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Abstract

Let m(k) denote the smallest positive integer m such that any m-fold covering of the plane
with axis-parallel unit squares splits into at least k coverings. J. Pach [11] showed that m(k)
exists and gave an exponential upper bound.

We show that m(k) = O(k2), and generalize this result to translates of any centrally sym-
metric convex polygon in the place of squares. From the other direction, we know only that
m(k) ≥ b4k/3c − 1.

1 Introduction

The notion of multiple packings and coverings was introduced independently by Davenport and
László Fejes Tóth. Given a system R of subsets of an underlying set X, we say that they form
a m-fold covering if every point of X belongs to at least m members of R. A 1-fold covering is
simply called a covering. Clearly, the union of m coverings is always an m-fold covering. Today
there is a vast literature on this subject [6], [7]. Throughout this paper, we only consider locally
finite coverings, that is, we assume that no point belongs to infinitely many members of R.

Much of the research on multiple coverings has been concentrated on finding the minimum den-
sity of an m-fold covering of the plane or some higher dimensional Euclidean space with congruent
copies or translates of a convex body. There are many results suggesting that, at least in not to
high dimensions, the most “economical” configurations have strong structural properties: they are
very regular, periodic, even lattice-like, and can be decomposed into simpler parts. If, for instance,
an m-fold covering splits into k coverings, then its density is at least k times the minimum density
of a covering. But what can be said about “irregular” multiple coverings? Can they be also de-
composed into simpler parts? Research in this direction was initiated by László Fejes Tóth in the
late 1970s.

Recently, the same problem was raised in a completely different context, in the theory of large-
scale ad hoc sensor networks [4], [5], [8], [15], [16]. Suppose that the whole plane (or a large region)
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is monitored by a set S of point-like sensors such that the range of each sensor s ∈ S is a unit disk
R(s) centered at s, and each sensor s is equipped with a battery of unit lifetime. Assume further
that the family of ranges R = {R(s) : s ∈ S} is an m-fold covering. If R splits into k coverings
R1, . . . ,Rk, the plane can be monitored by the sensors for at least k units of time. Indeed, at time
i let us switch on all of those sensors whose ranges belong to Ri (1 ≤ i ≤ k). The more coverings
R can be decomposed into, the longer uninterrupted service can be guaranteed. This model was
communicated to us by Shakhar Smorodinsky [13].

Given a body (region) R in the plane, it is not at all obvious whether there exists a positive
integer m = m(R) such that any m-fold covering of the plane with translates of R can be decom-
posed into two coverings! (See [10].) Even in the special case, when R is a disk, we have only
an unpublished manuscript [9] (which has never been independently verified), claiming that the
statement is true with m = 33. As Pach pointed out [10], somewhat paradoxically, the difficulty is
caused by very heavily covered points. If all points of the plane are covered by congruent disks at
least m times and at most O(2m/2) times, then it easily follows from the Lovász Local Lemma [2]
that the arrangement splits into two coverings.

It was shown in [11] that for any centrally symmetric convex polygonal region R in the plane,
there exists a constant m = m(R) satisfying the above condition. The proof has been extended
by Tardos and Tóth [14] to the case when R is a triangle. On the other hand, in [12] it has been
shown that there is no such m = m(R) if R is a concave quadrilateral.

Note that, by simply approximating the disk with centrally symmetric polygons Rn, one cannot
deduce the analogous statement for unit disks, because the values m(Rn) may tend to infinity as
n → ∞.

For the applications mentioned above, we need stronger results. Rather than splitting an
arrangement into just two coverings, we need to decompose it into a large number k of coverings.
It was proved in [11] that for any centrally symmetric convex polygonal region R there exists
ε = ε(R) > 0 such that every m-fold covering of the plane with translates of R can be split into a
covering and an bεmc-fold covering. Iterating this statement k − 1 times, we obtain that for any
positive integer k, there exists a constant m = m(R, k) such that any m-fold covering of the plane
with translates of R splits into k coverings. The only problem is that the function m(R, k) is huge,
it grows exponentially in k.

The aim of this note is to give a quadratic upper bound on this quantity. Our proof will be
algorithmic.

Theorem 1. For any centrally symmetric open convex polygonal region R in the plane, there
is a constant c(R) such that every c(R)k2-fold covering of the plane with translates of R can be
decomposed into k coverings.

We believe that the bound in Theorem 1 is far from being optimal. Our best lower bound is
linear in k.

Theorem 2. For any centrally symmetric open convex polygonal region R, there is a (b4k/3c−1)-
fold covering of the plane with translates of R that cannot be decomposed into k coverings.
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2 Preliminaries

In this section, we reformulate Theorem 1 in a dual form and introduce a few notions and notations
necessary for the proof. For more details, the interested reader is encouraged to consult [11], where
most of these definitions have originally appeared.

In the sequel, let R denote a fixed open convex polygonal region, centrally symmetric about
the origin 0. For any set Q and for any two points r, s ∈ R

2, let Q(rs) stand for the translate of Q
through the vector −→rs. If r = 0, for simplicity we write Q(s) for Q(0s). In particular, R(s) denotes
a translate of the region R, centered at s.

Let S be a locally finite set of points in the plane, that is, suppose that S has no (finite) point
of density. From now on, also assume, for simplicity that S is in general position with respect to
R, in the sense that no line connecting two elements of S is parallel to any side of R. Obviously,
{R(s) : s ∈ S} is an m-fold covering of the plane if and only if S has the property that

|R(y) ∩ S| ≥ m for all y ∈ R
2.

Thus, Theorem 1 can be rephrased in the following slightly stronger form.

Theorem 2.1. For any centrally symmetric open convex polygonal region R in the plane, there
is a constant c(R) satisfying the following condition. For any k ≥ 2, the elements of every locally
finite set S in the plane can be colored by k colors so that any translate of R that covers at least
c(R)k2 points in S contains at least one point of each color.

Let diam(R) denote the diameter of R and let ε = ε(R) be a small positive number such that
any square of side ε intersects at most two consecutive sides of R. Partition the plane into squares
(cells) of sides ε so that every element of S lies in the interior of a cell. If a translate of R covers

at least c(R)k2 points in S, then at least c(R)ε2

9diam2(R)
k2 of them belong to the same cell. Therefore,

in order to establish Theorem 2.1, and hence Theorem 1, it is sufficient to prove

Theorem 2.2. For any centrally symmetric open convex polygonal region R in the plane, there is
a constant c′(R) satisfying the following condition. For any k ≥ 2, the elements of every finite set
S in a square of side ε(R) can be colored by k colors so that any translate of R that covers at least
c′(R)k2 points of S contains at least one point of each color.

Denote the vertices of R by v1, v2, . . . , v2n, in counterclockwise order. For any i (1 ≤ i ≤ 2n),
let Wi denote the open convex wedge whose apex is at the origin and whose boundary rays are
parallel to the vectors −−−→vivi+1 and −−−→vivi−1. Since the set S in Theorem 2.2 lies in a very small square,
using the above notation, any translate R′ of R satisfies R′ ∩ S = Wi(x) ∩ S for some 1 ≤ i ≤ 2n
and for some x ∈ R

2. In other words, the intersection of S with R′ is the same as the intersection
of S with a suitable translate Wi(x) = Wi(0x) of some wedge Wi.

Definition 2.3. The set of all points s ∈ S for which there exists an i (1 ≤ i ≤ 2n) such that the
wedge Wi(s) contains no point of S in its interior is called the boundary of S and is denoted by
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Bd(S). A boundary point s ∈ Bd(S) is said to be of type i, if Wi(s) is empty. Let

Type(s) = { i : s is of type i }.

Define a directed graph G on the boundary points of S, as follows. Connect any pair of points
u, v ∈ Bd(S) by a directed edge (segment) −→uv ∈ E(G) if and only if there exist i (1 ≤ i ≤ 2n) and
x ∈ R

2 such that −→xu is parallel to −−−→vivi+1 and −→xv is parallel to −−−→vivi−1 (with the same orientations),
and Wi(x) contains no point of S. By definition, Wi(x) is an open region (wedge), and the points
u and v lie on its boundary. In this case, we say that the type of the edge −→uv ∈ E(G) is i, or, in
short, Type(−→uv) = i. Note that the type of every directed edge −→uv is uniquely determined and is
contained in the set Type(u) ∩ Type(v). It is possible that the same segment occurs as an edge
twice, with opposite orientations. In this case, we have Type(−→uv) = i and Type(−→vu) = i + n, for
some i. Here and everywhere in the sequel, the indices are taken mod 2n. G is called the boundary
graph of S. Two boundary points are neighbors if they are neighbors in the graph G.
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Figure 1: The directed graph G on Bd(S), where R is the unit square. For each vertex, its Type
is indicated. Edge uv appears in both directions.

The following simple structural properties of graph G, given in Lemmas 2.4 and 2.5, were
established in [11].

Lemma 2.4.

(i) The edges of a given type form a simple directed polygonal path, which may be empty.

(ii) The edges of G form a directed closed polygonal curve Π that does not cross itself, but may
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touch itself at several points. Its vertices, the elements of Bd(S), can be listed in cyclic order as

b1,0, . . . , b1,t(1) =

= b2,0, . . . , b2,t(2) =

= b3,0, . . . ,

= bn,0, . . . ,

= b2n,0, . . . , b2n,t(2n) =

= b1,0,

where the edges of type i form the interval bi,0, . . . , bi,t(i). We have i, i − 1 ∈ Type(bi,0) and
i, i + 1 ∈ Type(bi,t(i)).

(iii) In this sequence, every boundary point is listed at most twice. If a point b ∈ Bd(S) is listed
twice, then Type(b) = {i, i + n}, for some i. We call such a point singular.

(iv) For any 1 ≤ i ≤ 2n and x ∈ R
2, the wedge Wi(x) intersects Π in at most two intervals.

Concerning singular points, in addition to Lemma 2.4 (iii), it is easy to verify

Lemma 2.5.

(i) There is an integer i (1 ≤ i ≤ n) such that Type(b) = {i, i + n}, for every singular point
b ∈ Bd(S).

(ii) Let i be the same as in part (i). Both sequences bi,0, . . . , bi,t(i) and bn+i,0, . . . , bn+i,t(n+i)

contain every singular point, in opposite orders.

3 Coloring algorithm: Proof of Theorem 2.2

The colors used by our algorithm will be denoted by 1, 2, . . . , k.

First, we define an auxiliary coloring procedure for any sequence a1, . . . , am with k colors, where
one of the colors i (1 ≤ i ≤ k) is distinguished. We call this coloring a periodic coloring of the
sequence with the special color i.

Periodic-Color(a1, . . . , am; i)

For each j (1 ≤ j ≤ m), color aj with the special color i if j is odd, and with color 1+(j/2) (mod k),
if j is even.

Let S denote the same set of points in a square of side ε(R), and let
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b1,0, . . . , b1,t(1) = (1)

= b2,0, . . . , b2,t(2) =

= b3,0, . . . ,

= bn,0, . . . ,

= b2n,0, . . . , b2n,t(2n) =

= b1,0

be the cyclic order of the elements of Bd(S), as in Lemma 2.4 (ii).

Definition 3.1. For any positive integer r, a boundary point b ∈ Bd(S) is called r-rich if there
exist j (1 ≤ j ≤ 2n) and x ∈ R

2 such that the wedge Wj(x) contains more than r elements of S,
but Wj(x) ∩ Bd(S) = b. Clearly, we have j ∈ Type(b).

It is easy to see that a singular point cannot be r-rich for any r > 1.

Given S and two integer parameters i, r > 0, we color the boundary of S with k colors, using
the following procedure that will be used in our main algorithm as a subroutine.

Color-Boundary(S, i, r)

Step 1. Color all r-rich vertices of Bd(S) with color i.

Step 2. By Lemma 2.5, we may suppose without loss of generality that all singular boundary points
have type {1, n+1}. Let b̄1, b̄2, . . . , b̄t be the singular (and, hence, non-rich) boundary points, listed
in the order as they appear in the sequence b1,0, . . . , b1,t(1), the initial interval of the list (1). Color
them using Periodic-Color(b̄1, b̄2, . . . , b̄t; i).

Step 3. Color all uncolored neighbors of every singular boundary point with color i.

Step 4. Let b1, b2, . . . , bm denote the (linear) sequence of uncolored points in the cyclic order (1),
starting at the point b1,0. Color them using Periodic-Color(b1, b2, . . . , bm; i).

It is easy to verify that this algorithm has the following property.

Claim 3.2. Among any two consecutive points of the boundary of S in the cyclic order (1), at least
one receives color i by the algorithm Color-Boundary(S, i, r). 2

Now we can define our main coloring procedure. Let S be the set of points in a square of side
ε(R).

Color-Set(S, k)

Step 0. Set i = 1, S1 = S.
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Step i. If Si = ∅, then Stop. Otherwise, apply Color-Boundary(Si, i, 18k
2 − 18ki) to color the

set Bi = Bd(Si) of all boundary vertices of Si.

If i = k then color arbitrarily all uncolored points and Stop. Otherwise, let Si+1 = Si \Bi and
let i = i + 1.

When algorithm Color-Set(S, k) terminates, every point of S is colored by one of the colors
{1, 2, . . . , k}.

Fix now a wedge Wj(x) with |Wj(x) ∩ S| ≥ 18k2. To establish Theorem 2.2, we have to show
that Wj(x) ∩ S contains points of all k colors.

Lemma 3.3. Suppose that for some i (1 ≤ i ≤ k) and for some wedge Wj(x) we have |Wj(x)∩Bi| ≥
18k. According to Lemma 2.4 (iv), the set Wj(x) ∩ Bi is the union of at most two intervals in the
counterclockwise cyclic order of boundary points of Si; denote them by b1, b2, . . . , bs and b′1, b

′
2, . . . , b

′
t.

Then at least one of the following two conditions is satisfied:

(i) At least one element of at least one of the “truncated” intervals b2, . . . , bs−1, b′2, . . . , b
′
t−1,

stripped of its endpoints is (18k2 − 18ki)-rich.

(ii) The set Wj(x) ∩ Bi contains points of all k colors.

Proof. Suppose that (i) does not hold, that is, none of the elements of I1 = {b2, . . . , bs−1} and
I2 = {b′2, . . . , b

′
t−1} is (18k2 − 18ki)-rich. (Note that I1 and I2 are not necessarily disjoint.)

If Wj(x)∩Bi contains at least 2k singular boundary points, then, by Lemma 2.5, it also contains
2k consecutive singular boundary points. Since we applied algorithm Periodic-Color to color
these points, all k colors must occur among them.

If Wj(x)∩Bi has at most 2k− 1 singular boundary points, then consider the set B of all points
b ∈ Wj(x) ∩ Bi such that

1. b 6= b1, bs, b
′
1, b

′
t,

2. b is not a singular boundary point,

3. b is not a neighbor of a singular boundary point.

Since each singular boundary point has at most four neighbors, we have |B| ≥ |Wj(x) ∩ Bi| −
5(2k − 1) > 8k. Therefore, at least one of the sets B ∩ I1 and B ∩ I2 has at least 4k elements.

Suppose without loss of generality that |B ∩ I1| ≥ 4k. Consider now the linear sequence
b1, b2, . . . , bm of uncolored points in the cyclic order (1), starting at the point b1,0, in Step 3 of
Color-Boundary(Si, i, 18k

2 − 18ki). The elements of B ∩ I1 are consecutive in the cyclic order
of B ∩Bi. Hence, at least half of them, that is, at least 2k points, are also consecutive in the linear
sequence b1, b2, . . . , bm. These points will receive all k colors, and condition (ii) is satisfied. 2

Lemma 3.4. Suppose that |Wj(x) ∩ S| ≥ 18k2, and that there is no i (1 ≤ i ≤ k) such that
Wj(x) ∩ Bi contains points of all k colors. Then we have |Wj ∩ Si| ≥ 18k2 − 18k(i − 1), for every
i (1 ≤ i ≤ k).
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Proof. The proof is by induction on i. The statement obviously holds for i = 1. Assuming that
we have already verified the assertion for some 1 ≤ i < k, we want to prove it for i + 1.

Since Wj(x) ∩ Bi does not contain points of all k colors, there are only two possibilities:

Case A: |Wj(x) ∩ Bi| < 18k. In this case, we have

|Wj(x) ∩ Si+1| = |Wj(x) ∩ Si| − |Wj(x) ∩ Bi|

≥ 18k2 − 18k(i − 1) − 18k = 18k2 − 18ki.

Case B: |Wj(x) ∩ Bi| ≥ 18k. Then, by Lemma 3.3, at least one of the truncated intervals of
Wj(x)∩Bi has an (18k2 − 18ki)-rich point b. According to Definition 3.1, this means that there is
a wedge Wt(y) such that |Wt(y) ∩ Si| > 18k2 − 18ki but Wt(y) ∩ Bi = b. Thus, we have

|Wt(y) ∩ Si+1| = |Wt(y) ∩ Si| − |Wt(y) ∩ Bi| ≥ 18k2 − 18ki.

It is easy to see that in this case Wj(x) ∩ Si+1 ⊃ Wt(y) ∩ Si+1. Hence,

|Wj(x) ∩ Si+1| ≥ 18k2 − 18ki,

as required. 2

Now we are in a position to complete the proof of Theorem 2.2, that is, to prove that Wj(x)∩S
contains points of all k colors, provided that |Wj(x) ∩ S| ≥ 18k2. If there exists an i (1 ≤ i ≤ k)
such that Wj(x)∩Bi contains points of all colors, we are done. Otherwise, by Lemma 3.4, we have
|Wj ∩ Si| ≥ 18k2 − 18k(i − 1) > 0, for every i (1 ≤ i ≤ k). Consequently, the set Wj ∩ Bi is not
empty, for 1 ≤ i ≤ k.

If Wj ∩ Bi consists of a single point, then this point is r-rich with r ≥ 18k2 − 18k(i − 1) − 1 >
18k2 − 18ki, and it receives color i. If Wj ∩ Bi has more than one point, then by Lemma 3.2, at
least one of its elements must get color i.

Summarizing, for every i (1 ≤ i ≤ k), Color-Set(S, k) colors at least one element of Wj(x)∩S
with color i. This completes the proof of Theorem 2.2.

It is easy to see that our proof of Theorem 2.2 also works if instead of translates of R we consider
halfplanes. More precisely, the following statement holds.

There is a constant c satisfying the following condition. For any k ≥ 2, the elements of every
finite set S can be colored by k colors so that any halfplane that covers at least ck2 points of S
contains at least one point of each color.

However, it was pointed out by Aloupis, Cardinal, Collette, Langerman, and Smorodinsky [1]
that in this case a much stronger statement holds, the quadratic upper bound can be improved to
linear.

Theorem 3.5. ([1]) For any k ≥ 2, the elements of every finite set S can be colored by k colors so
that any halfplane that covers at least 4k points of S contains at least one point of each color.
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4 Construction

As explained at the beginning of Section 2, Theorem 2 can be rephrased in the following equivalent
(dual) form.

Theorem 4.1. For any centrally symmetric open convex polygonal region R in the plane, there
exists a locally finite set S ⊂ R

2 with the following property. Every translate of R covers at least
b4k/3c − 1 elements of S, and for any k-coloring of S, one can find a translate R ′ of R that does
not contain points of all colors.

First, we prove a somewhat weaker statement.

Lemma 4.2. For any centrally symmetric open convex polygonal region R in the plane and for any
0 < ε < 1, there exists a finite set S whose diameter is at most 2ε and which satisfies the following
condition. For every k-coloring of S, one can find a translate R ′ of R such that |R′∩S| ≥ b4k/3c−1
and R′ does not contain points of all colors.

Proof. As before, let v1, v2, . . . , v2n denote the vertices of R, in counterclockwise order. By
applying a suitable linear transformation, if necessary, we can assume that v1v2 is horizontal, v1v2n

is vertical, and the length of each side of R is at least 3. Since R is centrally symmetric, vn+1vn+2

is horizontal, vn+1vn is vertical.

Assume, for simplicity, that k is divisible by 3, and let ` = 2k/3. Let

P1 = (ε/2, ε/2), P2 = (−ε/3, ε/3), P3 = (ε/3,−ε/3).

Substitute P1 by a set S1 of ` − 1 points, very close to P1. Similarly, substitute P2 (resp. P3) by
a set S2 (resp. S3) of ` points, very close to P2 (resp. P3). Let S := S1 ∪ S2 ∪ S3. To satisfy
the condition that the elements of S are in general position, slightly perturb the coordinates of the
points, without changing the notation.

Consider now a coloring of S with k colors. Denote the set of colors missing from Si by
Ci (i = 1, 2, 3). We have |C1| ≥ k− `+1 > k/3 and |C2|, |C3| ≥ k− ` = k/3. Therefore, C1, C2, and
C3 cannot be pairwise disjoint, which means that at least one color is missing from at least one of
the sets S1∪S2, S1∪S3, and S2∪S3. Notice that each of the sets Si∪Sj has at least 2`−1 = (4k/3)−1
elements, and for each of them there is a translate Rij of R with Rij ∩S = Si ∪Sj (1 ≤ i < j ≤ 3).
It follows that there is a translate Rij of R such that |Rij ∩S| ≥ b4k/3c− 1 and it does not contain
points of all k colors. See Fig. 2. This proves the lemma. 2

To establish Theorem 4.1, and hence Theorem 2, it is enough to notice that, for a proper choice
of the translates Rij (1 ≤ i < j ≤ 3), if we fill R

2 by a sufficiently dense mesh S∗, the set S∗ ∪ S
will meet the requirements stated in Theorem 4.1 for the set S. The details are left to the reader.
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Figure 2: The construction. |S1| = ` − 1 = 2k/3 − 1, |S2| = |S3| = ` = 2k/3.
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