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Abstract

For any n, k, n > 2k > 0, we construct a set of n points in the plane with neQ( Viog k’)
k-sets. This improves the bounds of Erdds, Lovész, et al. As a consequence, we also
improve the lower bound for the number of halving hyperplanes in higher dimensions.

1 Introduction

For a set P of n points in the d-dimensional space R%, a k-set is subset P’ C P such that
P' = PN H for some open half-space H, and |P'| = k. The problem is to determine the
maximum number of k-sets of an n-point set in R%. Even in the most studied two dimensional
case, we are very far from the solution, and in higher dimensions even less is known.

The first results in the two dimensional case are due to Lovasz, and Erddés, Lovész,
Simmons and Straus [L71], [ELSS73]. They established an upper bound O(nvk), and a
lower bound Q2 (nlogk). Despite great interest in this problem [GP84], [W86], [E87], [S91],
[EVWO7], [AACS98], partly due to its importance in the analysis of geometric algorithms
[EW86], [CP86], [CSY8T7], [E87], there was no progress until the very small improvement due
to Pach, Steiger and Szemerédi [PSS92]. They improved the upper bound to O(nvk/ log* k).
Recently, Dey [D98] obtained an essential improvement of the upper bound; his bound is
O(nvk). There was no improvement on the lower bound of ErdSs et al., besides little
improvements on the constant [EW85], [E92], [E98].

Theorem 1. For any n, k, n > 2k > 0, there exists a set of n points in the plane with

neﬂ( Viog k) k-sets.
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In the dual setting, Theorem 1 gives an arrangement of n lines such that the complexity
of the k-th level (the number of intersection points having exactly k lines above them) is

neﬂ( Vicg k). A similar bound was obtained by Klawe, Paterson and Pippenger [KPP82] for
the complexity of the median level (kK = n/2) in pseudoline arrangements (see also [GP93],
[AW99]). However, our construction seems to be essentially different.

Definition 1. Let n > d > 2, n — d even, and let P be a set of n points in R in general
position (no d+ 1 of them lie in the same hyperplane). A hyperplane determined by d points
of P is called a halving hyperplane (resp. halving line for d = 2 and halving plane for d = 3)
if it has exactly (n — d)/2 points of P on both sides.

In the plane, there is a one-to-one correspondence between complementary pairs of n/2-
sets and halving lines [AG86] and for any fixed d, the number of halving hyperplanes is
proportional to the number of |n/2|-sets [E87], [DE94]. Theorem 1 is based on the following
result.

Theorem 2. For any n > 0 even, there exists a set of n points in the plane with neQ(V log n)
halving lines.

The k-set problem in space seems even harder than in the plane. The most interesting
and studied case is k = n/2, i. e. finding the maximum number of halving planes. The first
nontrivial upper bound was given by Bérdny, Fiiredi and Lovéasz [BFL90]. It was improved by
Aronov et al. [ACE91], Eppstein [E93] and then by Dey and Edelsbrunner [DE94] (see also
[AACS98)). The best known bound, O(n5/2), was found very recently by Sharir, Smorodinsky
and Tardos [SST99]. In d > 3 dimensions, the trivial upper bound, O(n¢) was only very
slightly improved, to O(n?¢4) by Zivaljevi¢ and Vreéica [ZV92] (see also [ABFK92]). The
best known lower bound in d > 3 dimensions, (2 (nd_l log n) follows directly from the lower
bound in the plane, as described in [E87]. Using Theorem 1 and the method shown in [E87],
we obtain an immediate improvement.

Theorem 3. For any n > 0, d > 2, there exists a set of n points in R% with nd_leﬂ( Viogn)
halving hyperplanes.

2 Idea of the construction

It is not hard to see and and shown in the next section that it is enough to consider the case
k =mn/2, 1. e. the case of halving lines. Then the construction for other values of k can be
obtained easily.

We construct a sequence of point sets, Vg, V1, Vs, ..., recursively. For 1 =0,1,2,... V; has
n; points and at least m; halving lines. Suppose that we already have V;_; with parameters
n;—1 and m;_1. We can assume that none of the lines determined by the points is horizontal.



Replace each of the points v € V;_1 by a = a; points, v1,vs,...,vs, lying from left to right
on a short horizontal segment very close to v. Let the resulting point set be V' ;. Now we
have an;_1 points. If the line uw is a halving line of V;_; then wjwg, ugwqe—1, ... uqw; are all
halving lines of V' ; (Fig. 1). Therefore, we get am;_; halving lines. Clearly, this recursive
construction would give only m; = O(n;).

Now suppose that for each v € V;_;, the points v;,v9,...,v, replacing v are placed
equidistantly on the corresponding very short horizontal segment. Let uw be a fixed halving
line of V;_;. Suppose also that u lies higher than w. Then the corresponding a halving lines
of V! |, uiwg, ugwg_1, - . . ugwi pass through the same point ¢ (Fig. 1). Add two more points,
z and y to V;_;. Let z be a point on the horizontal line through ¢, very close to ¢ and to
the left of it, and let y be anywhere on the left side of the oriented line Zuy and on the right
side of Zwy. Then, uiwg, UoWe_1,-- - Ugw1 are not halving lines any more, since they have
two more points on one of their sides than on the other. Observe, however, that the lines
TUL, TUY, . . . ,TUg and Twi, TWa, - ..Tw, are all halving lines now. Consequently, by adding
two extra points, we obtain 2a halving lines corresponding to the original halving line uw,
instead of a, as in V/ ;. We would like to add those extra points similarly for each pair
u,w € V;_1, whenever uw is a halving line of V;_;. The problem is that these extra points
z and y work very well locally for uw, but they might ruin the other halving lines as they
might be on their same side.
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Figure 1.



Once u and w are replaced by the a equidistant points, ¢ is given, and we have very little
freedom in choosing the location of z. On the other hand, we have much more freedom with
y. The only way we can essentially relocate ¢ and hence z, is to change the distance between
the consecutive points replacing u and v. In our construction, we place the extra points x
and y for each halving-pair u,w € V;_; and introduce some further extra points, in such a
way that none of the halving lines is ruined. So, finally every original halving line is replaced
by 2a halving lines, and the number of points is just slightly more than a times the original
number of points. More precisely, m; = 2am;_1 and n; = an; 1. With a proper choice of
a = a;, this will give the desired bound.

3 Proofs of Theorems 1 and 2

First we show how Theorem 1 follows from Theorem 2, and then we prove Theorem 2.

Figure 2.



Proof of Theorem 1. Let n, k, be fixed, n > 2k > 0, let m = |n/2k], and let m' = n—2km.
Let X1, Xo,...,Xm be the vertices of a regular m-gon, inscribed in a unit circle with center
C. Let € > 0 be very small and let X;(¢) be the e-neighborhood of X; (i =1,2,...,m), and
C(e) be the e-neighborhood of C.

By Theorem 2, there exists a 2k-element point set .S, with 2keQ(\/loﬂ) halving lines. For
any 1 < i < m apply a suitable affine transformation A; to S such that A4;(S) = S; C X;(¢)
and for any halving line £ of S;, all X;(e), 1 < j < m, j # ¢, are on the same side of .
Finally, let S’ be a set of m' points in C(¢). Then the set T = S’ U, S; has m2k +m' =n

points and m2keQ(V logk) _ neQ(V log k) k-sets (Fig. 2). O

Definition 2. For a positive integer a and ¢ > 0, let P(a,¢) be a set of a equidistant
points lying on a horizontal line such that the distance between the first and last points
is . Then P(a,¢) is called an (a,€)-progression. We say that a point p is replaced by an
(@, )-progression, if p is identical to one of the points in the progression.

Definition 3. A geometric graph G is a graph drawn in the plane by (possibly crossing)
straight line segments, i.e., it is defined as a pair G = (V, E), where V is a set of points in
general position (no three on a line) in the plane and E is a set of closed segments whose
endpoints belong to V' (see also [PA95]).

Proof of Theorem 2. We construct a sequence of geometric graphs Go(Vy, Eo), G1(V1, E1),
Go(Va, E3), ..., recursively with the property, that for any ¢, every edge e € E; is a halving
line of V;. For i = 0,1,2,..., G; has |V;| = n; vertices and |E;| = m; edges. Denote the
mazimum degree of a vertex in G; by d;.

Let G have two vertices (points) and an edge connecting them. Suppose that we have
already constructed G;_1. Assume without loss of generality that no edge of G;_1 is horizon-
tal. Let € = ¢; > 0 be very small, and let vy, vg,...,v,,_, be the vertices of G;_;. The graph
G;i(V;, E;) is constructed in three steps.

STEP 1. For j = 1,2,...n;_1, replace v; by an (a;,&’)-progression. The exact value of a = a;
will be specified later. The resulting point set is V' ;.

STEP 2. Let e be an element of E;_; with endpoints u and w. Then, for some 1 < o, 8 < n;_1,
we have u = v,, w = vg. Suppose without loss of generality that < 3. Denote
the points of the arithmetic progression replacing u (resp. w) by u1,ug,...,u, (resp.
wy,Wa, ..., Ws). Let ¢ be the intersection of the lines ujwg, ugwg—1, - . - ugwy (Fig. 1).
Add two more points, z and y to the point set as follows.

Place x so that zgq is horizontal, x is to the left of ¢ and the distance Zgq is so small that
for 1 < j < a, the line zu; separates wy,wo, ... wq ; from wg_j41,...w,, and similarly,
the line zw; separates u, ug,...uq—; from u,_ji1,...uq,.



Finally, let z be the intersection point of the line zu, with the line passing through
w1, Wa, ..., W,, and place y so that the vectors g2 and z7 are equal. (see Fig. 1).

Add the edges {zui,zus,...,xUq, TW1, TW2, ..., TWws} to E;.

Since ¢ is very small and o < 3, we obtain that x and y are in a small neighborhood of w.
Moreover, wiy,ws, .. .,w, must be very close to the midpoint of the segment zy. Therefore,
any line vw, with w € {wy,ws,...,we}, v € V;_;, and v &€ {uy,ug,...,u,}, intersects the
segment zy very close to its midpoint, in particular, it separates z and y.

Execute STEP 2 for every edge e € E;_1.

STEP 3. Let u be an element of V;_1. In STEP 1, we replaced u by an (a, &7 )-progression, say
{u1,ug,...,uq}, from left to right. In STEP 2, we possibly placed some pairs of points
in a small neighborhood of u. Denote the number of those points by 2D. For each edge
of G;_1 adjacent to u, we placed zero or two points in the neighborhood of u, and the
number of those edges is at most d;_1. Therefore, we have D < d;_;.

Place d;—1 — D points on the line of {u1,ug,...,u.}, to the left of u;, such that their
distance from u; is between € and 2¢. Analogously, place d;_1 — D points on the line of
{u1,ug,...,uq}, to the right of u,, such that their distance from wu, is between ¢ and
2¢ (see Fig. 3).

Execute STEP 3 for every vertex u € V;_1, and finally, perturb the points very slightly so
that they are in general position. Let G;(V;, E;) be the resulting geometric graph.
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Figure 3.

Claim 1. All edges in E;, introduced in STEP 2, are halving lines of V;.

Proof of Claim 1. Let e € E; 1 be any edge of G;_1 with endpoints u,w € V;_;.
Use the notations introduced in STEP 2. Let 1 < j < a. We know that the line zu;
separates wi, ws,...Wq; from we_jy1,...we. Therefore, it is a halving line of the point set
{z,y,u1,u,..., U Wi, Wa,...,we}. All the other points in the neighborhoods of u and w are
introduced in pairs, one on each side of the line zu;. Since uw is a halving line of V;_1, there
are exactly (n;_; — 2)/2 points of V;_; on both sides of uw, and each of them are replaced
by exactly a + 2d;_1 points in their small neighborhoods. Therefore, we can conclude that
the number of points of V;, lying on different sides of uw are the same. O



Each vertex of G;_1 is replaced by a+2d;_; points. Therefore, |V;| = n; = (a+2d;_1)n;_1.
For each edge e € E;_1, we introduced 2a edges in E;. Consequently, |E;| = m; = 2am;_1.
Let a = 4d;_1. Then we have

n; = 6d;_1n;_1, (1)

m; = 8d;_1mi_1. (2)
Now we calculate d;. There are three types of points in V;.

1. Those points which are introduced in STEP 1. They have the same degree in G; as the
original point in GG; ;. Hence, the maximum degree of those points is d; 1.

2. Those points which are introduced in STEP 2. Half of them have degree zero, the other
half has degree 2a = 8d; 1.

3. Those points which are introduced in STEP 3. They all have degree zero.

Therefore, for i > 0, the maximum degree is d; = 8d;_,. Since dy = 1, we have d; = 8.
Using (1) and ng = 2,

ng =2 6. gLzt Fi-1) = 8%+(1og8 6-3)its
Analogously, using (2) and my =1,

. . .2 .
m; = 8. gl A1) — g5 +3,

['herefore,
1 :
m; nis(l—logs 6)i—3 nieQ(\/lognl) ]

This proves Theorem 2 if n is of the form 2 - 6% - 812+ +(~1) for some i > 0. It is not
hard to extend the result for every n, using the following easy and well known results [L71],
[ELSS73], [E87]. Let f(n) be the maximum number of halving lines of a set of n points in
the plane.

Claim 2. For a,n >0, (i) f(an) > af(n), and (ii) f(n+2) > f(n).

Proof of Claim 2. Let P be a set of n points with f(n) halving lines and suppose that
no line determined by the points of P is horizontal. For (i), replace each point of P by an
(a,€&’)-progression. (See also the previous section and Fig. 1.)

For (ii), add two points to P, one very far from P to the left and one very far to the right.
Then all halving lines of P are halving lines of the new point set. O

This concludes the proof of Theorem 2.



4 Proof of Theorem 3

Let f4(n) be the maximum number of halving hyperplanes of a set of n points in R%.

Claim 3. Forn >0, fiy(n+2) > fi(n).
Proof of Claim 3. The proof is analogous to the proof of Claim 2 (ii). O

Suppose for simplicity that d is even. For d odd, the proof is analogous. By Claim 3, we
can assume without loss of generality that n is divisible by 6. Let P; be a set of n/3 points
in the intersection of the hyperplanes ;1 = 0 and 9 = 1 such that no d — 1 of them lie in
a common d — 3 dimensional affine subspace. Let P, = —P; that is, P, is the reflection of
P, about the origin. Any hyperplane that contains the x1-axis and avoids P;, also avoids P,
and cuts the set P; U P, into two equal subsets. Let P3 be a set of n/3 points in the plane

spanned by the z; and z4 axes, with neQ(\/@) halving lines, such that the points of P; are
very close to the origin, and all halving lines have very little angles with the z-axis. Now any
hyperplane which contains a halving line of P3 and avoids P, U P, is a halving hyperplane
of the set P, U P, U P5. Since for any halving line of P, there are {2 (nd_Q) combinatorially
different such hyperplanes, Theorem 3 follows.

Remarks. 1. The proof of Theorems 1 and 2 imply the lower bound ned-282VInk=2.1 fo,
the number of k-sets. If we use a better choice for the value of a;, a proper ordering of the
vertices of G;_1 before STEP 1, and place the additional points in STEP 3 more carefully, we
can obtain the lower bound ne®744Vink=2.7 5 %2m.

2. Based on Theorem 3 and the proof of Theorem 1, it is not hard to construct an n-element
point set in R¢ with nkd-2eHVIoek) _gopo
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