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Abstract

Let F denote a family of pairwise disjoint convex sets in the plane. F is said to be
in conver position, if none of its members is contained in the convex hull of the union
of the others. For any fixed k > 3, we estimate Py (n), the maximum size of a family
F with the property that any k members of F are in convex position, but no n are. In
particular, for k¥ = 3, we improve the triply exponential upper bound of T. Bisztriczky
and G. Fejes Té6th by showing that P3(n) < 16™.

1 Introduction

In their classical paper [ES1], ErdSs and Szekeres proved that any set of more than (27?:24)

points in general position in the plane contains n points which are in convex position, i.e.,
they form the vertex set of a convex n-gon. T. Bisztriczky and G. Fejes Téth [BF1], [F]
extended this result to families of convex sets.

Throughout this paper, by a family F = {Ai,...,A;} we always mean a family of
pairwise disjoint compact convex sets in the plane in general position, i.e., no three of them
have a common supporting line. F is said to be in convez position if none of its members is
contained in the convex hull of the union of the others, i.e., if bd conv(UF), the boundary
of the convex hull of the union of all members of F, contains a piece of the boundary of
each A;. Evidently, any two members of F are in convex position.

T. Bisztriczky and G. Fejes T6th proved that there exists a function P(n) such that if
|F| > P(n) and any three members of F are in convex position, then F has n members in
convex position. Improving their initial result, in [BF2] they showed that this statement
is true with a function P(n), triply exponential in n. They also remarked that “it seems
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that none of the” previous proofs of the Erdds-Szekeres theorem “can be modified so as to
obtain a proof of our theorem.” One of the aims of the present note is to show that the idea
of the original proof of Erdés and Szekeres can be applied to deduce the Bisztriczky-Fejes
T6th theorem with a much better function P(n) < 16™.

Theorem 1. Let F be a family of n pairwise disjoint compact convex sets in the plane,
any three of which are in convex position. If

2
2n —4
> (n_2> ,

then F has n members in convez position.

If any k£ members of F are in convex position, then we say that F satisfies property
Pi. If no n members of F are in convex position, then we say that F satisfies property
P". Property P’ means that both P, and P" are satisfied. Using these notions, Theorem
1 states that if a family F satisfies property P, then |F| < (277__24)2.

T. Bisztriczky and G. Fejes Téth [BF2] raised the following more general question. What
is the maximum size Py (n) of a family F satisfying property P;'? They gave an exponential
upper bound on P4(n), and quadratic upper bounds on Py(n) for any fixed k > 5, as n
tends to infinity. Some of these estimates can be improved as follows.

Theorem 2. 2|2 |2 < Py(n) < n?
Theorem 3. Pii(n) < cnlogn
Obviously, P;(n) < Px(n) holds for every | > k.

2 Proof of Theorem 1

The combinatorial seed of the original proof of the Erdds-Szekeres theorem was isolated
and generalized by Chvital and Komlés. A complete graph, whose edges are arbitrarily
oriented, is called a tournament. An acyclic tournament is said to be transitive.

Lemma 2.1 [CK] Let T be a transitive tournament with more than (2n”_724 ) vertices, and let

f be any real-valued function defined on its edge set.
Then there is an oriented path vivy - - - v, with n vertices such that the sequence f(v103),
f(0208), ..., f(Un_10y) is either monoton increasing or strictly decreasing.

We use this statement to establish the following result, whose part (ii) was proved in
[BF2].

Lemma 2.2. Let F be a family of compact convez sets in the plane, satisfying property P3'
and at least one of the following two conditions:



(i) any two members of F can be separated by a vertical line;
(i) there is a line intersecting all members of F.

Then F has at most t = (2:__24) members.

Proof. In case (ii), we can assume without loss of generality that the common transversal
of the elements of F is horizontal.

Fig. 1.

Let Ay, Ag, ..., A; be the members of F listed from left to right (with respect to their
projections onto the z-axis in case (i), and with respect to their intersections with the com-
mon transversal in case (ii)). For any 1 < ¢ < j < ¢, there are four uniquely determined
points p1, g1 € bd A;; p2,g2 € bd A; such that the segments p1ps, 192 belong to the bound-
ary of conv (4; U A;), and along this boundary the counter-clockwise order of these points
is p2,p1,q1,92- Let f(i,7) and g(7, 7) denote the counter-clockwise angles from the direction
of the positive z-axis to psp{ and gaqf, respectively (see Fig. 1).

Since F satisfies property Ps, for any ¢ < j < k with f(4,7) < f(j, k), we have g(i,j) <
904, k).

Define a transitive tournament with vertices v1,vo, ..., v, such that every edge is ori-
ented toward its endpoint of larger index. For any 7 < 7, assign to the edge 'vaJ) the value
f(i,7). By Lemma 2.1, if ¢t > (27:‘:24), then there is a directed path v;,,vj,, ..., v;, such that
either

f(i1,02) < flig,i3) < ..o < flin—1,1n)

or
flit,d2) > f(i2,43) > ... > flin_1,%n).



In both cases, it is easy to verify that (4;,, A;,,- .., A4;,) are in convex position (see Fig. 2).
O

f(1,2)

Q\” oy

Fig. 2. f(1,2) > f(2,3) > f(3,4) > f(4,5)
Now we are ready to prove Theorem 1. Let F be a family of more than (27?:24)2 convex
sets in the plane satisfying property P3. Projecting these sets onto the z-axis, we obtain
a system of intervals Z. A well-known result of Gallai (see [B], p.373) implies that Z has
more than (2:__24) elements that are either pairwise disjoint or all of them have a point in
common. In the first case, the corresponding elements of F can be separated by vertical
lines, in the second case all of them can be intersected by one line. In either case, we can

apply Lemma, 2.1 to finish the proof. O

3 Proof of Theorem 2

Let F = {A1, Ag,..., A} be a family of pairwise disjoint convex sets in general position in
the plane. Denote the convex hull of UF = U!_, 4; by conv F. The boundary of conv F,
bd conv F, consists of finitely many boundary pieces of the A;’s, called vertez-arcs, con-
nected by straight-line segments, called edge-arcs. (This terminology reflects the picture in
the special case when every set A; is a single point.)

The elements A; € F contributing at least one vertex-arc to the boundary of conv F
will be called vertices of conv F or, simply, vertices of F. If A is not a vertex, then it is
said to be an internal member of F.

Lemma 3.1 [BF2] Let k > 4 and let F be a family of pairwise disjoint convex sets in the
plane satisfying property Py. If F has m vertices then there are L%J lines such that any
internal member of F is intersected by at least one of them.
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Lemma 3.2 Let F be a family of disjoint convex sets satisfying property P, and assume
that there is a line £ intersecting all members of F. Then F has at most (n — 2)2 + 1
members.

Proof. Let Ay, As,..., A; be the members of F listed in the order of their intersections
with £. For any A;, A;, 1 <i < j <t, define f(i,7) and ¢(¢,7) exactly as in the proof of
Lemma 2.2.

If f(’il,’iQ) > f(’iQ,’i3) > 00> f(’i]c_l,’ik) for some i1 < i < ... < @ , then Ail,Ai2,
..., A;, , are said to form an upper chain of length k. They form a lower chain of length k, if
g(i1,12) < g(io,i3) < ... < g(ig_1,%k)- It is easy to see that, in both cases A;,, Ai,,..., A
are in convex position.

For any 2 < i < j <, let u; (resp. [;) be the length of the longest upper (resp. lower)
chain that ends with A;. Clearly, u;,l; > 2.

Claim. If i # k, then (u;, ;) # (ug,lx).

ik

Indeed, if u; = up = u, l; = Il = [ for some ¢ < k, then neither the longest upper chain
Aiyy...,Aj, = A; nor the longest lower chain A;,..., A; = A; ending with A; could
be extended by Ay to a longer (upper resp. lower) chain. Therefore, f(iy—1,7) < f(i,k)
and g(ji—1,%) > g(i,k), which would imply conv (4;,_, U Aj, , UA;) D A;, contradicting
property Py. (See Fig. 3.)

It follows from the Claim and from the fact that w;,l; > 2 for every 2 < ¢ < ¢t that, if
t>(n— 2)2 + 1, then there is an 4 such that either u; > n or I; > n. So, there is an upper
(resp. lower) chain of length n, and its elements are in convex position. O




Proof of Theorem 2. First we prove the upper bound. Let F be a family satisfying
property PJ' and suppose for contradiction that |F| > (n —4)((n — 2)2 + 1) + n.

By Lemma 3.1, one can select at most n — 4 lines such that every internal member of
F intersects at least one of them. Since F has at least (n — 4)((n —2)? + 1) + 1 internal
members, one of the lines intersects at least (n — 2)2 + 2 members of F. By Lemma 3.2, F
has n members in convex position, contradicting property P".

Fig. 4

The lower bound is shown by the following construction. Suppose for simplicity that
n = 4k + 3 for some k, and let F denote the family of vertical segments

Sij ={(z,y) | = = zi5, yij <y <yi;},
1<i<2k+2 1<j<2min(i,2k —i+3) — 1, where
i _ : 2 Ne 2 2 112
zij =i+ej, yij =2k —i+2)"+(eh)7, v =2k +3)" —i" — (e(k— )7,

and ¢ is an extremely small positive number (see Fig. 4). Clearly, |F| = 2(k + 1)2 > n?/8.
For any S = S;; € F, let i(S) =1,5(S) = J.



Let 7' be a subfamily of F, S;; € F'. Observe that if (z;;,y;;) is not a vertex of
conv F', then there are S1, Sy € F' such that i(S1) > 7, i(S2) = %, and j(S2) < j. Similarly,
if (z45,vi;j) is not a vertex of conv F’, then there are S3,S4 € F' such that i(S3) < 4,
i(S4) =1, and j(S4) > j. Therefore, if S;; is not a vertex of F’, then F' has at least four
other members. This shows that F’ satisfies property P;.

It remains to show that F satisfies property P™. To see this, consider a subfamily
F' C F with |F'| > n > 4k + 2. Tt is easy to see that there are S, So, S3,S4, S5 € F' such
that 7(S1) < i(S2) = i(S3) = 1(S4) < i(S5) and j(S2) < 7(S3) < j(Ss). Then, by the above
observation, S3 is not a vertex of F’, so the members of F' are not in convex position. This
completes the proof of Theorem 2. O

4 Proof of Theorem 3

Lemma 4.1. Let F be a family of disjoint convez sets in the plane, satisfying property Ps
and at least one of the following two conditions:

(i) any two members of F can be separated by a vertical line;

(i) there is a line intersecting all members of F.
Then F is in convez position.

Proof. Case (ii) was settled by Bisztriczky and Fejes Téth [BF2]. So we have to prove the
assertion only in case (i).

Let Aj, Ag,..., A; denote the members of F listed from left to the right. Clearly, A;
and Ay are vertices of F, so we can choose two points, x € A1, y € A, that belong to the
boundary of conv F. Let a(zy) (and a(yz)) denote the counter-clockwise oriented arcs from
z to y (from y to z, respectively).

Suppose that A; is not a vertex of conv F for some 1 < j < t. Let

a =max{i | i < j, A; meets a(zy)},
B = min{i | i > j, A; meets a(zy)},
v =max{i | i < j, A; meets a(yzx)},
d =min{i | i > j, A; meets a(yz)}.

(Since A; and Ay meet both a(zy) and a(yz), these numbers are well defined.) Notice that
conv (A, U Ag U A, UA;) D Aj, contradicting property Ps. O

Lemma 4.2. Let F be a family of disjoint convex sets in the plane, satisfying property Py .
Suppose that there are m vertical lines such that every member of F intersects at least one
of them.



Then one can choose at most |m/2] vertical lines so that every internal member of F
intersects at least one of them.

Proof. Suppose that every member of F intersects at least one of the vertical lines 41, £s,. . .,
L, ordered from left to right. For any i, let F;, F«;, and F~; denote the families of all
members of F intersecting ¢;, lying in the open half-plane to the left of £;, and in the open
half-plane to the right of ¢;, respectively.

It is sufficient to show that every internal member of F intersects at least two distinct
lines £;, and then it follows that 3,44, ..., £3;,/2) meet the requirements of the lemma.

Suppose, for contradiction, that there is an internal member A € F which intersects
only one line ¢;, and assume that 1 < ¢ < m. (The cases when i = 1 or m are similar, but
somewhat simpler.)

Let X and Y be two vertex-arcs on the boundary of conv F such that there is a point
z € X in the closed half-plane to the left of ¢;, and there is a point ¥y € Y in the closed
half-plane to the right of 4,,. Let a(zy) and a(yz) denote the counter-clockwise oriented
arcs of the boundary of conv F from z to y, and from y to z, respectively.

Let Vi (and Vi) denote the last (resp. first) vertex-arc along a(zy), which belongs to
a member of F.; (of Fs;, respectively). If there is no such vertex-arc, let V; = X (resp.
Vi =Y). Clearly, if there is any vertex-arc on a(z,y) between Vi and V4, it must belong to
an element of F;. Let V5 (resp. V3) denote the vertex-arc succeeding Vi (resp. preceding Vy)
along a(z,y). Similarly, define the vertex-arcs Uy, Us, Us, Uy along the oriented arc a(yz).

Let A1, Ag, ..., A; denote the members of F; listed from top to bottom, in order of their
intersections with 4;. (A appears in this list, i.e., A = A, for some 1 < r < s.) By Lemma
5.1(ii), F; is in convex position. Let ' € bd A; and 3’ € bd A; be two boundary points of
conv F;. Let a(z'y’) (and a(y'z’)) denote the oriented arcs connecting z’ to y' (resp. y' to
z') along bdconv F;. Assume without loss of generality that A has a boundary point on
a(y'z"). We distinguish two cases.

If A has a boundary point on a(z'y’), then let us define G as the collection of those
members (vertices) of F which correspond to the vertex-arcs Vi,...,Vy, Us,...,Us.

If A does not have a boundary point on a(z'y’), then let

a = max{i | i <, A; has a point on a(z'y’)},
B =min{i | i > r, A; has a point on a(z'y’)}.

Since both ' € A; and y' € A, belong to a(z'y’), @ and 8 are well defined. Now let G
consist of A, Ag, and the members of F, corresponding to V1,...,Vy,U,...,Us.

In both cases, G has at most 10 members. It is easy to check that none of the edge-arcs
of conv G can be met by A. Since A N¥4; C conv G, we obtain that A must be contained in
the convex hull of G, contradicting property Pj; (see Fig. 5). O



Now we can prove Theorem 3. Let F be a family of disjoint convex sets in the plane
satisfying property Pl%. In view of Lemma 4.1(i), no n members of F can be separated
from each other by vertical lines. Thus, according to a well-known result of T. Gallai (cited
before), one can find n — 1 vertical lines such that every member of F intersects at least
one of them.

Let F; denote the family of all internal members of F. Clearly, |F1| > |F| —n. By
Lemma 4.2, all members of F; can be pierced by |%51] < n/2 vertical lines. Similarly, the
family F; of all internal members of F; has more than |F| — 2n members, and all of them
can be intersected by fewer than n/4 vertical lines. Applying Lemma 4.2 repeatedly, after
at most |logy n] steps, we end up with a subfamily of F, which has more than |F| —nlogyn

members, and they all intersect the same line. By Lemma 4.1(ii), this implies that
|F| —nlog,n < n,

concluding the proof of Theorem 3.
U3
U, > ~

/

ViV

=<

Fig. 5
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