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Abstract

Let S be a set ofn points in the plane and consider a family of (nondegenerate)pairwise congruent
triangles whose vertices belong toS. While the number of such triangles can grow superlinearly in
n — as it happens in lattice sections of the integer grid — it hasbeen conjectured by Brass that the
number of pairwise congruentemptytriangles is only at most linear. We disprove this conjecture by
constructing point sets withΩ(n log n) empty congruent triangles.

1 Introduction

Let S be a set ofn points in the plane andP be another (smaller) set of points, calledpattern. Establishing
tight estimates on the maximum number of times a given pattern P can occur inS (under congruence,
similarity, etc.) is a classical topic in discrete and combinatorial geometry, which was started by the
following question of Erdős [5] (see also [2]): ”At most howmany times can the unit distance occur
among a set ofn points?”

Let u(n) denote this maximum. In the same paper, Erdős proved thatu(n) = O(n3/2). This bound
was later improved tou(n) = O(n4/3) by Spencer, Szemerédi, and Trotter [9]. Erdős also showedthat in
a
√

n × √
n section of the integer grid the same distance can occurΩ(n1+c/log log n) times, wherec > 0

is an absolute constant. Therefore, we haveu(n) = Ω(n1+c/log log n) [7]. The same bound holds for
the triangular lattice. Both the upper and the lower bounds on the number of equal distances carry over
(asymptotically) as upper and lower bounds on the maximum number of pairwise congruent triangles:
each pair of points at distancer can be a side of lengthr in at most four congruent copies of a triangle. On
the other hand, by the rotational symmetry of the triangularlattice, all point pairs that determine a given
distancer can be extended on both sides to an equilateral triangle. As long asr is much smaller than the
diameter of then-element sectionS of the lattice, most of these pairs can be extended to two equilateral
triangles withinS. The same phenomenon occurs for triangles similar to any fixed triangle spanned by
three points of the triangular lattice.
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If we assume that the elements of ann-element point setS are inconvex position, then the number of
times that the same (unit) distance can occur among them is conjectured to beO(n). Füredi established an
upper bound ofO(n log n) [6] (see also [3]), while in the best known construction, dueto Edelsbrunner
and Hajnal [4], the number of unit distance pairs inS is 2n − 7. For triangles, the problem has been
essentially solved in this case: Pach and Pinchasi [8] proved thatn points in convex position can span at
most4n congruent copies of a given triangle.

An interesting variant of the triangle problem is to consider emptytriangles, that is, pairwise congruent
triangles spanned byS such that none of them contains any element ofS in its interior. This problem, posed
by Brass, has some algorithmic motivation in connection with ”window matching” [1]. Brass conjectured
[2] that the maximum number of pairwise congruent empty triangles spanned byn points in the plane is
O(n). Here we disprove Brass’ conjecture.

Theorem 1 For all n, there existn-element point sets in the plane that spanΩ(n log n) pairwise congruent
empty triangles.

Note that it is still possible that for anyfixed triangleT , the maximum number of empty congruent
copies ofT spanned by ann-element point set in the plane is only linear inn. This is the case whenT is
anobtuseor aright-angledtriangle.

Theorem 2 For any obtuse or right-angled triangleT , there is a constantcT such that the number of
empty congruent copies ofT spanned by ann-element point set in the plane is at mostcT · n.

2 Proof of Theorem 1

The idea is simple: first construct a set of pointsS0 with many (i.e.,Ω(n log n) pairwise congruent
triples of collinear points — which can be viewed as degenerate empty congruent triangles. Then very
slightly perturb this construction to obtain a set of pointsS so that these degenerate triangles become
non-degenerate empty congruent triangles. The details areas follows.

Let n = 3k. Considerk unit vectorsb1, . . . , bk, and for1 ≤ i ≤ k, let βi be the counterclockwise
angle from thex-axis tobi. We choose eachβi randomly — independently and uniformly from the interval
(0, π/2). Let λ ∈ (0, 1) be fixed and letai = λbi.

Consider now all3k possible sums of these2k vectors,ai andbi, 1 ≤ i ≤ k, with coefficients0 or 1,
satisfying the condition that for eachi, at least one ofai or bi has coefficient0. and letS0 be the set of
their endpoints. Clearly, each triple of the form (v, v + ai, v + bi) — wherev is a subset sum that does
not containai or bi — consists of collinear points. For such a triple, denote bysi(v) the segment whose
endpoints arev andv + bi, and bypi(v), qi(v), andri(v) the pointsv, v + ai, v + bi respectively. We say
that the above triple is of typei, i = 1, . . . , k. Obviously, for eachi there are exactly3k−1 triples of type
i, therefore we have a total of

k3k−1 =
n log n

3 log 3
= Ω(n log n)

triples of collinear points. In fact, all these triples formdegenerate congruent triangles inS0. Denote byE
the set of segments corresponding to these triples.
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Lemma 1 There exist anglesβ1, . . . , βk, such that

(i) S0 consists ofn distinct points;

and

(ii) if v, u, v + bi ∈ S0 are collinear (in this order), thenu = v + ai.

Note that there may exist other triples of collinear points in S0 (such asb1, a1 + a2, b2, for λ = 1/2).
However, Lemma 1 does not apply to them.

Assume for a moment that the lemma holds. Letǫ be the minimum distance between pointsp ∈
S0 \ {pi(v), qi(v), ri(v)} and segmentssi(v) ∈ E over all pairsv, i. By Lemma 1,ǫ > 0. Now slightly
modify the construction in the following way: instead of choosingai to be collinear withbi, we slightly
rotateλbi counterclockwise frombi through an angle ofδ around their common origin. This modification
is carried out at the same time for all vectorsai, i = 1, . . . , k that appear in the construction. By continuity,
there existsδ = δ(ǫ), so that each of the congruent degenerate triangles in the construction remains empty
throughout this small perturbation.

It remains to prove Lemma 1. Write[k] = {1, . . . , k}.

Proposition 1 Let i ∈ [k] and (λ1, . . . , λk) ∈ Rk be fixed and nonzero. Then the probability that there
existsµ 6= 0 such that ∑

j∈[k]\{i}

λjbj + µbi = 0

is zero. In particular, the probability that
∑k

i=1 λibi = 0 is zero.

Proof. The probability that
µbi = −

∑

j∈[k]\{i}

λjbj ,

for someµ, i.e., the vectorbi is parallel to−∑
j∈[k]\{i} λjbj , is zero. 2

We can now prove (i): Assume that two given vector combinations yield the same point, that is
∑

i∈I11

ai +
∑

i∈I12

bi =
∑

i∈I21

ai +
∑

i∈I22

bi, (1)

whereI11 ∩ I12 = ∅, I21 ∩ I22 = ∅. Write Bij =
∑

k∈Iij
bk, i, j = 1, 2. Then(1) can be rewritten as

λ(B11 − B21) + (B12 − B22) = 0. (2)

The above vector equation has some nonzero coefficient∈ {±1, ±(1 − λ)} unlessI11 = I21 and
I12 = I22, that is, the two vector combinations are the same. Therefore, by Proposition 1, since there are
only a finite number,O(n2), of pairs of vector combinations, ifβ1, . . . , βk are chosen randomly, with high
probability no two vector combinations yield the same point.

We continue with (ii): by a similar argument, there are only afinite number,O(n2 log n), of triples
of points of the formv1, v2, v3 = v1 + bi, so it suffices to show that ifβ1, . . . , βk are chosen randomly,
with high probability a given triplet of points, other than those that exist by construction, consists of non-
collinear points.
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Assume therefore that the vector combinationsv1, v2, v3 = v1 + bi are collinear in this order. Thus,
for someµ ∈ (0, 1), we have

v2 = v1 + µbi. (3)

Let
v1 =

∑

i∈I11

ai +
∑

i∈I12

bi, v2 =
∑

i∈I21

ai +
∑

i∈I22

bi,

whereI11 ∩ I12 = ∅, I21 ∩ I22 = ∅, andi /∈ (I11 ∪ I12). Write Bij =
∑

k∈Iij
bk, i, j = 1, 2. Then(3)

can be rewritten as
λB21 + B22 = λB11 + B12 + µbi. (4)

If i /∈ (I21 ∪ I22), the coefficient ofbi in the resulting equation isµ 6= 0, therefore by Proposition 1,
for a random choice of angles, equation(4) holds with probability zero. Ifi ∈ I22, the coefficient ofbi in
the resulting equation is(1 − µ) 6= 0, and the same argument applies.

If i ∈ I21, the coefficient ofbi in the resulting equation isλ − µ. If λ 6= µ, the coefficient ofbi

is again nonzero, and the same argument applies. In the remaining case,λ = µ, we either have (a)
I21 = I11 ∪ {i} andI22 = I12, which meansv2 = v1 + ai, that is,v1, v2, v3 forms a triple of points
collinear by construction, or (b) after reducing the termsλbi = µbi, the resulting equation corresponds to
two different vector combinations giving the same point, which holds with probability zero by Proposition
1. This concludes the proof of Lemma 1 and hence the proof of Theorem 1.

Remark. The ratio of two sides of our triangle isλ, so it can be chosen arbitrarily in(0, 1), and with a
slight modification of our argument we can show that two sidescan be chosen to be equal, that is, Theorem
1 holds forisoscelestriangles.

3 Proof of Theorem 2

Let T be an obtuse or right-angled triangle with verticesa, b, c, and anglesα, β, γ respectively, with
α ≤ β ≤ γ. Let S be a set ofn points, and consider all triangles determined byS congruent toT . Denote
their number bym. Clearly, we can choosem′ = ⌈mα

4π ⌉ of these triangles congruent toT such that (i) all
of them have the same orientation, and (ii) their corresponding sides determine an angle less thanα. Let
M ′ be the set of these triangles. Assume without loss of generality that the triangles inM ′ are clockwise
oriented, that is, their vertices corresponding toa, b, andc follow each other in this clockwise order.

Define a directed graph on the points ofS. We have an edge fromx to y if and only if there is a triangle
in M ′ such thatx corresponds toa andy corresponds toc. This graph has one edge for each triangle in
M ′. Therefore, Theorem 2 is a direct consequence of the following:

Proposition 2 The out-degree of any vertex is at most one.

Proof. Suppose thatx has out-degree at least two. LetT1 andT2 be the corresponding triangles with
verticesx, b1, c1 andx, b2, c2, see Fig. 3. By the choice ofM ′, the angleĉ1xc2 is less thanα. Assume
without loss of generality that̂c1xc2 is oriented counterclockwise. Using thatγ ≥ π/2, we obtain that
c2 ∈ T1, a contradiction. 2

The argument shows that Theorem 2 holds withcT = 4π/α.
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Figure 1:c2 ∈ T1.
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[6] Z. Füredi, The maximum number of unit distances in a convex n-gon,J. Combin. Theory Ser. A55
(1990), 316-320.

[7] J. Pach and P. K. Agarwal,Combinatorial Geometry, John Wiley, New York, 1995.

[8] J. Pach and R. Pinchasi, How many unit equilateral triangles can be generated byn points in convex
position?American Mathematical Monthly, 110 (2003), 400–406.
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