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Abstract

The crossing number cr(G) of a graph G is the minimum possible number of edge-crossings in
a drawing of G, the pair-crossing number pair-cr(G) is the minimum possible number of crossing
pairs of edges in a drawing of G. Clearly, pair-cr(G) ≤ cr(G). We show that for any graph G,

cr(G) = O(pair-cr(G)7/4 log3/2(pair-cr(G))).

1 Introduction

In a drawing of a graph G vertices are represented by points and edges are represented by Jordan
curves, in a plane, connecting the corresponding points. We assume that the edges do not pass
through vertices, any two edges have finitely many common points and each of them is either a
common endpoint, or a proper crossing. We also assume that no three edges cross at the same point.

The crossing number cr(G) is the minimum number of edge-crossings (i. e. crossing points) over
all drawings of G. The pair-crossing number pair-cr(G) is the minimum number of crossing pairs of
edges over all drawings of G. Clearly, for any graph G we have

pair-cr(G) ≤ cr(G).

It is still an exciting open question whether cr(G) = pair-cr(G) holds for all graphs G.

Pach and Tóth [PT00a] proved that cr(G) cannot be arbitrarily large if pair-cr(G) is bounded,
namely, for any G, if pair-cr(G) = k, then cr(G) ≤ 2k2. Valtr [V05] managed to improve this
bound to cr(G) ≤ 2k2/ log k. Based on the ideas of Valtr, the present author [T08] improved it to
cr(G) ≤ 9k2/ log2 k.

In this note, using a different approach, we obtain a further improvement.

Theorem. For any graph G, if pair-cr(G) = k, then cr(G) = O(k7/4 log3/2 k).

For the proof we need some results about string graphs. These are introduced in Section 2. In
Section 3 we give the short proof of the Theorem. There are many other versions of the crossing
number, for a survey see [BMP05], [PSS10] and [PT00b].
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2 String graphs

A string graph is the intersection graph of continuous arcs in the plane. More precisely, vertices of
the graph correspond to continous curves (strings) in the plane such that two vertices are connected
by an edge if and only if the corresponding strings intersect each other.

Suppose that G(V, E) is a graph of n vertices. A separator in a graph G is subset S ⊂ V for which
there is a partition V = S ∪A∪B, |A|, |B| ≤ 2n/3, and there is no edge between A and B. According
to the Lipton-Tarjan separator theorem, [LT79], every planar graph has a separator of size O(

√
n).

This result has been generalized in several directions, for graphs drawn on a surface of bounded genus,
graphs with a forbidden minor, intersection graphs of balls in the d dimensional space, intersection
graphs of Jordan regions, intersection graphs of convex sets in the plane, and finally, for string graphs
[FP08], [FP10].

Theorem A. [FP10] There is a constant c such that for any string graph G with m edges, there is a
separator of size at most cm3/4

√
log m.

3 Proof of Theorem

Let c be the constant in Theorem A. In a drawing D of a graph G in the plane, call those edges which
participate in a crossing crossing edges, and those which do not participate in a crossing empty edges.

Lemma. Suppose that D is a drawing of a graph G in the plane with l > 0 crossing edges and k > 0
crossing pairs of edges. Then G can be redrawn such that (i) empty edges are drawn the same way as
before, (ii) crossing edges are drawn in the neighborhood of the original crossing edges, and (iii) there
are at most 6ck7/4 log3/2 l edge crossings.

Proof of Lemma. The proof is by induction on l. For l = 1 the statement is trivial. Suppose that
the statement has been proved for all pairs (l′, k′), where l′ < l and consider a drawing of G with k
crossing pairs of edges, such that l edges participate in a crossing. Obviously,

(

l
2

)

≥ k, and 2k ≥ l,

therefore, 2k ≥ l >
√

k.

Let V denote the vertex set of G and let E resp. F denote the set of empty resp. crossing edges
of G. We define a string graph H as follows. The vertex set F of H corresponds to the crossing edges
of G. Two vertices are connected by an edge if the corresponding edges cross each other. Note that
the endpoints do not count; if two edges do not cross, the correspondig vertices are not connected
even if the edges have a common endpoint. The graph H is a string graph, it can be represented by
the crossing edges of G, as strings, with their endpoints removed. It has l vertices, and k edges. By
Theorem A, H has a separator of size ck3/4

√
log k that is, the vertices can be decomposed into three

sets, F 0, F 1, F 2, such that (i) |F 0| ≤ ck3/4
√

log k, (ii) |F 1|, |F 2| ≤ 2l/3, (iii) there is no edge of H
between F 1 and F 2.

This corresponds to a decomposition of the set of crossing edges F into three sets, F0, F1, and F2

such that (i) |F0| ≤ ck3/4
√

log k, (ii) |F1|, |F2| ≤ 2l/3, (iii) in drawing D, edges in F1 and in F2 do not
cross each other.

For i = 0, 1, 2, let |Fi| = li. Let G1 = G(V, E ∪ F1) and G2 = G(V, E ∪ F2), then in the drawing
D of the graph Gi has li crossing edges. Denote by ki the number of crossing pairs of edges of Gi in
drawing D. Then we have k1 + k2 ≤ k, l1, l2 ≤ 2l/3, l1 + l2 + l0 = l.
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For i = 1, 2, apply the induction hypothesis for Gi and drawing D. We obtain a drawing Di satis-
fying the conditions of the Lemma: (i) empty edges drawn the same way as before, (ii) crossing edges

are drawn in the neighborhood of the original crossing edges, and (iii) there are at most 6ck
7/4

i log3/2 li
edge crossings.

Consider the following drawing D3 of G. (i) Empty edges are drawn the same way as in D, D1, and
D2, (ii) For i = 1, 2, edges in Fi are drawn as in Di, (iii) Edges in F0 are drawn as in D. Now count
the number of edge crossings (crossing points) in the drawing D3. Edges in E are empty, edges in F1

and in F2 do not cross each other, there are at most 2ck
7/4

i log3/2 li crossings among edges in Fi. The
only problem is that edges in F0 might cross edges in F1 ∪ F2 and each other several times, so we can
not give a reasonable upper bound for the number of crossings of this type. Color edges in F1 and F2

blue, edges in F0 red. For any piece p of an edge of G, let blue(p) (resp. red(p)) denote the number
of crossings on p with blue (resp. red) edges of G. We will apply the following transformations.

ReduceCrossings(e, f) Suppose that two crossing edges, e and f cross twice, say, in X and
Y . Let e′ (resp. f ′) be the piece of e (resp. f) between X and Y . If blue(e′) < blue(f ′), or
blue(e′) = blue(f ′) and red(e′) ≤ red(f ′), then redraw f ′ along e′ from X to Y . Otherwise, redraw
e′ along f ′ from X to Y . See Figure 1.
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Figure 1: ReduceCrossings(e, f)

Observe that ReduceCrossings might create self-crossing edges, so we need another transforma-
tion.

RemoveSelfCrossings(e) Suppose that an edge e crosses itself in X. Then X appears twice on
e. Remove the part of e between the first and last appearance of X.

Start with drawing D3 of G, and apply ReduceCrossings and RemoveSelfCrossings recur-
sively, as long as there are two crossing edges that cross at least twice, or there is a self-crossing
edge.

Let BB, (resp. BR, RR) denote the number of blue-blue (resp. blue-red, red-red) crossings in the
current drawing of G. Observe, that the triple (BB, BR, RR) lexicographically decreases with each of
the transformations. Indeed,

• if e and f are both blue edges then ReduceCrossings(e, f) decreases BB,
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• if e is blue and f is red then either BB decreases, or if it stays the same then BR decreases,

• if e and f are both red edges then BB stays the same, and either BR decreases, or if it also
stays the same then RR decreases,

• if e is blue then RemoveSelfCrossings(e) decreases BB,

• and finally, if e is red then BB does not change, BR does not increase, and RR decreases.

Therefore, after finitely many steps we arrive to a drawing D4 of G, where any two edges cross at
most once, and (BB, BR, RR) is lexicograhically not larger than originally. That is, in the drawing

D4, BB ≤ 2ck
7/4

1
log l1 +2ck

7/4

2
log l2, and any two edges cross at most once, therefore, BR+RR ≤ l0l.

So, for the total number of crossings we have

6ck
7/4

1
log3/2 l1 + 6ck

7/4

2
log3/2 l2 + l0l

≤ 6ck
7/4

1

√

log l log(2l/3) + 6ck
7/4

2

√

log l log(2l/3) + l0l

≤ 6c(k
7/4

1
+ k

7/4

2
)
√

log l(log l + log(2/3)) + l0l

≤ 6ck7/4 log3/2 l − 3ck7/4
√

log l + l0l

≤ 6ck7/4 log3/2 l − 3ck7/4
√

log l + clk3/4
√

log k

≤ 6ck7/4 log3/2 l − 3ck7/4
√

log l + 2ck7/4
√

log k

≤ 6ck7/4 log3/2 l − 3ck7/4
√

log l + 3ck7/4
√

log l

= 6ck7/4 log3/2 l.

✷

Now consider a graph G and let pair-cr(G) = k. Take a drawing of G with exactly k crossing
pairs of edges. Let l be the total number of crossing edges. By the Lemma, G can be redrawn with at
most 6ck7/4 log3/2 l crossings. Since 2k ≥ l, cr(G) ≤ 6ck7/4 log3/2 l < 18ck7/4 log3/2 k. This concludes
the proof of the Theorem. ✷

Acknowledgement. I am very grateful to the anonymous referee for pointing out several typos,
errors in the calculation, and for some other useful remarks.
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[PT00a] J. Pach, G. Tóth, Which crossing number is it anyway? J. Combin. Theory Ser. B 80, (2000),
225-246.
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