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Abstract

Let G be a graph drawn in the plane so that its edges are represented by x-monotone curves, any
pair of which cross an even number of times. We show that G can be redrawn in such a way that
the x-coordinates of the vertices remain unchanged and the edges become non-crossing straight-line
segments.

1 Introduction

A drawing D(G) of a graph G is a representation of the vertices and the edges of G by points and by
possibly crossing simple Jordan arcs connecting the corresponding point pairs, resp. When it does not
lead to confusion, we make no notational or terminological distinction between the vertices (resp. edges)
of the underlying abstract graph and the points (resp. arcs) representing them. Throughout this paper,
we assume that in a drawing

1. no edge passes through any vertex other than its endpoints;

2. any two edges cross only a finite number of times;

3. no three edges cross at the same point;

4. if two edges of a drawing share an interior point p then they properly cross at p, i.e., one arc passes
from one side of the other arc to the other side;

5. no two vertices have the same x-coordinate.
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A drawing is called x-monotone if every vertical line intersects every edge in at most one point. We
call a drawing even if any two edges cross an even number of times.

Hanani (Chojnacki) [Ch34] (see also [T70]) proved the remarkable theorem that if a graph G permits
an even drawing, then it is planar, i.e., it can be redrawn without any crossing. On the other hand, by
Fáry’s theorem [F48], [W36], every planar graph has a straight-line drawing. We can combine these two
facts by saying that every even drawing can be “stretched”.

The aim of this note is to show that if we restrict our attention to x-monotone drawings, then every
even drawing can be stretched without changing the x-coordinates of the vertices.

Consider an x-monotone drawing D(G) of a graph G. If the vertical ray starting at v ∈ V (G) and
pointing upward (resp. downward) crosses an edge e ∈ E(G), then v is said to be below (resp. above) e.
Two drawings of the same graph are called equivalent, if the above-below relationships between the vertices
and the edges coincide.

In the next two sections we establish the following two results.

Theorem 1. For any x-monotone even drawing of a connected graph, there is an equivalent x-monotone
drawing in which no two edges cross each other and the x-coordinates of the corresponding vertices are the
same.

Theorem 2. For any non-crossing x-monotone drawing of a graph G, there is an equivalent non-crossing
straight-line drawing, in which the x-coordinates of the corresponding vertices are the same.

Two edges are called adjacent if they share an endpoint. It is an interesting open problem to decide
whether Theorem 1 remains true under the weaker assumption that any two non-adjacent edges cross an
even number of times. Hanani’s theorem mentioned above is valid in this stronger form. It was suggested
by Tutte “that crossings of adjacent edges are trivial, and easily got rid of.” We have been unable to verify
this view.

2 Proof of Theorem 1

We follow the approach of Cairns and Nikolayevsky [CN00]. Consider an x-monotone drawing D of a
graph on the xy-plane, in which any two edges cross an even number of times. Let u and v denote the
leftmost and rightmost vertex, respectively. We can assume without loss of generality that u = (−1, 0) and
v = (1, 0). Introduce two additional vertices, w = (0, 1) and z = (0,−1), each connected to u and v by
arcs of length π/2 along the unit circle C centered at the origin, and suppose that every other edge of the
drawing lies in the interior of C. Denote by G the underlying abstract graph, including the new vertices
w and z.

For each crossing point p, attach a handle (or bridge) to the plane in a very small neighborhood N(p)
of p, with radius ε > 0. Assume that (1) these neighborhoods are pairwise disjoint, (2) N(p) is disjoint
from every other edge that does not pass through p, and that (3) every vertical line intersects every handle
only at most once. For every p, take the portion belonging to N(p) of one of the edges that participate in
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the crossing at p, and lift it to the handle without changing the x- and y-coordinates of its points. The
resulting drawing D0 is a crossing-free embedding of G on a surface S0 of possibly higher genus.

Let S1 be a very small closed neighborhood of the drawing D0 on the surface S0, with positive radius
ε′ < ε. Note that S1 is a compact, connected surface, whose boundary consists of a finite number of closed
curves. Attaching a disc to each of these closed curves, we obtain a surface S2 with no boundary. According
to Cairns and Nikolayevsky [CN00], S2 must be a 2-dimensional sphere. To verify this claim, consider two
closed curves, α2 and β2, on S2. They can be deformed into closed walks, α1 and β1, respectively, along
the edges of D0. The projection of these two walks into the (x, y)-plane are closed walks, α and β in D,
that must cross each other an even number of times. Every crossing between α and β occurs either at a
vertex of D or between two of its edges. By the assumptions, any two edges in D cross an even number
of times. (The same assertion is trivially true in D0 ⊂ S2, because there no two edges cross.) Using the
fact that in D0 ⊂ S2 the cyclic order of the edges incident to a vertex is the same as the cyclic order of the
corresponding edges in D, we can conclude that α1 and β1 cross an even number of times, and the same is
true for α2 and β2. Thus, S2 is a surface with no boundary, in which any two closed curves cross an even
number of times. This implies that S2 is a sphere. Consequently, D0, a crossing-free drawing of G on S2,
corresponds to a plane drawing.

Next, we argue that D0 can also be regarded as an x-monotone plane drawing of G, in which the
x-coordinates of the vertices are the same as the x-coordinates of the corresponding vertices in D.

For any point q (either in the plane or in 3-space), let x(q) denote the x-coordinate of q. As before,
every boundary curve of S1 corresponds to a cycle of G. Since in the original drawing the cycle vwuz
encloses all other edges and vertices of G, one of the boundary curves of S1, say γ, corresponds to the cycle
vwuz. Consider another boundary curve, κ 6= γ, which corresponds to a closed walk v1v2 . . . vi of length i
in G, for some i ≥ 3. We can assume without loss of generality that D, the handles attached to the plane,
and D0 satisfy some mild smoothness conditions, and that ε and ε′ are extremely small. Then one can
select i points, v′1, v

′
2, . . . , v′i ∈ κ, such that v′j is extremely close to vj and that the piece of κ between

v′j and v′j+1, denoted by κj , is x-monotone, for every 1 ≤ j ≤ i. (Here we set vi+1 := v1, v
′
i+1 =: v′1. A

3-dimensional arc is called x-monotone if its orthogonal projection to the xy-plane is x-monotone.) Let
x′

j = x(v′j).
Apply the following simple observation.

Lemma 2.1. Let i ≥ 3. For any sequence of distinct numbers x′
j (1 ≤ j ≤ i), there is a non-crossing closed

polygon P = p1p2 . . . pi in the plane such that the x-coordinates of its vertices satisfy x(pj) = x′
j (1 ≤ j ≤ i).

Proof. For i = 3, 4, the lemma can be easily verified. Let i > 3, and suppose that we have already proved
the assertion for every integer smaller than i. Choose an index j for which |x ′

j+1 − x′
j | is minimum, where

the indices are taken modulo i. Suppose without loss of generality that x′
j < x′

j+1. If we have x′
j+1 < x′

j+2

(or x′
j−1 > x′

j), then delete x′
j+1 (resp., x′

j), apply the lemma to the remaining sequence, and insert an extra
vertex whose x-coordinate is x′

j+1 (resp., x′
j) in the corresponding side of the resulting polygon. Otherwise,

by the minimality assumption, we have x′
j+2 < x′

j <x′
j+1 < x′

j−1. In this case, apply the lemma to the
sequence obtained by the deletion of x′

j and x′
j+1, and notice that the side of the resulting polygon, whose
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endpoints have x-coordinates x′
j−1 and x′

j+2, can be replaced by three edges meeting the requirements,
running very close to it. 2

In view of Lemma 2.1, we can construct a topological disk Dκ bounded by a non-crossing closed
polygon P = Pκ which consists of x-monotone pieces. These pieces are in one-to-one correspondence with
κj (1 ≤ j ≤ i), so that the corresponding arcs have the same x-coordinates. Thus, we can glue Dκ to κ
without changing the x-coordinate of any point of S1 or Dκ. Repeating this procedure for every κ 6= γ,
we obtain a new surface S ⊃ S1 containing D0. As we have seen before, S is topologically isomorphic to
the unit disk bounded by C. Moreover, there is a natural extension of the x-coordinate function from S1

to S, which is a continuous real function with no local minimum or maximum. In S, D0 can be regarded
as a crossing-free x-monotone drawing of G, equivalent to D. This completes the proof of Theorem 1.

Remark. Theorem 1 cannot be extended to disconnected graphs. To see this, consider a pair of edges, e1

and e2, intersecting twice, and place a vertex below e1 and above e2, and another one above e1 and below
e2. Clearly, there exists no equivalent crossing-free x-monotone drawing. On the other hand, if we drop
the condition that the new drawing must be equivalent to the original one, then the connected components
can be treated separately and their drawings can be shifted in the vertical direction so as to avoid any
crossing between them.

3 Proof of Theorem 2

Let D = D(G) be a non-crossing x-monotone drawing of a graph G. First, we show that it is sufficient
to prove Theorem 2 for triangulated graphs. Deleting all vertices (points) and edges (arcs) of D from the
plane, the plane falls into connected components, called faces. The x-coordinate of any vertex v will be
denoted by x(v).

Lemma 3.1. By the addition of further edges and an extra vertex, if necessary, every non-crossing x-
monotone drawing D can be extended to a non-crossing x-monotone triangulation.

Proof. Consider a face F , and assume that it has more than 3 vertices. It is sufficient to show that one
can always add an x-monotone edge between two non-adjacent vertices of F , which does not cross any
previously drawn edges.

For the sake of simplicity, we outline the argument only for the case when F is a bounded face. The
proof in the other case is very similar, the only difference is that we may also have to add an extra vertex.
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w
u

v

Figure 1. The vertex w is extreme, u and v are not.

A vertex w of F is called extreme if it is not the left endpoint of any edge or not the right endpoint of
any edge in D, and a small neighborhood of w on the vertical line through w belongs to F . In particular,
if the boundary of F is not connected, the leftmost (and the rightmost) vertex of each component of the
boundary other than the exterior component, is extreme. See Fig. 1.

Suppose first that F has an extreme vertex w. We may assume, by symmetry, that w is not the right
endpoint of any edge in D. Starting at w, draw a horizontal ray in the direction of the negative x-axis.
Let p be the first intersection point of this ray with the boundary of F . If p is a vertex, then the segment
wp can be added to D. Otherwise, one can add an x-monotone edge joining w to the left endpoint of the
edge that p belongs to.

Suppose next that none of the vertices of F are extreme. In this case, the boundary of F is connected
and any two vertices of F can be joined by an x-monotone curve inside F . However, an edge can be added
to D only if the corresponding two vertices do not induce an edge in the exterior of F . Clearly, letting v1,
v2, v3, and v4 denote four consecutive vertices of F , at least one of the pairs (v1, v3) and (v2, v4) has this
property. 2

Now we turn to the proof of Theorem 2. The proof is by induction on the number of vertices. If G has
at most 4 vertices, the assertion is trivial. Suppose that G has n > 4 vertices and that we have already
established the theorem for graphs having fewer than n vertices. By Lemma 3.1, we can assume without
loss of generality that the original x-monotone drawing D of G is triangulated.

Case 1. There is a triangle T = v1v2v3 in D, which is not a face.
Then there is at least one vertex of D in the interior and at least one vertex in the exterior of T .

Consequently, the drawings Din and Dout defined as the part of D induced by v1, v2, v3, and all vertices
inside T and outside T , resp., have fewer than n vertices. By the induction hypothesis, there exist straight-
line drawings D′

in and D′
out, equivalent to Din and Dout, resp., in which all vertices have the same x-

coordinates as in the original drawing. Notice that there is an affine transformation A of the plane, of the
form

A(x, y) = (x, ax + by + c),

which takes the triangle induced by v1, v2, v3 in Din into the triangle induced by v1, v2, v3 in Dout. Since
the image of a drawing under any affine transformation is equivalent to the original drawing, we conclude
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that A (D′
in) ∪ D′

out meets the requirements.

In the sequel, we can assume that D has no triangle that is not a face. Fix a vertex v of D with
minimum degree. Since every triangulation on n > 4 vertices has 3n − 6 edges, the degree of v is 3, 4, or
5. If the degree of v is 3, the neighbors of v induce a triangle in D, which is not a face, contradicting our
assumption.

There are two more cases to consider.

Case 2. The degree of v is 4.
Let v1, v2, v3, v4 denote the neighbors of v, in clockwise order. There are three substantially different

subcases, up to symmetry. See Fig. 2.

2.22.1
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v2
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v4

Figure 2. Case 2.

Subcase 2.1: x(v1) < x(v2) < x(v3) < x(v4)
Clearly, at least one of the inequalities x(v) > x(v2) and x(v) < x(v3) is true. Suppose without loss of

generality that x(v) < x(v3). If v1 and v3 were connected by an edge, then vv1v3 would be a triangle with
v2 and v4 in its interior and in its exterior, resp., contradicting our assumption. Remove v from D, and
add an x-monotone edge between v1 and v3, running in the interior of the face that contains v. Applying
the induction hypothesis to the resulting drawing, we obtain that it can be redrawn by straight-line edges,
keeping the x-coordinates fixed. Subdivide the segment v1v3 by its (uniquely determined) point whose
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x-coordinate is x(v). In this drawing, v can also be connected by straight-line segments to v2 and to v4.
Thus, we obtain an equivalent drawing which meets the requirements.

Subcase 2.2: x(v1) < x(v2) < x(v3) > x(v4) > x(v1)
Subcase 2.3: x(v1) < x(v2) > x(v3) < x(v4) > x(v1)
In these two subcases, the above argument can be repeated verbatim. In Subcase 2.3, to see that

x(v1) < x(v) < x(v3), we have to use the fact that in D both vv2 and vv4 are represented by x-monotone
curves.

Case 3. The degree of v is 5.
Let v1, v2, v3, v4, v5 be the neighbors of v, in clockwise order. There are four substantially different

cases, up to symmetry. See Fig. 3.

Subcase 3.1: x(v1) < x(v2) < x(v3) < x(v4) < x(v5)
Subcase 3.2: x(v1) < x(v2) < x(v3) < x(v4) > x(v5) > x(v1)
Subcase 3.3: x(v1) < x(v2) < x(v3) > x(v4) < x(v5) > x(v1)
Subcase 3.4: x(v1) < x(v2) > x(v3) > x(v4) < x(v5) > x(v1)
In all of the above subcases, we can assume, by symmetry or by x-monotonicity, that x(v) < x(v4).

Since D has no triangle which is not a face, we obtain that v1v3, v1v4, and v2v4 cannot be edges. Delete
from D the vertex v together with the five edges incident to v, and let D0 denote the resulting drawing.
Furthermore, let D1 (and D2) denote the drawing obtained from D0 by adding two non-crossing x-monotone
diagonals, v1v3 and v1v4 (resp. v2v4 and v1v4), which run in the interior of the face containing v. By the
induction hypothesis, there exist straight-line drawings D ′

1 and D′
2 equivalent to D1 and D2, resp., in which

the x-coordinates of the corresponding vertices are the same.
Apart from the edges v1v3, v1v4, and v2v4, D

′
1 and D′

2 are non-crossing straight-line drawings equivalent
to D0 such that the x-coordinates of the corresponding vertices are the same. Obviously, the convex
combination of two such drawings is another non-crossing straight-line drawing equivalent to D0. More
precisely, for any 0 ≤ α ≤ 1, let D′

α be defined as

D′
α = αD′

1 + (1 − α)D′
2.

That is, in D′
α, the x-coordinate of any vertex u ∈ V (G) − v is equal to x(u), and its y-coordinate is the

combination of the corresponding y-coordinates in D ′
1 and D′

2 with coefficients α and 1 − α, resp.
Observe that the only possible concave angle of the quadrilateral Q = v1v2v3v4 in D′

1 and D′
2 is at v3

and at v2, resp. In D′
α, Q has at most one concave vertex. Since the shape of Q changes continuously

with α, we obtain that there is a value of α for which Q is a convex quadrilateral in Dα. Let D′ be
the straight-line drawing obtained from D ′

α by adding v at the unique point of the segment v1v4, whose
x-coordinate is x(v), and connect it to v1, . . . , v5. Clearly, D′ meets the requirements of Theorem 2.
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Figure 3. Case 3.

Remark: We are grateful to Professor P. Eades for calling our attention to his paper [EFL96], sketching
a somewhat more complicated proof for a result essentially equivalent to our Theorem 2.
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