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Abstract

Let F denote a family of pairwise disjoint convex sets in the plane. F is said to be in
convex position, if none of its members is contained in the convex hull of the union of the
others. For any fixed k > 5, we give a linear upper bound on Pj(n), the maximum size of a
family F with the property that any ¥ members of F are in convex position, but no n are.

1 Introduction

In their classical paper [ES1], Erdds and Szekeres proved that any set of more than (27?:24) points
in general position in the plane contains n points which are in convex position, i.e., they form
the vertex set of a convex m-gon. T. Bisztriczky and G. Fejes Téth [BF1], [F] extended this
result to families of convex sets.

Throughout this paper, by a family F = {A1,..., A;} we always mean a family of pairwise
disjoint compact convex sets in the plane in general position, i.e., no three of them have a
common supporting line. F is said to be in convex position if none of its members is contained
in the convex hull of the union of the others, i.e., if bd conv(UF), the boundary of the convex
hull of the union of all members of F, contains a point of the boundary of each A;. Evidently,
any two members of F are in convex position.

T. Bisztriczky and G. Fejes T6th proved that there exists a function P3(n) such that if
|F| > P3(n) and any three members of F are in convex position, then F has n members in
convex position. Improving their initial result, in [BF2] they showed that this statement is true
with a function P3(n), triply exponential in n. This bound was recently improved to a simply
exponential function by Pach and Téth [PT]. The best known lower bound for P3(n) is the
classical lower bound for the Erdés-Szekeres theorem, 2”2 < Ps(n).

If any & members of F are in convex position, then we say that F satisfies property Py. If no
n members of F are in convex position, then we say that F satisfies property P". Property Py
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means that both P, and P™ are satisfied. Using these notions, the above cited result of Pach
and Téth states that if a family F satisfies property PJ', then |F| < (2"_4)2.

n—2
T. Bisztriczky and G. Fejes Téth [BF2] raised the following more general question. What is
the maximum size Pj(n) of a family F satisfying property P;'? Some of their bounds were later

improved in [PT]. The best known bounds are the following:

4\ 2
2 <P < (H [ES2, PT]
2
2|2 <P < w [PT]
n—1+ [”—:;J < Pi(n) < n? for k> 5 [BF2]

n—1+ [EJ < Pi(n) < nlogn for k>11 [BF, PT]

In this note we give a linear upper bound on Py(n) for any k > 5.

Theorem. (i) For any k > 6 we have

1
by < —
%(n) < n+ g™
and (ii)
Ps(n) < 6n— 12.

2 Proof of Theorem

Let F = {A1,Aq,..., A} be a family of pairwise disjoint convex sets in general position in the
plane. Denote the convex hull of UF = U!_; 4; by conv F. The boundary of conv F, bd conv F,
consists of finitely many boundary pieces of the A;’s, called vertez-arcs, connected by straight-
line segments, called edge-arcs. (This terminology reflects the picture in the special case when
every set A; is a single point.)

The elements A; € F contributing at least one vertex-arc to the boundary of conv F will
be called wvertices of conv F or, simply, vertices of F. If a vertex contributes to exactly one
vertex-arc, then it is called a regular vertex of F, otherwise it is an irreqular vertez. If A is not
a vertex, then it is said to be an internal member of F.

Let A be an arbirtary vertex of F and P € bdconvF Nbd A. For any A; € F and Q & A;
we say that @ is above A; if A; intersects the segment PQ. For any A;, A; € F we say that A;



is above A; if there is a QQ € A; such that @ is above A;. Finally, A; is said to be strictly above
A; if any QQ € A;j is above A;. We will refer to A and P as the reference vertex and reference
point of F.

Fig. 1.

Lemma 1. Let F be a family of pairwise disjoint convex sets in the plane satisfying property
Py, where k > 3. Then for any reference point P and any internal member B of F, there are at
least k — 3 wvertices of F strictly above B.

Proof of Lemma 1. Let [~ and [T be the two tangent lines of B from P, with touching points
B~ and BT, respectively. Suppose that the triangle PB~ BT is oriented clockwise, that is, [~ is
the left, [T is the right tangent of B from P. Let C~ and C* be the intersections of bd conv F
with [~ and [T, respectively.

Let I, I, ..., I, be the vertex-arcs of conv F in clockwise direction, such that P € I; and let
A(I),A(I2),...,A(Iy) be the corresponding vertices. Note that some of A(I), A(I3),...,A(Iy)
may be identical as some vertices could have more than one vertex-arc. For any two points
z,y € bdconv F, x precedes y and y follows z if and only if the clockwise order of P, z and y is
Pzy on bdconv F. Let

a = max{s | I; has a point which precedes C™ },



B = min{i | I; has a point which follows C*},
v =max{i | i = a or i < 3, A(I;) intersects PC~},
§=min{i | i = 8 or i > o, A(I;) intersects PC™}.
Since the sets are pairwise disjoint, v <, so a <7y < § < 8. Observe that

4
B C convA U U A(Ly).
1=

(see Fig. 1) Therefore, by property Py, the collection G = {A(l;) | v < ¢ < §} contains at least
k — 1 elements, Moreover, G' = G \ {A(I,), A(I5)} contains at least k — 3 elements, all of them
are vertices of F, strictly above B. O

Lemma 2. For any k > 6, m > 0, let Fx(m) be the mazimum number of elements of F,
a family of pairwise disjoint convex sets in the plane which satisfies property Py, and has m

vertices. Then
m if0<m<5b

F(m) 5{ m+ [’,;%;’J ifm>5

Proof of Lemma 2. For any fixed k > 6, we prove the statement by induction on m. If F has
at most k — 1 vertices, then by property P it does not have any internal member. This implies
the statement for m < k. Suppose that the statement has already been proved for any m’ < m
and that F has m > k vertices. Let A and P be a reference vertex and reference point of F. It
is easy to see that there is an internal member B of F so that there is no other internal member
above it (see [FRU]). By Lemma 1, there are at least k— 3 vertices of F, {A1, Ao, ..., A} strictly
above B.

First suppose that one of them, say A, is an irregular vertex. Then A; separates a subfamily
of {A4y,...,A;}, from the rest of F. Suppose without loss of generality that Ay is in this
subfamily. Deleting Ao from F, we do not create any new vertex so F \ {42} has one less
members and one less vertices, and we are done by induction.

So we can suppose that all of Ay, As,..., A;, | > k — 3, are regular vertices, all of them
are strictly above B and they appear in this clockwise order on bdconv(UF). Let F' = F\
{B,Asy,..., A1} and let m' be the number of vertices of F’'. We deleted | —2 > k — 5 vertices
of F and since there were no internal members of F above B, we did not get any new vertex.
hence m' < m — (k — 5). Therefore, by the induction hypothesis,

m' —5
k-5

—5
|f|§|f’|+k—4gm’+{ J+k—4§m+m—_5J.



Proof of Theorem (i). Let F be a family of pairwise disjoint convex sets in the plane satisfying
property P!, 6 < k < n. Observe that F has at most n — 1 vertices, therefore, by Lemma 2,

|FI<n—1+ [Z—:SJ < %=1y, This concludes the proof of part (i). O

Lemma 3. Let F be a family of pairwise disjoint convex sets in the plane satisfying property
Ps. If F has five vertices then it has at most one internal member.

Proof of Lemma 3. Suppose first that A is an irregular vertex of F. Then A divides F into
two nonempty subfamilies, F', " C F such that the members of F’ are separated from the
members of F” by A. Since both 7' U{A} and F”U{A} has at most four vertices, by property
Ps5 they do not have internal members. Hence neither F has any internal member.

So let A, As,..., As be the vertices of F with corresponding vertex-arcs Iy, Is,...,I5, in
clockwise order. Suppose for contradiction that B and C are both internal members of F.
Let £ be a line which separates B and C. The line £ divides bdconv(UF) into two parts,
convp and conve, respectively. Since there are five vertex-arcs on bd conv(UF), either convg or
conve contains at most two of them, say, I, Is C convg. But then B C conv(A4;, Ay, Az, Ag),
contradicting property Ps. O

Lemma 4. For any m > 1 let F be a family of pairwise disjoint convex sets in the plane which
satisfies property Ps, and has m vertices. Then |F| < 6m — 6.

Proof of Lemma 4. We proceed by induction on m. The statement is trivial for m < 4.
Suppose that it has already been proved for any m’ < m and that F has m vertices.

Suppose first that A is an irregular vertex of 7. Then A divides F into two nonempty
subfamilies, ', F” C F such that the members of F’ are separated from the members of F”
by A. Denote the number of vertices of F' U {A} and F"” U {A} by m' and m", respectively.
Each vertex of F is either a vertex of F' U {A} or a vertex of F” U {A}, except of A which is
a vertex of both. Since there are no other vertices of 7' U {A} and F" U {4}, m',m" < m and
m' +m"” = m+ 1. Apply the induction hypothesis for 7' U{A} and F’ U {A}.

|F| = |F U{A} + |F"U{A} -1 < 6(m' +m") —12 = 6m — 6.

So we can assume that all vertices A1, Ao, ..., Ay, of F are regular vertices and Iy, I, ..., I
are the corresponding vertex-arcs, in clockwise order. Substitute each A; by conv(l;). For
simplicity we call the resulting family also F. Clearly F sill has m vertices, and it is easy to see
that property Ps still holds.

We define a chain of families 7 D F; D F2 D --- D F; such that F; has no internal members.
Throughout the process, F; has m; vertices, all regular vertices, and some consecutive quadruples
of vertices {A4; 1, A4;, Ai+1, Ai12} may be marked. The number of marked quadruples will be
denoted by k;. At the beginning, F has m vertices and no marked quadruples, that is, my = m,
ko = 0. Let A; be the reference vertex and P be the reference point of all F;.



Inductive step: Let Ay, Ag,...,Anm; be the vertices of F;, in clockwise order. If F; has no
internal members, let [ = j and stop. Otherwise, let B be an internal member of F; such that
there is no other internal member above B. It follows from Lemma 1 that there are at least two
consecutive vertices of F, say A; and A, 1, strictly above B.

Fig. 2. Delete B and mark {A4;_1, A;, Ai+1, Aiyro}

If the neighboring vertices, A;—1 and A;+2 are not strictly above B, then we say that B is
assigned to the quadruple {A; 1, A;, Aiy1, Airo}. Then we mark {A; 1, Ai, Ai11, Airo}, delete B
and repeat the inductive step (Fig. 2). Note that in this case B C conv(A, A;_1, Ai, Ait1, Ait2).
Hence by Lemma 3, there was no set previously assigned to {A; 1, A;, Ai1+1, Air2}. Therefore,

kjy1 =kj+1, mjp =my, |Fjpa| = [F| -1 (1)

A.
Ai i+1
,/

Fig. 3. Delete B and A;4+1

On the other hand, if there are at least three consecutive vertices, A;, A;y1, Aj1o strictly
above B, then delete A;11 and B (Fig. 3). We did not create any new vertex, so renumber
the vertices A;yo,...,Am; to Air1,...,Ap,—1 and repeat the inductive step. There were four
quadruples which contained A;, therefore the number of marked quadruples decreases by at
most four. We did not create new vertices, so their number decreased by one. That is,

kjt1 > kj—4, mjp1 =m; — 1, |Fjpa| = |Fj| - 2. (2)



We claim that after each step |F;| < 6m; — k; — 6. Since there are m; different consecutive
quadruples and none of them can be marked twice, k; < m;. By property Ps, m; > 4 therefore,
|Fi| = my < 6my — k; — 6. Suppose that |F;1| < 6m;it1 — ki+1 — 6. The connection between the
parameters of F; and F;j.; is described either by (1) or (2). In the case of (1),

| Fjl = |Fixal +1 < 6mipy — kg1 — 5= 6my; — (kj +1) — 5 = 6m; — k; — 6,
and in the case of (2),
\Fjl = |Fiza| +2 < 6mip1 — kip1 —4 < 6(my — 1) — (kj —4) —4 = 6my; — k; — 6.
This shows by induction that |F| < 6m —k —6 = 6m — 6. O

Proof of Theorem (ii). Let F be a family of pairwise disjoint convex sets in the plane satisfying
property PF. Since F has at most n — 1 vertices, by Lemma 4, |[F| < 6(n — 1) — 6 = 6n — 12.
This concludes the proof of part (ii). O
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