Note on the Erdős-Szekeres theorem

Géza Tóth*
Courant Institute, NYU and DIMACS Center, Rutgers University
e-mail: toth@cims.nyu.edu

Pavel Valtr†
Charles University, Prague and DIMACS Center, Rutgers University
e-mail: valtr@kam.mff.cuni.cz

Abstract

Let \(g(n) \) denote the least integer such that among any \(g(n) \) points in general position in the plane there are always \(n \) in convex position. In 1935, P. Erdős and G. Szekeres showed that \(g(n) \) exists and \(2^{n-2} + 1 \leq g(n) \leq \binom{2n-4}{n-2} + 1 \). Recently, the upper bound has been slightly improved by Chung and Graham and by Kleitman and Pachter. In this note we further improve the upper bound to

\[
g(n) \leq \binom{2n-5}{n-2} + 2.
\]

In 1933, Esther Klein raised the following question. Is it true that for every \(n \) there is a least number \(g(n) \) such that among any \(g(n) \) points in general position in the plane there are always \(n \) in convex position?

This question was answered in the affirmative in a classical paper of Erdős and Szekeres [ES35]. In fact, they showed [ES35, ES60] that

\[
2^{n-2} + 1 \leq g(n) \leq \binom{2n-4}{n-2} + 1.
\]

The lower bound, \(2^{n-2} + 1 \), is sharp for \(n = 2, 3, 4, 5 \) and has been conjectured to be sharp for all \(n \). However, the upper bound, \(\binom{2n-4}{n-2} + 1 \approx e\frac{16}{\sqrt{n}} \), was not improved for 60 years. Recently, Chung and Graham [CG97] managed to improve it by 1. Shortly after, Kleitman and Pachter [KP97] showed that \(g(n) \leq \binom{2n-4}{n-2} + 7 - 2n \).

*Supported by OTKA-T-020914, OTKA-F-2344, and the Alfred Sloan Foundation.
†Supported by Czech Republic grant GAČR 0194 and by Charles University grants GAUK 193194/1996.
Inspired by these papers, in this note we get a further improvement, roughly by a factor of 2.

Theorem. Any set of \(\binom{2n-5}{n-2} + 2 \) points in general position in the plane contains \(n \) points in convex position.

In other words, \(g(n) \leq \binom{2n-5}{n-2} + 2 \). Since \(2 \binom{2n-5}{n-2} = \binom{2n-1}{n-2} \), our upper bound is about half of the original bound of Erdős and Szekeres.

In the original proof, Erdős and Szekeres were looking for special convex \(n \)-gons, namely for \(n \)-caps and \(n \)-cups.

![Figure 1: A 6-cap and a 6-cup.](image)

Definition. The points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \), \(x_1 < x_2 < \ldots < x_n \), form an \(n \)-cap if

\[
\frac{y_2 - y_1}{x_2 - x_1} > \frac{y_3 - y_2}{x_3 - x_2} > \ldots > \frac{y_n - y_{n-1}}{x_n - x_{n-1}}.
\]

Similarly, they form an \(n \)-cup if

\[
\frac{y_2 - y_1}{x_2 - x_1} < \frac{y_3 - y_2}{x_3 - x_2} < \ldots < \frac{y_n - y_{n-1}}{x_n - x_{n-1}}.
\]

(See Fig. 1.)

Lemma (Erdős and Szekeres [ES35]). Let \(f(n, m) \) be the least integer such that any set of \(f(n, m) \) points in general position in the plane contains either an \(n \)-cap or an \(m \)-cup. Then

\[
f(n, m) = \binom{n + m - 4}{n - 2} + 1.
\]
Proof of Theorem.

Let P be a set of points in general position in the plane and suppose that P does not contain n points in convex position. Let a be a vertex of the convex hull of P. Let b be a point outside the convex hull of P such that none of the lines determined by the points of $P \setminus \{a\}$ intersects the segment ab. Finally, let ℓ be a line through b which avoids the convex hull of P (see Fig. 2).

Consider a projective transformation T which maps the line ℓ to the line at infinity, and maps the segment ab to the vertical half-line $v^{-}(a')$, emanating downwards from $a' = T(a)$. We get a point set $P' = T(P)$ from P. Since ℓ avoided the convex hull of P, the transformation T does not change convexity on the points of P, that is, any subset of P is in convex position if and only if the corresponding points of P' are in convex position. So the assumption holds also for P', no n points of P' are in convex position. By the choice of the point b, none of the lines determined by the points of $P' \setminus \{a'\}$ intersects $v^{-}(a')$. Therefore, any m-cap in the set $Q' = P' \setminus \{a'\}$ can be extended by a' to a convex $(m + 1)$-gon.

Since no n points of P' are in convex position, Q' cannot contain any n-cup or $(n-1)$-cap.
Therefore, by the Lemma,

\[|Q'| \leq f(n, n - 1) - 1 = \binom{2n - 5}{n - 2}, \quad |P| \leq \binom{2n - 5}{n - 2} + 1, \]

and the theorem follows. \(\square \)

References

