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Abstract

Let S be a set of: points in the plane and consider a family of (hondegenepaiieyise congruent
triangles whose vertices belong $o While the number of such triangles can grow superlinearly i
n — as it happens in lattice sections of the integer grid — it @sn conjectured by Brass that the
number of pairwise congrueemptytriangles is only at most linear. We disprove this conjeztoy
constructing point sets witft(n log n) empty congruent triangles.

1 Introduction

Let S be a set of points in the plane an# be another (smaller) set of points, callgattern Establishing
tight estimates on the maximum number of times a given paftecan occur inS (under congruence,
similarity, etc.) is a classical topic in discrete and comaldrial geometry, which was started by the
following question of Erd6s [5] (see also [2]): "At most hawany times can the unit distance occur
among a set of points?”

Let u(n) denote this maximum. In the same paper, Erdés provedutgt= O(n*/?). This bound
was later improved ta(n) = O(n*/3) by Spencer, Szemerédi, and Trotter [9]. Erdés also shaatdn
a+/n x /n section of the integer grid the same distance can o@gur+</°gloen) times, where: > 0
is an absolute constant. Therefore, we haye) = Q(n!te/loglogn) [7]. The same bound holds for
the triangular lattice. Both the upper and the lower boundshe number of equal distances carry over
(asymptotically) as upper and lower bounds on the maximumbau of pairwise congruent triangles:
each pair of points at distaneecan be a side of lengthin at most four congruent copies of a triangle. On
the other hand, by the rotational symmetry of the trianglatiice, all point pairs that determine a given
distancer can be extended on both sides to an equilateral triangleogdsr is much smaller than the
diameter of then-element sectiord’ of the lattice, most of these pairs can be extended to twdatqral
triangles withinS. The same phenomenon occurs for triangles similar to ang fiengle spanned by
three points of the triangular lattice.
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If we assume that the elements ofalement point sef are inconvex positionthen the number of
times that the same (unit) distance can occur among thenmjeatared to b&)(n). Furedi established an
upper bound oD (nlogn) [6] (see also [3]), while in the best known construction, dué&delsbrunner
and Hajnal [4], the number of unit distance pairsdris 2n — 7. For triangles, the problem has been
essentially solved in this case: Pach and Pinchasi [8] prtivatn points in convex position can span at
most4n congruent copies of a given triangle.

An interesting variant of the triangle problem is to consiglmptytriangles, that is, pairwise congruent
triangles spanned by such that none of them contains any elemerf ofits interior. This problem, posed
by Brass, has some algorithmic motivation in connectiomviitindow matching” [1]. Brass conjectured
[2] that the maximum number of pairwise congruent emptyntzias spanned by points in the plane is
O(n). Here we disprove Brass’ conjecture.

Theorem 1 For all n, there exist-element point sets in the plane that sgam log n) pairwise congruent
empty triangles.

Note that it is still possible that for arfixedtriangle T", the maximum number of empty congruent
copies off" spanned by an-element point set in the plane is only linearinThis is the case wheh is
anobtuseor aright-angledtriangle.

Theorem 2 For any obtuse or right-angled triangl@’, there is a constant; such that the number of
empty congruent copies @fspanned by an-element point set in the plane is at mesgt: n.

2 Proof of Theorem 1

The idea is simple: first construct a set of poisis with many (i.e.,2(nlogn) pairwise congruent
triples of collinear points — which can be viewed as degeeeempty congruent triangles. Then very
slightly perturb this construction to obtain a set of poistso that these degenerate triangles become
non-degenerate empty congruent triangles. The detailssdi@lows.

Letn = 3*. Considerk unit vectorsby, ..., by, and forl < i < k, let 5; be the counterclockwise
angle from thec-axis tob;. We choose each; randomly — independently and uniformly from the interval
(0,7/2). Let X € (0,1) be fixed and let;; = \b;.

Consider now alB* possible sums of thes¥: vectors,a; andb;, 1 < ¢ < k, with coefficients) or 1,
satisfying the condition that for eachat least one ofi; or b; has coefficiend. and letSy be the set of
their endpoints. Clearly, each triple of the form ¢ + a;, v + b;) — wherev is a subset sum that does
not containa; or b; — consists of collinear points. For such a triple, denotesffy) the segment whose
endpoints are andv + b;, and byp;(v), ¢;(v), andr;(v) the pointsv, v + a;, v 4 b; respectively. We say
that the above triple is of typgi = 1, ..., k. Obviously, for eachi there are exactlg*~! triples of type
1, therefore we have a total of ,

K3kt = % = Q(nlogn)
triples of collinear points. In fact, all these triples fodagenerate congruent trianglesSin Denote byF
the set of segments corresponding to these triples.



Lemmal There exist anglesy, ..., 8, such that
(i) Sy consists of: distinct points;
and
(i) if v,u,v 4+ b; € Sy are collinear (in this order), them, = v + a;.

Note that there may exist other triples of collinear point§i (such asy, a1 + as, ba, for A = 1/2).
However, Lemma 1 does not apply to them.

Assume for a moment that the lemma holds. Edte the minimum distance between poiptse
So \ {pi(v),qi(v),ri(v)} and segments;(v) € E over all pairsv,i. By Lemma 1, > 0. Now slightly
modify the construction in the following way: instead of dsinga; to be collinear withp;, we slightly
rotate\b; counterclockwise frond; through an angle of around their common origin. This modification
is carried out at the same time for all vectafsi = 1,.. ., k that appear in the construction. By continuity,
there existd = J(¢), so that each of the congruent degenerate triangles in tigrostion remains empty
throughout this small perturbation.

It remains to prove Lemma 1. Writé] = {1,...,k}.

Proposition 1 Leti € [k] and (\(,...,\x) € R* be fixed and nonzero. Then the probability that there
existsy # 0 such that

> Abj+ubi=0
jelk\{i}

is zero. In particular, the probability thaZf:1 A:b; = 0 is zero.

Proof. The probability that
,ubi = - Z /\jbj,
jelk\ i}
for somey, i.e., the vectob; is parallel to— 3 ;1 Asb;, is zero. 0

We can now prove (i): Assume that two given vector combimetigield the same point, that is

dai+ Y b= ai+ b 1)

i€l i€lio i€la i€ls9

wherel; N Iig = 0, In; N Ipp = 0. Write B;; = Zkejij bk, 4,7 = 1,2. Then(1) can be rewritten as
A(B11 — Ba1) + (B2 — Bag) = 0. 2)

The above vector equation has some nonzero coefficiefit1, £(1 — )} unlessl;; = Iy; and
1,5 = Iy, that is, the two vector combinations are the same. Thexghyr Proposition 1, since there are
only a finite numberQ(n?), of pairs of vector combinations, ffi, . . . , 3, are chosen randomly, with high
probability no two vector combinations yield the same point

We continue with (ii): by a similar argument, there are onlffjrite number,0(n?logn), of triples
of points of the formuy, vo, v3 = v1 + b;, SO it suffices to show that i, .. ., 5, are chosen randomly,
with high probability a given triplet of points, other tharose that exist by construction, consists of non-
collinear points.



Assume therefore that the vector combinationsv,, v3 = v1 + b; are collinear in this order. Thus,
for somey € (0, 1), we have

v9 = V1 + ub;. €))
Let
o= et Y b ve= ) at Y b
i€l 1€l 1€l 1€l

whereli; N I1g = 0, Is1 N Iy = 0, ands §é (In U 112). Write Bij = zkelij b, 1,7 =1,2. Then(3)
can be rewritten as
ABa1 + By = AB11 + Bia + ub;. 4)

If i ¢ (121 U I22), the coefficient ob; in the resulting equation igs # 0, therefore by Proposition 1,
for a random choice of angles, equatiar holds with probability zero. If € 159, the coefficient ob; in
the resulting equation id — p) # 0, and the same argument applies.

If i € I5, the coefficient ofy; in the resulting equation i&8 — u. If A # u, the coefficient of;
is again nonzero, and the same argument applies. In the nemgatase A = u, we either have (a)
Iy = I3 U {i} and Iy = I3, which means, = vy + a;, that is,vq, ve, vz forms a triple of points
collinear by construction, or (b) after reducing the tetkhs= ub;, the resulting equation corresponds to
two different vector combinations giving the same pointjcliholds with probability zero by Proposition
1. This concludes the proof of Lemma 1 and hence the proof ebiigm 1.

Remark. The ratio of two sides of our triangle ¥ so it can be chosen arbitrarily {i,1), and with a
slight modification of our argument we can show that two si@sbe chosen to be equal, that is, Theorem
1 holds forisosceledriangles.

3 Proof of Theorem 2

Let T" be an obtuse or right-angled triangle with vertieed, ¢, and anglesy, 3, v respectively, with

a < (B <. LetS be a set o points, and consider all triangles determinedSogongruent tdl’. Denote

their number bym. Clearly, we can choose’ = [72] of these triangles congruent Tosuch that (i) all

of them have the same orientation, and (ii) their correspmndides determine an angle less than_et

M’ be the set of these triangles. Assume without loss of gahethat the triangles inV/’ are clockwise

oriented, that is, their vertices corresponding:. 16, andc follow each other in this clockwise order.
Define a directed graph on the points®ofWe have an edge fromto y if and only if there is a triangle

in M’ such thatr corresponds ta andy corresponds te. This graph has one edge for each triangle in

M'. Therefore, Theorem 2 is a direct consequence of the fatigwi

Proposition 2 The out-degree of any vertex is at most one.

Proof. Suppose that has out-degree at least two. L&t andT, be the corresponding triangles with
verticesz, by, c; andz, bo, co, see Fig. 3. By the choice dfl’, the anglec;zc; is less tham. Assume
without loss of generality thaf;zc; is oriented counterclockwise. Using that> 7/2, we obtain that
cy € 17, a contradiction. O

The argument shows that Theorem 2 holds with= 47 /.
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Figure 1:co € T7.
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