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Abstract

It is proved, that for any 3-coloring of R? and for any right-angled
triangle T', one can find a congruent copy of 7', all of whose vertices
are of the same color.

1 Introduction

In a series of papers, Erdés, Graham, Montgomery, Rothschild, Spencer, and
Straus [1, 2, 3, see also 4] have examined a variety of problems, adapting
Ramsey theory to set systems defined by geometric means. In particular,
they showed that for any 2-coloring of the 3-space and for any triangle T,
there exists a congruent copy of T', all of whose vertices are of the same color.
The question arises, whether the same result remains true for all 3-colorings
of R3. The answer is known to be in the affirmative if T' is a triangle with
angles /6, /3 and 7/2 (see [5]).
In the present note we extend this result to all right-angled triangles.

Theorem: Let T be any right-angled triangle. Then, for any 3-coloring of
R3, there exists a congruent copy of T, all of whose vertices are of the same
color.

!Partially supported by NSF grant CCR-91-22103 and OTKA-4269



2 Proof of Theorem:

Let T be a right-angled triangle whose perpendicular sides are of length a
and b. Fix a coloring of R3 with three colors (red, blue, and green, say).
A triangle congruent to T is said to be good if its vertices are of the same
color.

Assume in order to obtain a contradiction that there are no good trian-
gles. Using this assumption, one can deduce a number of simple but useful
properties of the coloring.

Lemma 1 Let ABCD be a rectangle, AB = CD =a, BC = AD =0, A
and B are red, and C and D are blue. Then the points F,G,H,.J shown in
Fig.1 are all green.

H A(red) D(blue) F

Fig. 1

J B(red)  C(blue) G

Proof: It is obvious that F' cannot be blue. Suppose that it is red. Let v
be a vector of length b, perpendicular to AB such that the angle between
v and the plane determined by ABCD is 7/3. Let A'B'C'D’' denote the
translate of ABCD by v. It is easy to see that ABA'B', A'B'CD, CDC'D’
and C'D'FG are rectangles congruent to ABCD, so A" and B’ must be
green which forces C’ and D’ to be red, making the good triangle C'D'F.
In the same way we can prove that G, H and J are green. O

Note that A, B,C, D, A’, B’ induce a triangular prism, whose rectangular
faces have sides a and b. We use this type of prism throughout the proof.

Now we return to the proof of our theorem. We distinguish two different
cases. The first one is when there is a line segment either of length 2a or of
2b, whose endpoints and midpoint are of the same color. (We will call it a
good segment of type (a) or (b), respectively). The second one is when there
are no good segments.

A rectangle with sides a and b is called normal.

Suppose a > b. Let ABC D be a normal rectangle so that AB = CD = a,
BC = AD =b. Let FE and F be two points above the plane of ABCD such
that AE = DE =b, BE =CE = a, AF = DF = g, and BF = CF = b.
Let G and H denote the reflections of E and F', respecively, about the plane



of ABCD. Clearly AG = DG = b, BG = CG = a, AH = DH = a, and
BH = CH = b, and easy calculations show that FH = FG = AC = BD.
We call the points E, F,G, H the special exterior points of our normal
rectangle, and we say that £ and H (resp. F' and G) are opposite to each
other.

Note that two opposite special exterior points together with any vertex
of the normal rectangle form a right-angled triangle of sides a and b.

Case 1: Suppose there is a good segment X Z of type (a). Let Y denote
the midpoint of X Z and suppose that X, Y, Z are green.

Let ¢(X), ¢(Y), ¢(Z) denote the circles of radius b centered at X, YV
and Z, respectively, whose planes are perpendicular to XZ. Clearly, these
circles can have no green points. Consider a normal rectangle with two
vertices on ¢(X) and two vertices on ¢(Y). Notice, that it can be colored in
three essentially different ways. (See Fig.2)

Y (green) (red)  (blue) (red)  (blue) (r}ed) (red)
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We claim that the coloring of no such rectangle has coloring of type (3).
Indeed, Lemma 1 shows that both points of the circle ¢(Z) in the plane of
our rectangle are green, which is a contradiction.

We claim that either there exists a normal rectangle having two vertices
on both circles ¢(X) and ¢(Y'), whose coloring is of type (1), or there exists
a normal rectangle having two vertices on both circles ¢(Y') and ¢(Z), whose
coloring is of type (1). Indeed, suppose that all of these normal rectangles
are of type (2). It is clear that any normal rectangle of type (2) forces the
corresponding four special exterior points to be green. Consequently, the
circles formed by these exterior points are completely green circles. However,
in this case we obtain infinitely many good green triangles.

Lemma 2 There is no rectangle of side-lengths a and b\/3, whose vertices
are colored with exactly two different colors and whose sides of length a have
monochromatic vertices.

Proof: Suppose that there exists such a rectangle ABCD. Say, A and



B are red, and C and D are blue. Consider the rhombuses AEDF and
BGCH, whose planes are perpendicular to the plane ABCD, and whose
shorter diagonals are of length b. Then E, F, G and H must be green, which
is a contradiction because these points form a normal rectangle, and hence
four good triangles. O

Now we are in a position to prove the theorem in Case 1. Take a good seg-
ment X Z of type a with midpoint Y, define ¢(X), ¢(Y') and ¢(Z) as before.
Consider a normal rectangle KLMN of type (1) and having two vertices
on both of ¢(X) and ¢(Y). Reflect XY about the plane of KLM N, and
get the green points S and T'. Let us rotate the polyhedron XY K LM N ST
(in fact, it is a rhombohedron and four of its faces are normal rectangles)
around XY in the positive direction to the polyhedron XY K'L'M'N'S"T’,
so that ST'S'T' be a normal rectangle. Applying Lemma 2 to the rectangle
XY S'T', we obtain that S’ and T’ have different colors. So one of them
(say, S') is red and the other one is blue.

Consider the coloring of the rectangle K'L'M'N’. Tt is easy to see that
it cannot be of type (1) (because of S’ and T"), so it is of type (2). So either
K'L'S'T' or M'N'S'"T" forms a normal rectangle whose coloring is of type
(3). Suppose without loss of generality that K'L'S"T” is such a rectangle.
Applying Lemma 1, we find that there exists a green point on the circle ¢(Z)
("above” K'). This is a contradiction completes the proof in Case 1.

Note that the proof of Lemma 2 does not use the assumption that there
exists a good segment, so it will remain valid in Case 2.

Case 2: Suppose that no good segment exists.

Claim: We can choose XY, a segment of length a with monochromtic
vertices, so that we have a normal rectangle of type (1) with two vertices on
both of ¢(X) and ¢(Y). (The circles (X) and ¢(Y) are defined in the same
way as in Case 1.)

Proof: We can clearly find a segment XY of length a with monochro-
matic vertices. If there is not a normal rectangle of type (1) with two vertices
on both of ¢(X) and ¢(Y), rotate a normal rectangle with two vertices on
¢(X), two on ¢(Y), around XY. If we find a position of type (3) then we
are done, since two monochromatic vertices of that rectangle can play the
role of X and Y. (Their distance is b instead of a, but one can interchange
the notation for a and b.)

So we may assume that all of these rectangles are of type (2). As we
have proved above, all points of the circles formed by the special exterior
points of these normal rectangles are green. (There can be two or four such



circles, depending on the relationship between a and b.) Consider one of
them which has the bigger radius. Then we can take any two points of
this circle at distance b and make them play the role of X and Y. If for
every choice of these points and for every choice of the normal rectangle,
we obtain a coloring (2), then we can repeat the previous argument, which
brings an entirely green torus around this circle, obviously large enough to
accomodate a good triangle. Once a coloring other than (2) occurs then we
are also done. O

So choose XY as above, let KLM N be a normal rectangle with coloring
type (1), and define S, T, S, T', K', L', M’ and N', as above. We know that
either S’ or T" is red and the other one is blue. Suppose without loss of
generality that S’ is red. Let us rotate all of our points around XY in the
positive direction by 27/3. Denote the images of S’ and 7" by S” and T".
It is easy to see that one of them is red and the other is blue (because the
image of a normal rectangle of type (1) by this rotation is of the same type).
Moreover, the segments S’S” and T'T" are of length 3b, and the points that
divide them in the ratios 1 : 2 and 2 : 1 are on the circles ¢(X) and ¢(Y),
respectively. Hence these points cannot be green. Denote them by U, V. W
and Z as it is shown in Fig.3.
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Fig. 3
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Our proof will consist of the examination of all possible colorings of the
eight points, S, 7', S", T" U,V,W and Z, each of which is either red or
blue. There are four different subcases up to symmetry). We have already
supposed that S’ is red and 7" is blue. In the first and the second subcases,
we suppose that S” and T" have different colors (say, S” is blue and T" is
red). These subcases will be very easy. The third and the fourth subcases
will be more complicated.

Observe that any special exterior point forms a good triangle with the
vertices of any diagonal of its basic rectangle if they are monochromatic.
Furthermore, two opposite special exterior points also form a good triangle
with any vertex of their basic rectangle.

e Subcase 2.1: See Fig.4



S’(red) U(blue)  W(red) S” (blue)

Fig. 4
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T'(blue)  V(red) Z(blue)  T"(red)

It is clear that all special exterior points of the three normal rectangles
must be green, contradicting our assumption that there are no good
segments.

Subcase 2.2: See Fig.5

S’ (red) U (red) W (blue) | S”(blue)

Fig. 5

T'(blue)  V(blue)  Z(red) OT’ '(red)

Apply lemma 1 to the rectangles S'UVT’ and WS"T"Z. We get four
collinear green points, each at distance a from its neighbors. Hence,
there are good segments, which is a contradiction.

Subcase 2.3: See Fig.6

S'(r) U(r) W (b OS"(I‘)
(r,b) (8) (8)
Fig. 6 T'(b)  V|(b) (wb) 2 (r) T" (b)
H J

In the interior of some rectangles we have listed all possible colors
of their special exterior points. Since the special exterior points of
S"T"W Z and UVW Z are green, it is clear that no special exterior
point of S'UVT" and VZHJ can be green. (Otherwise we would have
a good segment or a good triangle.) Since both of S'UVT' and VZHJ
have red and blue vertices, their opposite special exterior points must
be red and blue. Let B; and By be two opposite special exterior



points of the rectangle S'UVT", and let C; and C5 two opposite special
exterior points of VZHJ such that ByB, is a translate of C1Cy. Let
B (resp. C) denote the blue element of By, By (resp. Ci,Cs). If B
and C are on the same side of the plane S'T'S”, then BCV is a good
triangle. If they are on opposite sides of this plane, then BV (' is a
good segment. So we obtain a contradiction in both cases.

e Subcase 2.4: See Fig.7

S'(r) Ul(b) Wl(b) S"(r) E;

Fig. 7

Since the special exterior points of W ZT"”S" and S'T'VU are green,
it is easy to see that one of the opposite special exterior points of
UVW Z is red, and the other is blue. Applying Lemma 1 to UVW Z
we obtain that H, J, P and @ are all green. Repeating the argument at
the end of Subcase 3, we get that the opposite special exterior points
of the rectangle ZT"FJ are blue and green. Moreover, the rectangle
QW S"E has red-green pairs. (For if not, then we can complete the
proof in the same way as in the previous subcase). For the same
reason, all special exterior points of S”T" E E5 must be green. Hence,
neither F; nor Es is green, and they have different colors, because
otherwise they would form a good triangle with §” or T". If E; is red
and F5 is blue, then apply Lemma 1 to the rectangle E;E2S"T" and
get the good segment HF wth midpoint J. If E; is blue and FEj is
red, then observe that V, Z,T", Ey, E1,S", W, U are colored in exactly
the same way as the points S',U,W,S",T",Z,V,T' in the previous
subcase. Since we have already obtained a contradiction in Subcase 3
based on these 8 points, we can conclude that subcase 4 cannot occur,
either.

This completes the discussion of Case 2, and hence the proof of the
theorem.



Remarks:

It is natural to ask that if 7" is any right-angled triangle then how many
colors are needed to color the space so that there is no good triangle. A gen-
eral way to ensure that there is no right-angled triangle with monochromatic
vertices and with hypotenuse of unit length is to define a coloring in which
there is no unit segment with monochromatic vertices. This can be done
with 21 colors as follows: let us consider a regular hexagonal lattice H of the
plane with side length 1/2. It is well known that the plane can be 7-colored
so that all interior points of each of the hexagons of the lattice have the
same color and there is no unit segment in the plane with monochromatic
vertices.

Now let us consider the planes z =0, z = 3/4, z = 3/2...2 = (3/4)n,
where n takes all integer values. Let us take a copy of H in the plane z =0
and take a translated copy of this parallel to the z—axis on each of the planes
z = n(3/4). Now if n = 3k, then let us 7-color the plane z = (3/4)n with
colors a1, a9, -..a7 according to its copy of H, if n = 3k + 1, then let us
7-color the plane z = (3/4)n with colors by, b, ... b7, and if n = 3k +2, then
let us 7-color the plane z = (3/4)n with colors ¢1, ¢a, . .. ¢7, according to its
translated copy of H. Finally, give to any yet uncolored point P of the space
the color of its z-projected image on the closest plane z = (3/4)n which is
below P.

It is clear that this 21-coloring cannot have any unit segment of monochro-
matic vertices, as it consists of monochromatic regular hexagonal prisms,
each of which is too small to contain such a segment, and the distance of
any two of them having the same color is larger than 1.

Of course, if we ask how many colors are needed to exclude just one
triangle T, then a smaller number of colors might be enough. For example,
if T is the isosceles right-angled triangle, then one easily sees that there
exists a 9-coloring of the space without good triangles.
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