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Abstract. According to Euler’s formula, every planar graph with n vertices has at most O(n)
edges. How much can we relax the condition of planarity without violating the conclusion?
After surveying some classical and recent results of this kind, we prove that every graph of n

vertices, which can be drawn in the plane without three pairwise crossing edges, has at most
O(n) edges. For straight-line drawings, this statement has been established by Agarwal et al.,
using a more complicated argument, but for the general case previously no bound better than
O(n3/2) was known.

1 Introduction

A geometric graph is a graph drawn in the plane so that its vertices are represented by points in
general position (i.e., no three are collinear) and its edges by straight-line segments connecting the
corresponding points. Topological graphs are defined similarly, except that now each edge can be
represented by any simple (non-selfintersecting) Jordan arc passing through no vertices other than
its endpoints. Throughout this paper, we assume that if two edges of a topological graph G share an
interior point, then at this point they properly cross. We also assume, for simplicity, that no three
edges cross at the same point and that any two edges cross only a finite number of times. If any
two edges of G have at most one point in common (including their endpoints), then G is said to
be a simple topological graph. Clearly, every geometric graph is simple. Let V (G) and E(G) denote
the vertex set and edge set of G, respectively. We will make no notational distinction between the
vertices (edges) of the underlying abstract graph, and the points (arcs) representing them in the
plane.

It follows from Euler’s Polyhedral Formula that every simple planar graph with n vertices has
at most 3n − 6 edges. Equivalently, every topological graph with n vertices and more than 3n − 6
edges has a pair of crossing edges. What happens if, instead of a crossing pair of edges, we want
to guarantee the existence of some larger configurations involving several crossings? What kind of
unavoidable substructures must occur in every geometric (or topological) graph G having n vertices
and more than Cn edges, for an appropriate large constant C > 0?

In the next four sections, we approach this question from four different directions, each leading
to different answers. In the last section, we prove that any topological graph with n vertices and
no three pairwise crossing edges has at most O(n) edges. For simple topological graphs, this result
was first established by Agarwal-Aronov-Pach-Pollack-Sharir [AAPPS97], using a more complicated
argument.
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2 Ordinary and topological minors

A graph H is said to be a minor of another graph G if H can be obtained from a subgraph of G
by a series of edge contractions. If a subgraph of G can be obtained from H by replacing its edges
with independent paths between their endpoints, then H is called a topological minor of G. Clearly,
a topological minor of G is also its (ordinary) minor.

If a graph G with n vertices has no minor isomorphic to K5 or to K3,3, then by Kuratowski’s
theorem it is planar and its number of edges cannot exceed 3n − 6. It follows from an old result of
Wagner that the same conclusion holds under the weaker assumption that G has no K5 minor. A
few years ago Mader [M98] proved the following famous conjecture of Dirac:

Theorem 2.1. (Mader) Every graph of n vertices with no topological K5 minor has at most 3n− 6
edges.

If we only assume that G has no topological Kr minor for some r > 5, we can still conclude that
G is sparse, i.e., its number of edges is at most linear in n.

Theorem 2.2. (Komlós-Szemerédi [KSz96], Bollobás-Thomason [BT98]) For any positive integer r,
every graph of n vertices with no topological Kr minor has at most cr2n edges.

Moreover, Komlós and Szemerédi showed that the above statement is true with any positive
constant c > 1/4, provided that r is large enough. Apart from the value of the constant, this
theorem is sharp, as is shown by the union of pairwise disjoint copies of a complete bipartite graph
of size roughly r2.

We have a better bound on the number of edges, under the stronger assumption that G has no
Kr minor.

Theorem 2.3. (Kostochka [K84], Thomason [T84]) For any positive integer r, every graph of n
vertices with no Kr minor has at most cr

√
log rn edges.

The best value of the constant c for which the theorem holds was asymptotically determined
in [T01]. The theorem is sharp up to the constant. (Warning! The letters c and C used in several
statements will denote unrelated positive constants.)

Reversing Theorem 2.3, we obtain that every graph with n vertices and more than cr
√

log rn
edges has a Kr minor. This immediately implies that if the chromatic number χ(G) of G is at least
2cr

√
log r + 1, then G has a Kr minor. According to Hadwiger’s notorious conjecture, for the same

conclusion it is enough to assume that χ(G) ≥ r. This is known to be true for r ≤ 6 (see [RST93]).

3 Quasi-planar graphs

A graph is planar if and only if it can be drawn as a topological graph with no crossing edges. What
happens if we relax this condition and we allow r crossings per edge, for some fixed r ≥ 0?

Theorem 3.1. [PT97] Let r be a natural number and let G be a simple topological graph of n vertices,
in which every edge crosses at most r others. Then, for any r ≤ 4, we have |E(G)| ≤ (r +3)(n−2).

The case r = 0 is Euler’s theorem, which is sharp. In the case r = 1, studied in [PT97] and
independently by Gärtner, Thiele, and Ziegler (personal communication), the above bound can be
attained for all n ≥ 12. The result is also sharp for r = 2, provided that n ≡ 5 (mod 15) is sufficiently
large (see Figure 1).
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Figure 1.

However, for r = 3, we have recently proved that |E(G)| ≤ 5.5(n − 2), and this bound is best
possible up to an additive constant [PRTT02]. For very large values of r, a much better upper
bound can be deduced from the following theorem of Ajtai-Chvátal-Newborn-Szemerédi [ACNS82]
and Leighton [L84]: any topological graph with n vertices and e > 4n edges has at least constant
times e3/n2 crossings.

Corollary 3.2. [PRTT02] Any topological graph with n vertices, whose each edge crosses at most r
others, has at most 4

√
rn edges.

One can also obtain a linear upper bound for the number of edges of a topological graph under
the weaker assumption that no edge can cross more than r other edges incident to the same vertex.
This can be further generalized, as follows.

Theorem 3.3. [PPST02] Let G be a topological graph with n vertices which contains no r + s edges
such that the first r are incident to the same vertex and each of them crosses the other s edges. Then
we have |E(G)| ≤ Csrn, where Cs is a constant depending only on s.

In particular, it follows that if a topological graph contains no large gridlike crossing pattern
(two large sets of edges such that every element of the first set crosses all elements of the second),
its number of edges is at most linear in n. It is a challenging open problem to decide whether the
same assertion remains true for all topological graphs containing no large complete crossing pattern.

For any positive integer r, we call a topological graph r-quasi-planar if it has no r pairwise crossing
edges. A topological graph is x-monotone if all of its edges are x-monotone curves, i.e., every vertical
line crosses them at most once. Clearly, every geometric graph is x-monotone, because its edges are
straight-line segments (that are assumed to be non-vertical). If the vertices of a geometric graph are
in convex position, then it is said to be a convex geometric graph.
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Figure 2. Construction showing that Theorem 3.4 is sharp (n = 13, r = 4)
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Theorem 3.4. [CP92] The maximum number of edges of any r-quasi-planar convex geometric graph
with n ≥ 2r edges is

2(r − 1)n −
(

2r − 1

2

)

.

Theorem 3.5. (Valtr [V98]) Every r-quasi-planar x-monotone topological graph with n vertices has
at most Crn log n edges, for a suitable constant Cr depending on r.

Theorem 3.6. [PSS96] For any r ≥ 4, every r-quasi-planar simple topological graph G with n
vertices has at most Crn(log n)2(r−3) edges, for a suitable constant Cr depending only on r.

In Section 6, we will point out that Theorem 3.6 remains true even if we drop the assumption
that G is simple, i.e., two edges may cross more than once.

For 3-quasi-planar topological graphs we have a linear upper bound.

Theorem 3.7. [AAPPS97] Every 3-quasi-planar simple topological graph G with n vertices has at
most Cn edges, for a suitable constant C.

In Section 7, we give a short new proof of the last theorem, showing that here, too, one can
drop the assumption that no two edges cross more than once (i.e., that G is simple). In this case,
previously no bound better than O(n3/2) was known. Theorem 3.7 can also be extended in another
direction: it remains true for every topological graph G with no r + 2 edges such that each of the
first r edges crosses the last two and the last two edges cross each other. Of course, the constant C
in the theorem now depends on r [PRT02].

All theorems in this section provide (usually linear) upper bounds on the number of edges of
topological graphs satisfying certain conditions. In each case, one may ask whether a stronger state-
ment is true. Is it possible that the graphs in question can be decomposed into a small number
planar graphs? For instance, the following stronger form of Theorem 3.7 may hold:

Conjecture 3.8. There is a constant k such that the edges of every 3-quasi-planar topological graph
G can be colored by k colors so that no two edges of the same color cross each other.

McGuinness [Mc00] proved that Conjecture 3.8 is true for simple topological graphs, provided
that there is a closed Jordan curve crossing every edge of G precisely once. The statement is also
true for r-quasi-planar convex geometric graphs, for any fixed r (see [K88], [KK97]).

4 Generalized thrackles and their relatives

Two edges are said to be adjacent if they share an endpoint. We say that a graph drawn in the plane
is a generalized thrackle if any two edges meet an odd number of times, counting their common
endpoints, if they have any. That is, a graph is a generalized thrackle if and only if it has no two
adjacent edges that cross an odd number of times and no two non-adjacent edges that cross an even
number of times. In particular, a generalized thrackle cannot have two non-adjacent edges that are
disjoint. Although at first glance this property may appear to be the exact opposite of planarity,
surprisingly, the two notions are not that different. In particular, for bipartite graphs, they are
equivalent.

Theorem 4.1. [LPS97] A bipartite graph can be drawn in the plane as a generalized thrackle if and
only if it is planar.

Using the fact that every graph G has a bipartite subgraph with at least |E(G)|/2 edges, we
obtain that if a graph G of n vertices can be drawn as a generalized thrackle, then |E(G)| = O(n).
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Theorem 4.2. (Cairns-Nikolayevsky [CN00]) Every generalized thrackle with n vertices has at most
2n − 2 edges. This bound is sharp.

Figure 3. A generalized thrackle with n vertices and 2n − 2 edges

A geometric graph G is a generalized thrackle if and only if it has no two disjoint edges. (The
edges are supposed to be closed sets, so that two disjoint edges are necessarily non-adjacent.) One
can relax this condition by assuming that G has no r pairwise disjoint edges, for some fixed r ≥ 2.
For r = 2, it was proved by Hopf-Pannwitz [HP34] that every graph satisfying this property has at
most n edges, and that this bound is sharp. For r = 3, the first linear bound on the number of edges
of such graphs was established by Alon-Erdős [AE89], which was later improved to 3n by Goddard-
Katchalski-Kleitman [GKK96]. For general r, the first linear bound was established in [PT94]. The
best currently known estimate is the following:

Theorem 4.3. (Tóth [T00]) Every geometric graph with n vertices and no r pairwise disjoint edges
has at most 29(r − 1)2n edges.

It is likely that the dependence of this bound on r can be further improved to linear. If we
want to prove the analogue of Theorem 4.3 for topological graphs, we have to make some additional
assumptions on the structure of G, otherwise it is possible that any two edges of G cross each other.

Conjecture 4.4. (Conway’s Thrackle Conjecture) Let G be a simple topological graph of n vertices.
If G has no two disjoint edges, then |E(G)| ≤ n.

For many related results, consult [LPS97], [CN00], [W71]. The next interesting open question is
to decide whether the maximum number of edges of a simple topological graph with n vertices and
no three pairwise disjoint edges is O(n).

5 Locally planar graphs

For any r ≥ 3, a topological graph G is called r-locally planar if G has no selfintersecting path of
length at most r. Roughly speaking, this means that the embedding of the graph is planar in a
neighborhood of radius r/2 around any vertex. In [PPTT02], we showed that there exist 3-locally
planar geometric graphs with n vertices and with at least constant times n log n edges. Somewhat
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surprisingly (to us), Tardos [T02] managed to extend this result to any fixed r ≥ 3. He constructed
a sequence of r-locally planar geometric graphs with n vertices and a superlinear number of edges
(approximately n times the br/2c times iterated logarithm of n). Moreover, these graphs are bipartite
and all of their edges can be stabbed by the same line.

The following positive result is probably very far from being sharp.

Theorem 5.1. [PPTT02] The maximum number of edges of a 3-locally planar topological graph with
n vertices is O(n3/2).

For geometric graphs, much stronger results are known.

Theorem 5.2. [PPTT02] The maximum number of edges of a 3-locally planar x-monotone topolog-
ical graph with n vertices is O(n log n). This bound is asymptotically sharp.

For 5-locally planar x-monotone topological graphs, we have a slightly better upper bound on
the number of edges: O(n log n/ log log n). This bound can be further improved under the additional
assumption that all edges of the graph cross the y-axis.

Theorem 5.3. [PPTT02] Let G be an x-monotone r-locally planar topological graph of n vertices
all of whose edges cross the y-axis. Then, we have |E(G)| ≤ cn(log n)1/br/2c for a suitable constant
c.

6 Strengthening Theorem 3.6

In this section, we outline the proof of

Theorem 6.1. Every r-quasi-planar topological graph with n vertices has at most

fr(n) := Crn(log n)4(r−3)

edges, where r ≥ 2 and Cr is a suitable positive constant depending on r.

Let G be a graph with vertex set V (G) and edge set E(G). The bisection width b(G) of G is
defined as the minimum number of edges, whose removal splits the graph into two roughly equal
subgraphs. More precisely, b(G) is the minimum number of edges running between V1 and V2, over
all partitions of the vertex set of G into two disjoint parts V1 ∪ V2 such that |V1|, |V2| ≥ |V (G)|/3.
The pair-crossing number pair-cr(G) of a graph G is the minimum number of crossing pairs of
edges in any drawing of G.

We need a recent result of Matoušek [M02], whose analogue for ordinary crossing numbers was
proved in [PSS96] and [SV94].

Lemma 6.2. (Matoušek) Let G be a graph of n vertices with degrees d1, d2, . . . , dn. Then we have

b2(G) ≤ c(log n)2

(

pair-cr(G) +

n
∑

i=1

d2
i

)

,

where c is a suitable constant.

We follow the idea of the original proof of Theorem 3.6. We establish Theorem 6.1 by double
induction on r and n. By Theorem 7.1 (in the next section), the statement is true for r = 3 and for
all n. It is also true for any r > 2 and n ≤ nr, provided that Cr is sufficiently large in terms of nr,
because then the stated bound exceeds

(

n
2

)

. (The integers nr can be specified later so as to satify
certain simple technical conditions.)
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Assume that we have already proved Theorem 6.1 for some r ≥ 3 and all n. Let n ≥ nr+1, and
suppose that the theorem holds for r +1 and for all topological graphs having fewer than n vertices.

Let G be an (r + 1)-quasi-planar topological graph of n vertices. For simplicity, we use the same
letter G to denote the underlying abstract graph. For any edge e ∈ E(G), let Ge ⊂ G denote the
topological graph consisting of all edges of G that cross e. Clearly, Ge is r-quasi-planar. Thus, by
the induction hypothesis, we have

pair-cr(G) ≤ 1

2

∑

e∈E(G)

|E(Ge)| ≤
1

2
|E(G)|fr(n).

Using the fact that
∑n

i=1 d2
i ≤ 2|E(G)|n holds for every graph G with degrees d1, d2, . . . , dn, Lemma

6.2 implies that

b(G) ≤
(

c(log n)2|E(G)|fr(n)
)1/2

.

Consider a partition of V (G) into two parts of sizes n1, n2 ≤ 2n/3 such that the number of edges
running between them is b(G). Obviously, both subgraphs induced by these parts are (r + 1)-quasi-
planar. Thus, we can apply the induction hypothesis to obtain

|E(G)| ≤ fr+1(n1) + fr+1(n2) + b(G).

Comparing the last two inequalities, the result follows by some routine calculation.

7 Strengthening Theorem 3.7

The aim of this section is to prove the following stronger version of Theorem 3.7.

Theorem 7.1. Every 3-quasi-planar topological graph with n vertices has at most Cn edges, for a
suitable constant C.

Let G be a 3-quasi-planar topological graph with n vertices. Redraw G, if necessary, without
creating 3 pairwise crossing edges so that the number of crossings in the resulting topological graph
G̃ is as small as possible. Obviously, no edge of G̃ crosses itself, otherwise we could reduce the
number of crossings by removing the loop. Suppose that G̃ has two distinct edges that cross at least
twice. A region enclosed by two pieces of the participating edges is called a lens. Suppose there is
a lens ` that contains no vertex of G̃. Consider a minimal lens `′ ⊆ `, by containment. Notice that
by swapping the two sides of `′, we could reduce the number of crossings without creating any new
pair of crossing edges. In particular, G̃ remains 3-quasi-planar. Therefore, we can conclude that

Claim 1. Each lens of G̃ contains a vertex.

We may assume without loss of generality that the underlying abstract graph of G is con-
nected, because otherwise we can prove Theorem 7.1 by induction on the number of vertices. Let
e1, e2, . . . , en−1 ∈ E(G) be a sequence of edges such that e1, e2, . . . , ei form a tree Ti ⊆ G for every
1 ≤ i ≤ n − 1. In particular, e1, e2, . . . , en−1 form a spanning tree of G.

First, we construct a sequence of crossing-free topological graphs (trees), T̃1, T̃2, . . . , T̃n−1. Let
T̃1 be defined as a topological graph of two vertices, consisting of the single edge e1 (as was drawn
in G̃). Suppose that T̃i has already been defined for some i ≥ 1, and let v denote the endpoint of
ei+1 that does not belong to Ti. Now add to T̃i the piece of ei+1 between v and its first crossing
with T̃i. More precisely, follow the edge ei+1 from v up to the point v′ where it hits T̃i for the first
time, and denote this piece of ei+1 by ẽi+1. If v′ is a vertex of T̃i, then add v and ẽi+1 to T̃i and let
T̃i+1 be the resulting topological graph. If v′ is in the interior of an edge e of T̃i, then introduce a
new vertex at v′. It divides e into two edges, e′ and e′′. Add both of them to T̃i, and delete e. Also
add v and ẽi+1, and let T̃i+1 be the resulting topological graph.
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After n−2 steps, we obtain a topological tree T̃ := T̃n−1, which (1) is crossing-free, (2) has fewer
than 2n vertices, (3) contains each vertex of G̃, and (4) has the property that each of its edges is
either a full edge, or a piece of an edge of G̃.
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Figure 4. Constructing T̃ from T

Let D denote the open region obtained by removing from the plane every point belonging to T̃ .
Define a convex geometric graph H , as follows. Traveling around the boundary of D in clockwise
direction, we encounter two kinds of different “features”: vertices and edges of T̃ . Represent each
such feature by a different vertex xi of H , in clockwise order in convex position. Note that the same
feature will be represented by several xi’s: every edge will be represented twice, because we visit
both of its sides, and every vertex will be represented as many times as its degree in T̃ . It is not
hard to see that the number of vertices xi ∈ V (H) does not exceed 8n.

Next, we define the edges of H . Let E be the set of edges of G̃ \ T . Every edge e ∈ E may
cross T̃ at several points. These crossing points divide e into several pieces, called segments. Let S
denote the set of all segments of all edges e ∈ E. With the exception of its endpoints, every segment
s ∈ S runs in the region D. The endpoints of s belong to two features along the boundary of D,
represented by two vertices xi and xj of H . Connect xi and xj by a straight-line edge of H . Notice

that H has no loops, because if xi = xj , then, using the fact that T̃ is connected, one can easily

conclude that the lens enclosed by s and by the edge of T̃ corresponding to xi has no vertex of G in
its interior. This contradicts Claim 1.

Of course, several different segments may give rise to the same edge xixj ∈ E(H). Two such
segments are said to be of the same type. Observe that two segments of the same type cannot
cross. Indeed, as no edge intersects itself, the two crossing segments would belong to distinct edges
e1, e2 ∈ E. Since any two vertices of G are connected by at most one edge, at least one of xi and
xj corresponds to an edge (and not to a vertex) of T̃ , which together with e1 and e2 would form a
pairwise intersecting triple of edges, contradicting our assumption that G is 3-quasi-planar.

Claim 2. H is a 3-quasi-planar convex geometric graph.

To establish this claim, it is sufficient to observe that if two edges of H cross each other, then
the “features” of T̃ corresponding to their endpoints alternate in the clockwise order around the
boundary of D. Therefore, any three pairwise crossing edges of H would correspond to three pairwise
crossing segments, which is a contradiction.

A segment s is said to be shielded if there are two other segments, s1 and s2, of the same type,
one on each side of s. Otherwise, s is called exposed. An edge e ∈ E is said to be exposed if at least
one of its segments is exposed. Otherwise, e is called a shielded edge.

In view of Claim 2, we can apply Theorem 3.4 [CP92] to H . We obtain that |E(H)| ≤ 4|V (H)|−
10 < 32n, that is, there are fewer than 32n different types of segments. There are at most two
exposed segments of the same type, so the total number of exposed segments is smaller than 64n,
and this is also an upper bound on the number of exposed edges in E.

It remains to bound the number of shielded edges in E.
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Claim 3. There are no shielded edges.

Suppose, in order to obtain a contradiction, that there is a shielded edge e ∈ E. Orient e
arbitrarily, and denote its segments by s1, s2, . . . , sm ∈ S, listed according to this orientation. For
any 1 ≤ i ≤ m, let ti ∈ S be the (unique) segment of the same type as si, running closest to si on
its left side.

Since there is no self-intersecting edge and empty lens in G̃, the segments ti and ti+1 belong to
the same edge f ∈ E, for every i < m (see Fig. 5). However, this means that both endpoints of e
and f coincide, which is impossible.

We can conclude that E has fewer than 64n elements, all of which are exposed. Thus, taking into
account the n− 1 edges of the spanning tree T , the total number of edges of G̃ is smaller than 65n.

s s

t ti i+1

i
i+1

s s

t ti i+1

i
i+1

s s

t ti i+1

i
i+1

Figure 5. ti and ti+1 belong to the same edge
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[KSz96] J. Komlós and E. Szemerédi, Topological cliques in graphs II, Combin. Probab. Comput. 5 (1996),
79–90.

[K84] A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combina-
torica 4 (1984), 307–316.

[K88] A. V. Kostochka, Upper bounds on the chromatic number of graphs (in Russian), Trudy Inst. Mat.
(Novosibirsk), Modeli i Metody Optim., 10 (1988), 204–226.

[KK97] A. V. Kostochka and J. Kratochv́ıl, Covering and coloring polygon-circle graphs, Discrete Math.
163 (1997), 299–305.

[L84] F. T. Leighton, New lower bound techniques for VLSI, Math. Systems Theory 17 (1984), 47–70.
[LPS97] L. Lovász, J. Pach, and M. Szegedy, On Conway’s thrackle conjecture, Discrete and Computational

Geometry, 18 (1997), 369–376.
[M98] W. Mader, 3n − 5 edges do force a subdivision of K5, Combinatorica 18 (1998), 569–595.
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