Valószínűségszámítás
VISZAB02

2019/2020. első félév


    Eseménynaptár (terv):

    1. hét 2019. szeptember 11.
    Események, műveletek, valószínűségi mező, Poincaré-formula
    1.gyakorlat Végeredmények
    2. hét 2019. szeptember 18. Események függetlensége, feltételes valószínűség, teljes valószínűség tétele, szorzási szabály, Bayes-formula
    2.gyakorlat Végeredmények
    3. hét 2019. szeptember 25. Diszkrét valószínűségi változók, várható érték, eloszlások: binomiális, egyenletes, geometriai
    3.gyakorlat Végeredmények
    4. hét 2019. október 2. Folytonos valószínűségi változók, eloszlásfüggvény, sűrűségfüggvény, valószínűségi változó transzformáltja
    4.gyakorlat Végeredmények
    5. hét 2019. október 9. Bertrand paradoxon, örökijú eloszlások, Poisson-eloszlás, binomiális eloszlás közelítése a Poisson-eloszlással
    5.gyakorlat Végeredmények
    6. hét 2019. október 16. Diszkrét valószínűségi változók függetlensége, korrelációja, szórása
    6.gyakorlat Végeredmények
    7. hét 2019. október 23. előadás elmarad
    7.gyakorlat Végeredmények
    8. hét 2019. október 30. Normális eloszlás sűrűség- és eloszlásfüggvény, paraméterei, transzformáltja, alkalmazásai
    (A témakörhöz tartozó feladatok a 9.feladatsoron szerepelnek.)
    9. hét 2019. november 4.
    ZH 8:00-10:00
    Feladatsor Pontozási útmutató
    2019. november 6.
    Együttes sűrűségfüggvény, peremeloszlás, függetlenség, konvolúció
    8.gyakorlat Végeredmények
    10. hét 2019. november 13. Csebisev-egyenlőtlenség, nagy számok törvénye, centrális határeloszlás tétel
    9.gyakorlat Végeredmények
    11. hét 2019. november 20.
    Valószínűségi változók lineáris regressziója, regresszió hibája
    10.gyakorlat Végeredmények
    12. hét 2019. november 27. Feltételes várható érték, tulajdonságai, teljes várható érték tétele, példák
    2019. november 28. pót ZH 18:00-20:00
    13. hét 2019. december 4.
    Kétdimenziós normális eloszlás, függetlenség és korrelálatlanság normális eloszlás esetén, polinomiális eloszlás, vetületei
    14. hét 2019. december 11.
    Statisztikai alapfogalmak


    Értékelés, tárgykövetelmények:

    Zárthelyi, pótzárthelyi:

A félév során egy zárthelyi dolgozat lesz, amely 6 darab 20 pontot érő feladatból áll, időtartama 90 perc. A félév végi aláírást az szerzi meg (vagyis a vizsgára az jelentkezhet), aki a zárthelyin legalább 40 pontot ér el.

A szorgalmi időszakban lesz egy pótzárthelyi alkalom, továbbá a vizsgaidőszak előtti pótlási héten egy aláíráspótló vizsga (pótpótzárthelyi alkalom) is. Mindkét alkalmat lehet használni az elmulasztott zárthelyi teljesítésére vagy a már megírt, de sikertelen dolgozat eredményének a javítására (pótlás). A pótzárthelyi alkalom (és csak az) ezen kívül használható a sikeresen megírt dolgozat eredményének javítására is (javítás).  Ha valaki egy korábban már megírt dolgozatot ír újra valamelyik pótzárthelyin, akkor az új pontszáma lesz érvényes - akkor is, ha az rosszabb, mint a korábbi. Ez alól egy kivétel van: a már megszerzett aláírást és az ahhoz szükséges minimális pontszámot egy balsikerű javítási kísérlettel nem lehet elveszíteni. Így ha valaki már teljesítette az aláíráshoz szükséges feltételeket, majd egy javítónak szánt pótzárthelyin annyival rosszabb eredményt ér el, hogy ezáltal az aláírása elveszne, akkor az aláírása megmarad, és a pontszáma 40-re módosul. Ha valaki egy pótlási (vagy javítási) alkalmon megjelenik (és a feladatsort átveszi), azt úgy tekintjük, hogy az illető kísérletet tett a dolgozat megírására (és így rá a fenti feltételek vonatkoznak).

A pótzárthelyi alkalomra nem szükséges jelentkezni Neptunban (sem máshol), azon mindenki a saját döntése szerint részt vehet (függetlenül attól, hogy a dolgozatot pótlási vagy javítási szándékkal írja meg).


Díjköteles pótlás (aláíráspótló vizsga):

Akinek a pótzárthelyi után továbbra is eredménytelen a zárthelyije, az a pótpótzárthelyi alkalmon még pótolhatja. Ez az alkalom a Neptunban "díjköteles pótlás" (korábban "aláíráspótló vizsga") néven szerepel, különeljárási díj megfizetése mellett Neptunban kell rá jelentkezni. Aki ezt nem tette meg, annak az ekkor megszerzett aláírását nem tudjuk a Neptunba elkönyvelni. Ezért nem tudjuk olyan hallgatónak engedélyezni a pótlást, aki a Neptun-jelentkezést elmulasztotta.
 

Korábbi félévben szerzett aláírás:

Azok, akik egy korábbi félévből aláírással rendelkeznek, és ebben a félévben is a reguláris előadást és gyakorlatot (tehát nem a vizsgakurzust) vették fel, megkísérelhetik újból megírni a zárthelyit abból a célból, hogy a korábbi zárthelyi eredményén javítsanak. Erre az esetre az alábbi feltételek vonatkoznak:

  • Ha sikerül újra teljesíteni az aláíráshoz szükséges feltételeket, akkor a vizsgajegybe az így kapott eredmény számít bele (akár jobb, akár rosszabb az eredetinél).
  • Ha nem sikerül újra teljesíteni az aláíráshoz szükséges feltételeket, akkor az aláírás nem vész el, de a vizsgajegybe csak az aláírás megszerzéséhez szükséges minimális pontszámot (40 pont) számítjuk be.
Ha egy aláírással rendelkező hallgató az aktuális félévben legalább egy zárthelyin megjelenik, azt úgy tekintjük, hogy az illető kísérletet tett az aláírás feltételeinek újbóli teljesítésére (és így a fenti feltételek vonatkoznak rá). Ellenkező esetben a legutolsó olyan félévbeli teljesítményt vesszük figyelembe, amikor a hallgató megkísérelte az aláírás feltételeinek teljesítését.

Vizsga:

A félév végén az aláírással rendelkező hallgatóknak a vizsgajegy megszerzéséért írásbeli vizsgát kell tenniük. A vizsgadolgozat 6 darab 20 pontot érő feladatból áll, időtartama 90 perc.

Vizsgára csak az jelentkezhet, aki aláírással rendelkezik. A vizsgákra a Neptunban kell jelentkezni. Felhívjuk a figyelmet arra, hogy a Neptun csak a vizsgára jelentkezett hallgatók eredményeinek a felvitelét engedélyezi, így nincs lehetőségünk olyan hallgatót vizsgáztatni, aki a jelentkezést elmulasztotta.

A vizsgajegyet a zárthelyi eredményéből és az írásbeli vizsga eredményéből alakítjuk ki az alábbi képletet alkalmazva:

végső_pontszám = 0,4 * min(ZH_pontszám;100) + 0,6 * min(Vizsga_pontszám;100)
.

A jegy a végső pontszám alapján: 0-39: elégtelen, 40-54: elégséges, 55-69: közepes, 70-84: jó, 85-100: jeles.

Legalább 40 pontos vizsgadolgozat esetén a megtekintés keretében lehet szóbelizési lehetőséget kérni, amellyel a hallgató egy jegyet módosíthat, felfelé és lefelé egyaránt.

A vizsgán (ebből a tárgyból) nem szükséges alkalmi öltözetben megjelenni.


IMSc pontok:

Az IMSc pontokat az alábbi képlettel számítjuk ki:

IMSc_pont = min( floor(HF_pontszám / 20) + floor(max(ZH_pontszám-88;0) / 3) + floor(max(Vizsga_pontszám-88;0) / 3); 25).

A félév során tehát IMSc pontot három formában lehet szerezni:

  • Házi feladatokból: 10 kijelölt feladatsoron, feladatsoronként egy kitűzött feladat megoldásával. A feladat otthon kidolgozható, a gyakorlatvezetőnek az adott gyakorlat utáni két hétben beadandó. A gyakorlatvezető a feladatokat 0-tól 20 pontig értékeli. Az összpontszámot 20-szal osztjuk, a kapott értéket lefelé kerekítjük.
  • Zárthelyin: A ZH-n elért pontszám 88-at meghaladó részének a harmada, lefelé kerekítve.

  • Vizsgán: A vizsgán elért pontszám 88-at meghaladó részének a harmada, lefelé kerekítve.

Az összesen szerezhető IMSc pontok száma legfeljebb 25.

Az IMSc pontok a vizsgaeredményekkel együtt kerülnek be a Neptunba. Kérünk mindenkit, ellenőrizze, hogy a Neptunban nyilvántartott IMSc pontszáma megfelel-e a valóságnak, és amennyiben eltérést tapasztal, azt a lehető leghamarabb jelezze a SzIT tanszéki adminisztrációján a boltizar _KUKAC_cs.bme.hu emailcímen.


Zárthelyi:

Zárthelyi: november 4. (hétfő) 8:00 - 10:00
Pótzárthelyi: november 28. (csütörtök) 18:00 - 20:00

A zárthelyi anyaga az első 6 előadás (és 7 gyakorlat) anyaga. Terembeosztás a vezetéknevek kezdőbetűje szerint:

A - E: K234
F - L: CHFMAX
M - S: E1B
Sz - Tr: IB026
Tu - Zs: IB027

Zárthelyi és vizsga szabályai:

A zárthelyi és a vizsga lebonyolítási szabályai megegyeznek.
A dolgozatok 6 db 20 pontot érő feladatból állnak, a munkaidő 90 perc.
Az első 30 percben nem lehet a termet elhagyni.
Csak előre összetűzött lapokon lehet dolgozni, a piszkozatlapot is beleértve.
Az első oldal jobb felső sarkán szerepeljen: a hallgató neve, Neptun-kódja és a Neptun szerinti gyakorlatvezetőjének a neve.
A számszerű megoldásokat 4 értékes jegyre kerekítve várjuk.
A teljes pontszám eléréséhez a megoldás menete is szükséges. A lépéseknél a felhasznált tulajdonság is jelzendő.
Segédeszközként csak (grafikus megjelenítésre nem alkalmas) számológép és a hallgató saját tudása használható.