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Abstract

We prove that any 43-fold covering of the plane with translanslates of a triangle can be decom-
posed into two coverings.

1 Introduction

Let C = { Ti | i ∈ I } be a collection of planar sets. It is a k-fold covering if every point in the plane
is contained in at least k members of C. A 1-fold covering is simply called a covering.

Definition. A planar set T is said to be cover-decomposable if the following holds. There exists a
constant k = k(T ) such that every k-fold covering of the plane with translates of T can be decomposed
into two coverings. J. Pach proposed the problem of determining all cover-decomposable sets.

Conjecture. (J. Pach) All convex sets are cover-decomposable.

The conjecture is verified in two special cases.

Theorem A. (i) [P86] Every centrally symmetric open convex polygon is cover-decomposable.

(ii) [MP89] The open unit disc is cover-decomposable.

Based on the ideas of Pach [P86], in this note we prove another special case.

Theorem 1. Every open triangle is cover-decomposable.

In fact we prove the following somewhat stronger statement that, however, requires the technical
condition that the collection of translates is locally finite, i.e., that every compact region intersects a
finite number of the translates.

Theorem 2. Every locally finite collection C of translates of the same (open or closed) triangle T can
be partitioned into two parts such that every point that is covered by at least 43 of the triangles in C is
covered by a triangle in both parts.

We believe that Theorem 2 remains true without the requirement that C is locally finite, however
our proof uses this assumption. If Theorem 2 is true without this assumption, then, clearly, closed
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triangles are also cover-decomposible. We find it hard to immagine that closed triangles are not
cover-decomposible, but a proof of this seems to be elusive.

We finish this introductory section by observing that Theorem 2 implies Theorem 1. Indeed, from
every 43-fold covering of the plane by translates of the same open triangle (or by arbitrary open sets of
bounded diameter) one can select a locally finite subcollection that is also a 43-fold cover. To see this
it is enough to use the square grid to cut the the plane into squares and one can use the compactness
of the closed squares Si to find a finite subset Ci of C that is covering Si 43-fold. If we delete all sets
from Ci that are disjoint from Si, then the union ∪iCi is locally finite and a 43-fold covering of the
plane.

Notice that similar statement for closed triangles is false. It is easy to find a covering of the plane
by translates of a closed triangle that does not contain a locally finite subset that also covers the plane.
One can also find a 2-fold covering consisting of translates of a closed triangle such that no proper
subset is a 2-fold covering and the cardinality of the collection is the continuum.

2 Proof of Theorem 2

Just like in [P86], we formulate (and solve) the problem in its dual form. Fix O, the center of gravity
of the triangle T as our origin in the plane. For a planar set P and a point x in the plane we use P (x)
to denote the translate of P by the vector ~Ox. Let T̄ be the reflection through O of the triangle T .
Consider any collection C = { T (xi) | i ∈ I} of translates of T . For any point p, p ∈ T (xi) if and only
if xi ∈ T̄ (p). To see this, apply a reflection through the midpoint of the segment pxi. This switches
T (xi) and T̄ (p), and also switches xi and p.

The collection C covers p at least 43 times if and only if T̄ (p) contains at least 43 elements of the
set S = { xi | i ∈ I}. The required partition of C exists if and only if the set S can be colored with
two colors such that every translate of T̄ that contains at least 43 elements of S contains at least one
element of each color.

It is easy to see that H = T ∩ T̄ is a hexagon whose vertices are those points which divide the
sides of T in the ratio 1 : 2. Observe that the plane has a lattice tiling with translates of this hexagon.
We can assume without loss of generality that each xi is in the interior of some hexagon. By our
assumption on local finiteness each hexagon contains finitely many points xi.

Elementary analysis shows that any translate of T̄ intersects at most 6 of the hexagons in the
tiling, so if it contains at least 43 elements of S, then it contains at least 8 elements belonging to the
same hexagon.

Let A, B and C be the vertices of T̄ . Let us consider the natural linear order on the lines of the
plane that are parallel to the side BC with the line through A defined smaller than the line BC. We
define the partial order <A on the points with x <A y if the line through x is smaller than the line
through y. We have A <A B and thus also A <A C. Similarly consider the partial ordering <B

according to the lines parallel to AC with B <B C, and the partial ordering <C according to the lines
parallel to AB with C <C A. We define WA to be the set of points p with O <B p and O <C p.
Similarly, let WB is the set of points p with O <C p and O <A C and let WC be the set of points p

with O <A p and O <B p. For X = A, B, or C the set WX is an open wedge with O as apex, and it
the smallest such wedge such that WX(X) contains T̄ .

Since the hexagon H intersects at most two sides of any translate of T̄ , the intersection of H with
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any translate of T̄ is equal to the intersection of H with a suitable translate of WA, WB , or WC . This
is immediate for open triangles T and T̄ . For closed triangles one should consider the closures of the
cones. However, for any finite set S and X = A, B, or C the intersection of a translate of the closure of
WX with S can be obtained as the intersection of S with another translate of WX , so we can consider
the open wedges in this case too.

We finish the proof of Theorem 2 by separately coloring the subsets of S belonging to each hexagon
in the tiling. Each such subset is colored by the coloring guaranteed by Theorem 3. This results in a
coloring required by the dual form of Theorem 2. This finishes the proof of Theorem 2 provided we
prove the following Theorem 3.

Theorem 3. Any finite set S of points in the plane can be colored with two colors such that any
translate of WA, WB or WC which contains at least 8 of the points, contains at least one of each color.

Proof: Notice first that a small enough perturbation of the points in S may introduce new intersections
with translates of WA, WB, and WC but will not result in the loss of such sets. Therefore we may and
will assume without loss of generality that the points in S are in general position, i.e., no two points
in S determine a line parallel to any one of the sides of the triangle T̄ . In other words we assume that
<A, <B and <C are linear orders on S.

For X = A, B, or C we call a point x ∈ S an X-boundary point if WX(x)∩S = ∅. In other words,
x is an X-boundary point if translating WX such that its apex moves to x, the translate is disjoint
from S. See Figure 1 (a). We call a point in S a boundary point of S if it is an X-boundary point
for X = A, B, or C. Note that the same point can be a boundary point of more than one type, for
instance it can be an A-boundary and a B-boundary point at the same time.

Notice that <B and <C give the opposite linear order on A-boundary points. When speaking of
A-boundary elements we always consider them with one of these orderings. In particular we call two
points of S A-neighbors if both of them are A-boundary points and there is no A-boundary point
between them according to the ordering <B (or equivalently, according to <C). See Figure 1 (b)
for a geometric interpretation of this concept. We use B-neighbors and C-neighbors in an analogous
meaning. We call two points of S neighbors if they are X-neighbors for some X = A, B or C.

Notice that any translate WA(p) of the wedge WA that contains any element of S contains at
least one A-boundary point and the A-boundary points in WA(x) form an interval of the set of all
A-boundary points in the ordering <B . Notice also that the smallest elements of S in the linear
orderings <B and <C are A-boundary points, these are the two extremal A-boundary points.

Similar observation hold for B- and C-boundary points of S. As a consequence one may notice
that the minimal elements in S according to the orders <A, <B and <C are X-boundary elements of
at least two different values of X and there is at most a single element of S that is an X-boundary
point for all three possible values of X.

Let X = A, B, or C. We call a point x ∈ S X-rich if x is an X-boundary point, there is a translate
WX(p) of WX containing x such that |S ∩WX(p)| ≥ 8, and x is the only X-boundary point in WX(p).
We call a point in S rich if it is X-rich for some X = A, B, or C.

We call a coloring of S to blue and red acceptable if all rich points are colored blue and between
any pair of neighbors at least one is blue.

We say that a point x ∈ S is good for a particular acceptable coloring of S if it is red or it is rich
or for X = A, B or C x has a red X-neighbor y with y <X x. If a point of S is not good for an
acceptable coloring we call it bad.
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Figure 1: (a) x is an A-boundary point. (b) u, v are A-neighbors.

The following three claims finish the proof of Theorem 3 and therefore also the proof of Theorems 1
and 2. Claims 1 and 2 show that the coloring established in Claim 3 satisfies the requirements of
Theorem 3. 2

Claim 1. Consider an acceptable coloring of S. Every wedge of the form WX(p) that contains at least
8 points of S contains a blue point of S.

Proof: If WX(p) contains any points of S it contains a non-empty interval of X boundary points. If
this interval consists of more than a single point, then it contains a pair of X-neighbors and one of
these points is blue. If, however, WX(p) contains a single X-boundary point x but contains at least 8
points of S, then x is rich by definition and therefore it is blue. 2

Claim 2. Consider an acceptable coloring of S. If a wedge of the form WX(p) contains at least 8
points of S, then it contains at least four bad points or at least one red point.

Proof: Assume without loss of generality that X = A. By moving p we can shrink WA(p) so we may
assume without loss of generality that S = WA(p) ∩ S has exactly 8 points. If S contains a red point
we are done, so assume all points in S are blue. Suppose that x ∈ S is good. We claim that either x

is the first or last A-boundary point in S, or x is the <A-minimal B-boundary point in S, or else x is
the <A-minimal C-boundary point in S.

To see this notice first that x, being blue and good, must be a boundary point, moreover, for
Y = A, B, or C, either x is Y -rich or x has a red Y -neighbor y with y <Y x. The cases of the
following case analysis are ilustrated in Figure 2.

Assume first that Y = A. If x is not the first or last A-boundary point in S, then any translate
of WA containing x but not containing other A-boundary points must be contained in WA(p) and
therefore x is not A-rich. Both A-neighbors of x are contained in WA(p), so neither is red.

In the remaining case Y = B or C and we assume by symmetry that that Y = B. Now we
assume that x is not the <A-minimal B-boundary point in WA(p). Consider a translate WB(q) of
WB containing x but no other B-boundary points. It is easy to see that WB(q) ∩ S is contained in
WA(p) so x cannot be B-rich. If x has a B-neighbor y with y <B x, then another easy argument
shows y ∈ WA(p) and therefore y must be blue. 2

Claim 3. There is an acceptable coloring of S for which there are at most 3 bad points.
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Figure 2: (a) x cannot be rich. (b) If y is a B-neighbor of x with y <B x, then y ∈ WA(p).

Proof: We give a construction for such a coloring. Naturally, we start by coloring red all points of S
that are not boundary points and by coloring blue all rich points.

Let zA be the <A-maximal among the points of S that are both B- and C-boundary points. The
<A-minimal point in S has this property, therefore zA exists. Similarly, let zB be the <B-maximal
among the points of S that are simultaneously A- and C-boundary points and let zC be the <C -
maximal among the points of S that are simultaneously A- and B-boundary points. Note that these
points may coincide. See Figure 3.

We partition S \ {xA, xB , xC} into four sets as follows. For X = A, B or C we let SX = {x ∈
S | x <X zX}. We let S0 = (S \{zA, zB , zC})\(SA∪SB∪SC) = {x ∈ S | zA <A x, zB <B x, zC <C x}.
It is not hard to verify that this is indeed a partition. Note that each of these sets may be empty.

We color zA, zB , and zC blue, then we color the boundary points of the four parts separately. For
X = A, B, or C and Y = A, B, C, or 0 we take the X-boundary points in SY and consider them in
increasing order according to <X . If we get to a point that is not colored we color it red and we color
every neighbor of it blue. This goes for every Z-neighbor for arbitrary Z, for example a point in SA

can have two B-neighbors and two C-neighbors. These neighbors may have already been colored blue
(because they are rich, because they are one of zA, zB or zC , or because of an earlier red neighbor)
but they are not colored red as any neighbor of any red point is immediately colored blue. This same
observation proves that the resulting coloring is acceptable.

Notice that the coloring processes for the four parts SA, SB , SC , and S0 are independent, no
neighbor of a point in one part lies in another. The three coloring procedures for S0 are also indepen-
dent, because boundary points here have only one type. In SA there are no A-boundary points, but
there may be several points that are B- and C-boundary points simultaneously. Therefore the actual
coloring of SA may depend on which process reaches these common points first. Synchronize the two
coloring processes on SA so that they reach the common points at the same time. This is possible, as
their order is the same in the two ordering <B and <C . We assume similar synchronizations of the
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coloring processes of SB and SC .

We finish the proof by observing that with the possible exception of zA, zB , and zC every point of
S is good for the coloring obtained. To see this notice that we only colored a point x other than zA,
zB , or zC blue if it was rich or if one of its neighbors y were colored red. But the order in which these
points were considered ensures that if x and y are X-neighbors then y <X x as needed. 2
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Figure 3: The boundary vertices and the partition of S. On the left we have x = zA = zB = zC .

Remarks. The value 43 in Theorem 2 is probably far from being optimal. We cannot even rule
out the possibility that the result holds with 3 instead of 43. An obvious route for improvement is
the strengthening of Claim 3 such that it allows for a single bad point only. This would improve the
constant 8 in Theorem 3 to 6 and the constant 43 in Theorem 2 to 31. Note however that some sets
S do not allow for an acceptable coloring without any bad vertices.

By hardly any modification of our argument one can prove the following generalization of Theo-
rem 3.

Theorem 3’. For any positive integer k any finite set S in the plane can be colored red and blue such
that any translate of WA, WB or WC which contains at least 5k +3 of the points contains a blue point
and at least k red points.

Using Theorem 3’, one can re-color the red points recursively to obtain the following generalization
of Theorems 1 and 2 for more than two colors.

Theorem 4. For every m > 0 the following two statements hold. Every locally finite collection C
of translates of the same triangle T can be partitioned into m parts such that for every point that is
covered by at least 21

2
5m − 19

2
of the triangles in C is covered by a triangle in each of the parts. Every

21

2
5m − 19

2
-fold covering of the plane by translates of the same open triangle can be partitioned into m

coverings.

We belive that the exponential bound in Theorem 4 is far from being optimal. It is possible that
the statement is true with a linear bound in m.
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