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Abstract

It is proved that for n > 3, [2(n — 3)] guards are enough to monitor any simply
connected art gallery room of n sides if they are stationed at fixed points and their
range of vision is 180°. Furthermore, the position of the guards can be determined by
an O(n)-time algorithm.

1 Introduction

A typical “art gallery theorem” provides combinatorial bounds on the number of guards
needed to visually cover a polygonal region P (the art gallery) defined by n vertices.

J. Urrutia posed the following question: What is the minimum number f(n) of guards
needed to monitor any simply connected art gallery of n sides if the guards are to be
stationed at fixed points and their range of vision is 180° ?

If the range of vision of the guards is 360° then exactly [n/3] of them are needed to
monitor any simply connected art gallery room of n sides [5, 9]. Therefore, f(n) > [n/3]
and it is conjectured [13] that f(n) = |n/3].

In 1992, H. Bunting, D. Larman, and the present authors showed that f(n) < L%(n+%)J.
In this note we prove that f(n) < [2(n —3)] for n > 3.

2 The Main Theorem

Definition. For any polygon P, let s(P) denote the number of sides of P.

P is said to be reducible if there exist two numbers, n and m, and two polygons P’ and
Q@ such that

e P=PuUQ,

e P’ is simply connected,

e s(P') =s(P)—n,

e () is visible by m guards, whose range of vision is 180°,

o <2

m — 5°



Theorem. [%(n — 3)] guards whose range of vision is 180° are sufficient to monitor any
simply connected art gallery with n sides (n > 3).

Proof of the Theorem. In the sequel we assume that the range of vision of the guards is
180°. We use three lemmas whose proof is postponed to Section 3.

Lemma 1. Every octagon can be monitored by two guards.

Let P (a polygon of n sides) denote the art gallery. We prove the Theorem by induction
on n. It is easy to see that every pentagon is visible by one guard, so by Lemma 1 it is
enough to prove that P is reducible.

Let us triangulate P. Denote by Gp the dual graph of the triangulation, that is, a
graph whose nodes are the triangles of this triangulation, and two nodes are connected by
an edge whenever the corresponding triangles share a side. Gp is a tree since P is simply
connected.
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Fig. 1.

Suppose first that Gp has an ending isomorphic to E; or Ey (Fig. 1.). Both configura-
tions correspond to a pentagon in P. These pentagons join to the rest of P by an edge of
a triangle, so we can cut it off by this edge. This way we get a P’ polygon of n — 3 edges
and since we used only one guard so far, P is reducible.

If Gp has an ending isomorphic to E3, then it represents a heptagon which can obviously
be monitored by two guards (one for the left three nodes and one for the right two). Thus
again P is reducible.

So we can suppose that all the endings of Gp are isomorphic to E4. Let us take a look
at the last four nodes of a longest path of the tree. By the above argument there are four
possibilities as shown in Fig. 2.

Lemma 2. If Gp has an ending isomorphic to Hy, then P is reducible.

Lemma 3. Suppose Gp has an ending isomorphic to Hy (see Fig. 2.). Then there is a
triangle ABC' (corresponding to the marked node), so that it joins to the rest of the polygon
with its side AB, there is a hexagon joining to its side AC and a quadrilateral joining to
its side BC. If A and B are not both concave vertices of the hexagon and the quadrilateral
resp., then P is reducible (Fig. 2.; see also Fig. 11a.).
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In Case (a) the ending can be seen by 2 guards (since any 3 neighboring triangles can
be monitored by 1 guard), so P is reducible.

In Case (b) the ending corresponds to an octagon, so by Lemma 1 we can cut it off and
proceed by induction.

In Case (d), by Lemma 2, P is reducible.

Case (c) satisfies the assumption of Lemma 3. Let us use the notation of Lemma 3.
Let D be the third vertex of the triangle joined to the side AB of the triangle ABC. If
P is not reducible then by Lemma 3 the quadrilateral ADBC' is convex. In the present
triangulation ADBC is divided by its diagonal AB. But since ADBC' is convex, we can
modify the triangulation by changing the diagonal AB to CD (see Fig. 11a.). We distinguish
five subcases by looking at the node representing the triangle ABC' (see Fig. 3-7). For
each tree, the union of the triangles represented by the two marked vertices is the convex
quadrilateral ADBC.

Fig. 3.
Case c.1.

Fy F! FV

e Case c.1. Gp has an ending isomorphic to Fy. After retriangulation the ending will
be isomorphic to F] or FY'.

The right branch of F| (3 nodes) represents a pentagon, so it can be cut off using one
guard. The right branch of F}’ (5 nodes) represents a heptagon, so it can be cut off using
two guards. Therefore, in both cases P is reducible.



Fig. 4.
Case c.2.
F F; FY

e Case c.2. Gp has an ending isomorphic to F,. After retriangulation the ending will
be isomorphic to Fj or Fy'.

F; corresponds to Case (d). The right branch of F3' (6 nodes) represents an octagon, so
by Lemma 1 it can be cut off using two guards. Therefore, in both cases, P is reducible.

Fig. 5.
Case c.3.

F;

e Case c.3. Gp has an ending isomorphic to F3. Then the lowest branch of three nodes
of F3 are visible by one guard, the middle three by another one and the top four by two more
guards. So we can cut off the ten nodes of F3 using four guards, therefore P is reducible.

Fig. 6.
Case c.4.
Fy Fl FI

e Case c.4. Gp has an ending isomorphic to Fy. After retriangulation the ending will
be isomorphic to Fj or Fy .

Suppose we got Fj. Then in Fy the two marked nodes represent a convex quadrilateral
ABCD joining to the rest of P by its AD side. There are two hexagons joining to the
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AC and BD sides and a quadrilateral joining to the BC side. Applying Lemma 3 for the
triangles ABC' and BC D, we get that if P is not reducible, the quadrilateral has a concave
vertex at both B and C. It is a contradiction, so P is reducible.

The right branch of F}' corresponds to Case (d), so in both cases, P is reducible.

Fig. 7.
Case c.5.

F F! R

e Case c.5. Gp has an ending isomorphic to F5. After retriangulation the ending will
be isomorphic to Fi or F{'. The right branch of F¥ is isomorphic to F3, the right branch of
F! is isomorphic to Fy, so in both cases it is already shown that P is reducible.

We proved that P is always reducible, which completes the proof of the theorem. O

Based on [4], our proof can easily be turned into an O(n)-time algorithm for determining
the positions of the guards.

3 Proof of the Lemmas

Definition. Let ABCDEF be a hexagonal part of P, joined to the rest of P by its side
AB. It is called a NR-ending (non-reducible ending) of P if there does not exist any triangle
ABX in ABCDEF such that ABCDEF — ABX is visible by one guard.

Let ABCDEF be a NR-ending. It is easy to see that one of A and E (and one of B
and D) have to be a convex vertex, the other one is a concave vertex, so considering only
A there are two possibilities, A can be a convex or concave vertex.

Proof of Lemma 1. Let P denote the octagon. Clearly if Gp, the dual graph of P, has
either £y or Ey (Fig. 1.) as an ending, then we are done. Otherwise Gp should have the
unique form as shown in Fig. 8a.

Definition. A U-ending of a polygon is a configuration of four triangles connected to each
other as in Fig. 8b., and joined to the rest of the polygon by its BC side.



Fig. 8a. Fig. 8b. A U-ending

It is easy to see the following;:
Claim. A U-ending is not a NR-ending.
Corollary. If an n-gon P has a U-ending, then P is reducible.

By the corollary we should consider only the case when P does not have a U-ending.
Then its triangulation should be like the one in Fig. 9a.

If the quadrilateral BH EC is convex, then we can modify the triangulation by changing
the diagonal CH to BE and get a U-ending (BAHGPFE). So we can suppose that BHEC

is concave. If the concave vertex is H, then a guard at H can monitor 3 triangles, so P is
reducible. So BCE and similarly C EF should be concave angles.

Fig. 9a. Fig. 9b.

It is easy to see that quadrilaterals AHCB and GFEH should be concave too, by
similar reasons. It is impossible that both quadrilaterals have a concave vertex at H, so we
can suppose without loss of generality that ABC' is concave. Now if GFE is concave too,
then a guard at H can monitor all the heptagon ABCEFGH. So GHFE should be concave,
therefore the octagon should look like the one in Fig. 9b.

Now the line HC' crosses the GF segment at I. So a guard at H can monitor the
(degenerate) hexagon GICBAH and the rest of the octagon is a pentagon, which also can
be seen by one guard. O



Proof of Lemma 2. Hs corresponds to a triangle OXY which joins to the rest of the
polygon with the XY side and has a hexagon on both of its OX and OY sides. We may
suppose that both hexagons are NR-endings.

Fig. 10a. Fig. 10b.

If /AOB > 180°, a guard at O can monitor both triangles AOA" and BB'O, and
another one can monitor the rest of one of the NR-endings (Fig. 10a.). So we could remove
5 triangles using 2 guards.

If /AOB < 180°, then either the segment AB or the intersection of the lines of A’A and
B'B is in the polygon and we can place a guard either to a suitable point of AB or to the
intersection point of A’A and B’'B to monitor the triangles AOA’ and BB'O (Fig. 10b.).
Then we proceed as above. O

Proof of Lemma 3. We will prove that if P is not reducible, then A and B are concave
vertices of the hexagon and the quadrilateral, respectively (see Fig. 11a.).
Assume without loss of generality that the line AB is horizontal and C lies above it.
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D
Fig. 11a. Fig. 11b.

Suppose that P is not reducible. Then the hexagon, joining to the side AC, is not
reducible, therefore it is a NR-ending. If the hexagon has a convex angle at A, then denote
by X the intersection of the segment AC and the line IH (see Fig. 11b.). Now if we make
a cut along the segments BX and H X, then we cut off an octagon which can be seen by 2
guards, so P is reducible.

So the hexagon has a concave angle at A.
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Fig. 12a. Fig. 12b. Fig. 12c.

Now look at the quadrilateral. If it has a concave angle at D or E, then we can cut off
an octagon and go on by induction as shown on Fig. 12a. and 12b.

If it has a concave angle at C, then we can proceed as in the proof of Lemma 2.

So we can suppose that the quadrilateral BDEC is convex. Now there are three sub-
cases.

a) Either D or E can be seen from A. In this case we are done by induction (we can
cut off an octagon or a heptagon by AD or AFE resp.).

b) D is below the AB line (and E is either above or below).

e If the hexagon has a concave angle at C, then the BC line intersects the FG (or GH)
segment at X (see Fig. 12c.). Now a guard at C' can monitor both the quadrilateral BDEC
and the triangle CFX (or quadrilateral CFGX). So we can make a cut along BX and go

on by induction.
e If the hexagon has a convex angle at C, then we have three subcases:

Fig. 13a. Fig. 13b. Fig. 13c.

If the line F'G intersects the line BD inside P at X (see Fig. 13a.), then we can cut
along GXB.

If FG is above BD then we cut along DG (Fig. 13b.).

If FG is below BD then we cut along BF (Fig. 13c.). In all three cases we cut off a
pentagon which can be seen by one guard, so we can go on by induction.

c) Both D and E are above the line AB.



Fig. 14.

In this case D and F should be above the line AC. Thus the triangles FGC and CDFE
can be monitored by one guard, and the rest of the hexagon can be monitored by another
one, so we can cut off 5 triangles by using only 2 guards (Fig. 14.). O

4 Remarks

Let f,(n) denote the minimum number of guards needed to monitor a simply connected art
gallery P of n sides if their range of vision is restricted to « degrees.

By the above results fo(n) < 2[2(n — 3)] for @ > 90° and fo(n) < 3[2(n — 3)] for
a > 60°.

For a > 60° we can give a better bound. Let us triangulate P. Then we get n — 2
triangles, and each of them has an angle less than or equal to . A guard placed at the
corresponding vertex of each triangle can monitor the whole triangle, therefore n — 2 guards
are enough, so fo(n) <n — 2.

R
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Fig. 15.

The construction in Fig. 15 gives a lower bound for all o < 180°. It shows that whenever
a < <180, fo(n) > ”T_l Observe that if the D;’s are close enough to the line AB, then
a guard with a range of vision less than # can monitor only one of the C;’s.
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