Finding convex sets in convex position

 $G\'eza\ T\'oth^*$

DIMACS Center, Rutgers University and Hungarian Academy of Sciences

Abstract

Let \mathcal{F} denote a family of pairwise disjoint convex sets in the plane. \mathcal{F} is said to be in *convex position*, if none of its members is contained in the convex hull of the union of the others. For any fixed $k \geq 5$, we give a linear upper bound on $P_k(n)$, the maximum size of a family \mathcal{F} with the property that any k members of \mathcal{F} are in convex position, but no n are.

1 Introduction

In their classical paper [ES1], Erdős and Szekeres proved that any set of more than $\binom{2n-4}{n-2}$ points in general position in the plane contains n points which are in convex position, i.e., they form the vertex set of a convex n-gon. T. Bisztriczky and G. Fejes Tóth [BF1], [F] extended this result to families of convex sets.

Throughout this paper, by a family $\mathcal{F} = \{A_1, \ldots, A_t\}$ we always mean a family of pairwise disjoint compact convex sets in the plane in general position, i.e., no three of them have a common supporting line. \mathcal{F} is said to be in convex position if none of its members is contained in the convex hull of the union of the others, i.e., if $\operatorname{bd}\operatorname{conv}(\cup \mathcal{F})$, the boundary of the convex hull of the union of all members of \mathcal{F} , contains a point of the boundary of each A_i . Evidently, any two members of \mathcal{F} are in convex position.

T. Bisztriczky and G. Fejes Tóth proved that there exists a function $P_3(n)$ such that if $|\mathcal{F}| > P_3(n)$ and any three members of \mathcal{F} are in convex position, then \mathcal{F} has n members in convex position. Improving their initial result, in [BF2] they showed that this statement is true with a function $P_3(n)$, triply exponential in n. This bound was recently improved to a simply exponential function by Pach and Tóth [PT]. The best known lower bound for $P_3(n)$ is the classical lower bound for the Erdős-Szekeres theorem, $2^{n-2} \leq P_3(n)$.

If any k members of \mathcal{F} are in convex position, then we say that \mathcal{F} satisfies property P_k . If no n members of \mathcal{F} are in convex position, then we say that \mathcal{F} satisfies property P^n . Property P^n_k

 $^{^*}$ Supported by OTKA-T-020914, OTKA-F-22234, and the Margaret and Herman Sokol Postdoctoral Fellowship Award.

means that both P_k and P^n are satisfied. Using these notions, the above cited result of Pach and Tóth states that if a family \mathcal{F} satisfies property P_3^n , then $|\mathcal{F}| \leq {2n-4 \choose n-2}^2$.

T. Bisztriczky and G. Fejes Tóth [BF2] raised the following more general question. What is the maximum size $P_k(n)$ of a family \mathcal{F} satisfying property P_k^n ? Some of their bounds were later improved in [PT]. The best known bounds are the following:

$$2^{n-2} \le P_3(n) \le {\binom{2n-4}{n-2}}^2$$
 [ES2, PT]

$$2\left|\frac{n+1}{4}\right|^2 \le P_4(n) \le n^3$$
 [PT]

$$n-1+\left|\frac{n-1}{k-2}\right| \le P_k(n) \le n^2$$
 for $k \ge 5$ [BF2]

$$n-1+\left|\frac{n-1}{k-2}\right| \le P_k(n) \le n \log n \quad \text{for } k \ge 11 \quad [BF, PT]$$

In this note we give a linear upper bound on $P_k(n)$ for any $k \geq 5$.

Theorem. (i) For any $k \ge 6$ we have

$$P_k(n) \le n + \frac{1}{k-5}n,$$

and (ii)

$$P_5(n) \leq 6n - 12.$$

2 Proof of Theorem

Let $\mathcal{F} = \{A_1, A_2, \dots, A_t\}$ be a family of pairwise disjoint convex sets in general position in the plane. Denote the convex hull of $\cup \mathcal{F} = \cup_{i=1}^t A_i$ by conv \mathcal{F} . The boundary of conv \mathcal{F} , bd conv \mathcal{F} , consists of finitely many boundary pieces of the A_i 's, called *vertex-arcs*, connected by straightline segments, called *edge-arcs*. (This terminology reflects the picture in the special case when every set A_i is a single point.)

The elements $A_i \in \mathcal{F}$ contributing at least one vertex-arc to the boundary of conv \mathcal{F} will be called *vertices of* conv \mathcal{F} or, simply, *vertices of* \mathcal{F} . If a vertex contributes to exactly one vertex-arc, then it is called a *regular vertex* of \mathcal{F} , otherwise it is an *irregular vertex*. If A is not a vertex, then it is said to be an *internal member* of \mathcal{F} .

Let A be an arbitrary vertex of \mathcal{F} and $P \in \operatorname{bd} \operatorname{conv} \mathcal{F} \cap \operatorname{bd} A$. For any $A_i \in \mathcal{F}$ and $Q \notin A_i$ we say that Q is above A_i if A_i intersects the segment PQ. For any $A_i, A_j \in \mathcal{F}$ we say that A_j

is above A_i if there is a $Q \in A_j$ such that Q is above A_i . Finally, A_j is said to be strictly above A_i if any $Q \in A_j$ is above A_i . We will refer to A and P as the reference vertex and reference point of \mathcal{F} .

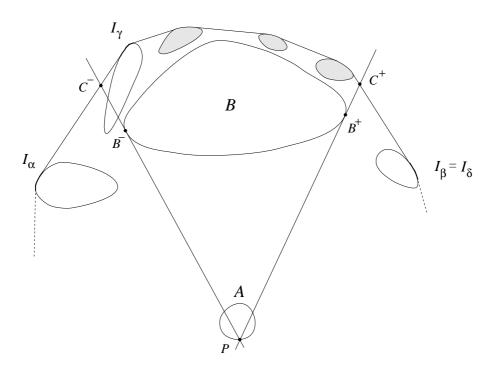


Fig. 1.

Lemma 1. Let \mathcal{F} be a family of pairwise disjoint convex sets in the plane satisfying property P_k , where $k \geq 3$. Then for any reference point P and any internal member B of \mathcal{F} , there are at least k-3 vertices of \mathcal{F} strictly above B.

Proof of Lemma 1. Let l^- and l^+ be the two tangent lines of B from P, with touching points B^- and B^+ , respectively. Suppose that the triangle PB^-B^+ is oriented clockwise, that is, l^- is the left, l^+ is the right tangent of B from P. Let C^- and C^+ be the intersections of bd conv \mathcal{F} with l^- and l^+ , respectively.

Let I_1, I_2, \ldots, I_m be the vertex-arcs of conv \mathcal{F} in clockwise direction, such that $P \in I_1$ and let $A(I_1), A(I_2), \ldots, A(I_m)$ be the corresponding vertices. Note that some of $A(I_1), A(I_2), \ldots, A(I_m)$ may be identical as some vertices could have more than one vertex-arc. For any two points $x, y \in \operatorname{bd} \operatorname{conv} \mathcal{F}$, x precedes y and y follows x if and only if the clockwise order of P, x and y is Pxy on $\operatorname{bd} \operatorname{conv} \mathcal{F}$. Let

 $\alpha = \max\{i \mid I_i \text{ has a point which precedes } C^-\},$

$$eta = \min\{i \mid I_i \text{ has a point which follows } C^+\},$$
 $\gamma = \max\{i \mid i = \alpha \text{ or } i < \beta, A(I_i) \text{ intersects } PC^-\},$
 $\delta = \min\{i \mid i = \beta \text{ or } i > \alpha, A(I_i) \text{ intersects } PC^+\}.$

Since the sets are pairwise disjoint, $\gamma \leq \delta$, so $\alpha \leq \gamma \leq \delta \leq \beta$. Observe that

$$B \subset \operatorname{conv} A \cup \bigcup_{i=\gamma}^{\delta} A(I_i).$$

(see Fig. 1) Therefore, by property P_k , the collection $\mathcal{G} = \{A(I_i) \mid \gamma \leq i \leq \delta\}$ contains at least k-1 elements, Moreover, $\mathcal{G}' = \mathcal{G} \setminus \{A(I_{\gamma}), A(I_{\delta})\}$ contains at least k-3 elements, all of them are vertices of \mathcal{F} , strictly above B. \square

Lemma 2. For any $k \geq 6$, m > 0, let $F_k(m)$ be the maximum number of elements of \mathcal{F} , a family of pairwise disjoint convex sets in the plane which satisfies property P_k , and has m vertices. Then

$$F_k(m) \le \begin{cases} m & \text{if } 0 < m < 5 \\ m + \left\lfloor \frac{m-5}{k-5} \right\rfloor & \text{if } m \ge 5 \end{cases}$$

Proof of Lemma 2. For any fixed $k \geq 6$, we prove the statement by induction on m. If \mathcal{F} has at most k-1 vertices, then by property P_k it does not have any internal member. This implies the statement for m < k. Suppose that the statement has already been proved for any m' < m and that \mathcal{F} has $m \geq k$ vertices. Let A and P be a reference vertex and reference point of \mathcal{F} . It is easy to see that there is an internal member B of \mathcal{F} so that there is no other internal member above it (see [FRU]). By Lemma 1, there are at least k-3 vertices of \mathcal{F} , $\{A_1, A_2, \ldots, A_l\}$ strictly above B.

First suppose that one of them, say A_1 , is an irregular vertex. Then A_1 separates a subfamily of $\{A_2, \ldots, A_l\}$, from the rest of \mathcal{F} . Suppose without loss of generality that A_2 is in this subfamily. Deleting A_2 from \mathcal{F} , we do not create any new vertex so $\mathcal{F} \setminus \{A_2\}$ has one less members and one less vertices, and we are done by induction.

So we can suppose that all of A_1, A_2, \ldots, A_l , $l \geq k-3$, are regular vertices, all of them are strictly above B and they appear in this clockwise order on $\operatorname{bd}\operatorname{conv}(\cup\mathcal{F})$. Let $\mathcal{F}' = \mathcal{F} \setminus \{B, A_2, \ldots, A_{l-1}\}$ and let m' be the number of vertices of \mathcal{F}' . We deleted $l-2 \geq k-5$ vertices of \mathcal{F} and since there were no internal members of \mathcal{F} above B, we did not get any new vertex. hence $m' \leq m - (k-5)$. Therefore, by the induction hypothesis,

$$|\mathcal{F}| \le |\mathcal{F}'| + k - 4 \le m' + \left\lfloor \frac{m' - 5}{k - 5} \right\rfloor + k - 4 \le m + \left\lfloor \frac{m - 5}{k - 5} \right\rfloor.$$

Proof of Theorem (i). Let \mathcal{F} be a family of pairwise disjoint convex sets in the plane satisfying property P_k^n , $6 \le k < n$. Observe that \mathcal{F} has at most n-1 vertices, therefore, by Lemma 2, $|\mathcal{F}| \le n-1+\left|\frac{n-6}{k-5}\right| < \frac{k-4}{k-5}n$. This concludes the proof of part (i). \square

Lemma 3. Let \mathcal{F} be a family of pairwise disjoint convex sets in the plane satisfying property P_5 . If \mathcal{F} has five vertices then it has at most one internal member.

Proof of Lemma 3. Suppose first that A is an irregular vertex of \mathcal{F} . Then A divides \mathcal{F} into two nonempty subfamilies, $\mathcal{F}', \mathcal{F}'' \subset \mathcal{F}$ such that the members of \mathcal{F}' are separated from the members of \mathcal{F}'' by A. Since both $\mathcal{F}' \cup \{A\}$ and $\mathcal{F}'' \cup \{A\}$ has at most four vertices, by property P_5 they do not have internal members. Hence neither \mathcal{F} has any internal member.

So let A_1, A_2, \ldots, A_5 be the vertices of \mathcal{F} with corresponding vertex-arcs I_1, I_2, \ldots, I_5 , in clockwise order. Suppose for contradiction that B and C are both internal members of \mathcal{F} . Let ℓ be a line which separates B and C. The line ℓ divides $\operatorname{bd}\operatorname{conv}(\cup \mathcal{F})$ into two parts, conv_B and conv_C , respectively. Since there are five vertex-arcs on $\operatorname{bd}\operatorname{conv}(\cup \mathcal{F})$, either conv_B or conv_C contains at most two of them, say, $I_2, I_3 \subset \operatorname{conv}_B$. But then $B \subset \operatorname{conv}(A_1, A_2, A_3, A_4)$, contradicting property P_5 . \square

Lemma 4. For any m > 1 let \mathcal{F} be a family of pairwise disjoint convex sets in the plane which satisfies property P_5 , and has m vertices. Then $|\mathcal{F}| \leq 6m - 6$.

Proof of Lemma 4. We proceed by induction on m. The statement is trivial for $m \leq 4$. Suppose that it has already been proved for any m' < m and that \mathcal{F} has m vertices.

Suppose first that A is an irregular vertex of \mathcal{F} . Then A divides \mathcal{F} into two nonempty subfamilies, $\mathcal{F}', \mathcal{F}'' \subset \mathcal{F}$ such that the members of \mathcal{F}' are separated from the members of \mathcal{F}'' by A. Denote the number of vertices of $\mathcal{F}' \cup \{A\}$ and $\mathcal{F}'' \cup \{A\}$ by m' and m'', respectively. Each vertex of \mathcal{F} is either a vertex of $\mathcal{F}' \cup \{A\}$ or a vertex of $\mathcal{F}'' \cup \{A\}$, except of A which is a vertex of both. Since there are no other vertices of $\mathcal{F}' \cup \{A\}$ and $\mathcal{F}'' \cup \{A\}$, m', m'' < m and m' + m'' = m + 1. Apply the induction hypothesis for $\mathcal{F}' \cup \{A\}$ and $\mathcal{F}'' \cup \{A\}$.

$$|\mathcal{F}| = |\mathcal{F}' \cup \{A\}| + |\mathcal{F}'' \cup \{A\}| - 1 \le 6(m' + m'') - 12 = 6m - 6.$$

So we can assume that all vertices A_1, A_2, \ldots, A_m of \mathcal{F} are regular vertices and I_1, I_2, \ldots, I_m are the corresponding vertex-arcs, in clockwise order. Substitute each A_i by $\operatorname{conv}(I_i)$. For simplicity we call the resulting family also \mathcal{F} . Clearly \mathcal{F} sill has m vertices, and it is easy to see that property P_5 still holds.

We define a chain of families $\mathcal{F} \supset \mathcal{F}_1 \supset \mathcal{F}_2 \supset \cdots \supset \mathcal{F}_l$ such that \mathcal{F}_l has no internal members. Throughout the process, \mathcal{F}_i has m_i vertices, all regular vertices, and some consecutive quadruples of vertices $\{A_{i-1}, A_i, A_{i+1}, A_{i+2}\}$ may be marked. The number of marked quadruples will be denoted by k_i . At the beginning, \mathcal{F} has m vertices and no marked quadruples, that is, $m_0 = m$, $k_0 = 0$. Let A_1 be the reference vertex and P be the reference point of all \mathcal{F}_j .

Inductive step: Let $A_1, A_2, \ldots, A_{m_j}$ be the vertices of \mathcal{F}_j , in clockwise order. If \mathcal{F}_j has no internal members, let l=j and stop. Otherwise, let B be an internal member of \mathcal{F}_j such that there is no other internal member above B. It follows from Lemma 1 that there are at least two consecutive vertices of \mathcal{F} , say A_j and A_{j+1} , strictly above B.

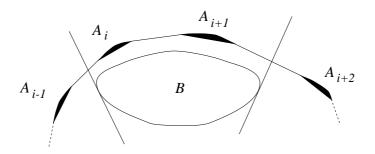


Fig. 2. Delete B and mark $\{A_{i-1}, A_i, A_{i+1}, A_{i+2}\}$

If the neighboring vertices, A_{i-1} and A_{i+2} are not strictly above B, then we say that B is assigned to the quadruple $\{A_{i-1}, A_i, A_{i+1}, A_{i+2}\}$. Then we mark $\{A_{i-1}, A_i, A_{i+1}, A_{i+2}\}$, delete B and repeat the inductive step (Fig. 2). Note that in this case $B \subset \text{conv}(A, A_{i-1}, A_i, A_{i+1}, A_{i+2})$. Hence by Lemma 3, there was no set previously assigned to $\{A_{i-1}, A_i, A_{i+1}, A_{i+2}\}$. Therefore,

$$k_{j+1} = k_j + 1, \ m_{j+1} = m_j, \ |\mathcal{F}_{j+1}| = |\mathcal{F}_j| - 1.$$
 (1)

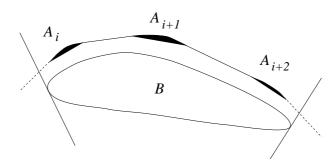


Fig. 3. Delete B and A_{i+1}

On the other hand, if there are at least three consecutive vertices, A_i, A_{i+1}, A_{i+2} strictly above B, then delete A_{i+1} and B (Fig. 3). We did not create any new vertex, so renumber the vertices A_{i+2}, \ldots, A_{m_i} to $A_{i+1}, \ldots, A_{m_i-1}$ and repeat the inductive step. There were four quadruples which contained A_{i+1} , therefore the number of marked quadruples decreases by at most four. We did not create new vertices, so their number decreased by one. That is,

$$k_{j+1} \ge k_j - 4, \ m_{j+1} = m_j - 1, \ |\mathcal{F}_{j+1}| = |\mathcal{F}_j| - 2.$$
 (2)

We claim that after each step $|\mathcal{F}_j| \leq 6m_j - k_j - 6$. Since there are m_j different consecutive quadruples and none of them can be marked twice, $k_j \leq m_j$. By property P_5 , $m_l \geq 4$ therefore, $|\mathcal{F}_l| = m_l < 6m_l - k_l - 6$. Suppose that $|\mathcal{F}_{i+1}| \leq 6m_{i+1} - k_{i+1} - 6$. The connection between the parameters of \mathcal{F}_j and \mathcal{F}_{i+1} is described either by (1) or (2). In the case of (1),

$$|\mathcal{F}_i| = |\mathcal{F}_{i+1}| + 1 \le 6m_{i+1} - k_{i+1} - 5 = 6m_i - (k_i + 1) - 5 = 6m_i - k_i - 6,$$

and in the case of (2),

$$|\mathcal{F}_j| = |\mathcal{F}_{i+1}| + 2 \le 6m_{i+1} - k_{i+1} - 4 \le 6(m_j - 1) - (k_j - 4) - 4 = 6m_j - k_j - 6.$$

This shows by induction that $|\mathcal{F}| \leq 6m - k - 6 = 6m - 6$. \square

Proof of Theorem (ii). Let \mathcal{F} be a family of pairwise disjoint convex sets in the plane satisfying property P_5^n . Since \mathcal{F} has at most n-1 vertices, by Lemma 4, $|\mathcal{F}| \leq 6(n-1) - 6 = 6n-12$. This concludes the proof of part (ii). \square

References

- [BF1] T. Bisztriczky and G. Fejes Tóth, A generalization of the Erdős-Szekeres convex n-gon theorem, Journal für die reine und angewandte Mathematik **395** (1989), 167–170.
- [BF2] T. Bisztriczky and G. Fejes Tóth, Convexly independent sets, *Combinatorica* **10** (1990), 195–202.
- [ES1] P. Erdős and G. Szekeres, A combinatorial problem in geometry, *Compositio Mathematica* **2** (1935), 463–470.
- [ES2] P. Erdős and G. Szekeres, On some extremum problems in elementary geometry, Ann. Universitatis Scientiarum Budapestinensis, Eötvös, Sectio Mathematica III–IV (1960–61), 53–62.
- [F] G. Fejes Tóth, Recent progress on packing and covering, in: *Proceedings of Conference on Discrete and Computational Geometry: Ten Years Later* (Mount Holyoke, 1996; B. Chazelle et al., eds.), Contemporary Mathematics, AMS, Providence, to appear.
- [FRU] S. Földes, I. Rival and J. Urrutia, Light sources, obstructions and spherical orders, *Discrete Mathematics* **102** (1992), 13–23.
- [PT] J. Pach and G. Tóth, A generalization of the Erdős-Szekeres theorem to disjoint convex sets, Discrete and Computational Geometry, to appear.