) <...< fk(z)-

In fact, there exists a whole interval I C [0, 1] such that the above
inequalities hold for all x € I. Now pick a point * € I and a number
y* such that fim-—1)(2*) < y* < fems1)(z*), and define

fo(x™) =y~

Repeating this procedure for every permutation (k(1), k(2), ..., k(¢))
for which pry < pr@) < ... < Di(e) is an extension of (P, <) to a
total order, we define the function f, at finitely many points. (To
avoid inconsistencies, we can make sure that we pick a different point
x* for each permutation.)



It remains to verify that this partially defined function can be
extended to a continuous function f, : [0,1] — R meeting the re-
quirements. The following two conditions must be satisfied:

L. if py < p; in (P, <) for some j # ¢, then f,(z) < f;(x) for all
x € [0,1];

2. if py and p; are incomparable in (P, <) for some j # ¢, then
the graphs of f; and f; cross each other.

Notice that each point (z*,y*) constructed during the above pro-
cedure lies below the lower envelope (pointwise minimum) of the
functions f;(z) over all j for which p; > py in (P, <). Pick a point
xo € [0, 1] distinct from all previously selected points z* € [0, 1], and
let fo(xo) := yo for some

Yo < min f; (o).

Extend f; to a continuous function on [0, 1] whose graph lies strictly
below
min{ f;(x) : for all j such that p; > p}.

Obviously, f, satisfies condition 1. To see that condition 2 is
also satisfied, fix an index j such that p, and p,; are incomparable
in (P, <). Consider an extension of (P, <) to a total order in which
p;j < pe. It follows from our construction that there exists a point
x € [0, 1] at which the values f;(z) are in the same total order as the
elements p; (1 < i <¢). In particular, we have f;(z) < fy(x). On
the other hand, by definition, fo(x¢) = yo < fj(x). Therefore, the
graphs of f, and f; must cross each other, completing the proof. O

Theorem 2.2. (Fox) Fixe € (0,1). For every n, there is a partially
ordered set (P, <) of size n with the following two properties. (i)
There are no two disjoint subsets A, B C P such that |A|,|B| >
c(€) g7 and no element of A is comparable to any element of B. (ii)
Every element of P is comparable to at most n® other elements. O

To deduce Proposition 1.2, apply Lemma 2.1 to the partially or-
dered set whose existence is guaranteed by Theorem 2.2. To see
that the intersection graph G of the resulting functions meets the
requirements, it is enough to notice that two vertices of G are con-
nected by an edge if and only if the corresponding elements of P are
incomparable.
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