
Con tributions T o Or-P arallel Logic

Programm i ng

PhD Thesis

Péter Szeredi

T ec hnical Univ ersit y of Budap est

Decem b er 1997

Con ten ts

1 In tro ductio n 1

1.1 Preliminaries : 1

1.1.1 P arallel programmi ng : 1

1.1.2 Logic programming : 2

1.1.3 P arallel execution of logic programs : 3

1.1.4 P arallel implemen tati on of logic programming : 5

1.1.5 The Aurora or-parallel Prolog system : 5

1.2 Thesis o v erview : 6

1.2.1 Problem form ulation : 6

1.2.2 Approac h and results : 8

1.2.3 Utilisation of the results : 9

1.3 Structure of the Thesis and con tributions : 10

1.3.1 Implemen tation : 10

1.3.2 Language extensions : 11

1.3.3 Applications : 11

1.3.4 Summary of publications : 11

I Implemen tati on 15

2 The Aurora Or-P arallel Prolog System 16

2.1 In tro duction : 16

2.2 Bac kground : 17

2.2.1 Sequen tial Prolog Implemen tations : 17

2.2.2 Multipro cessors : 18

2.2.3 Or-P arallelism : 18

2.2.4 Issues in Or-P arallel Prolog Implemen tation and Early W ork : : : : : : : : : : : : : : 19

2.2.5 A Short History of the Gigalips Pro ject : 19

2.3 Design : 19

2.3.1 The Basic SRI Mo del : 19

2.3.2 Extending the W AM : 20

2.3.3 Memory Managemen t : 20

2.3.4 Public and Priv ate No des : 21

2.3.5 Sc heduling : 21

2.3.6 Cut, Comm it, Side E�ects and Susp ension : 22

2.3.7 Other Language Issues : 22

2.4 Implemen tation : 23

2.4.1 Prolog Engine : 23

2.4.2 Sc hedulers : 25

2.4.3 The Graphical T racing F acilit y : 27

ii

2.5 Exp erimen tal Results : 28

2.6 Applications : 31

2.6.1 The Pundit Natural Language System : 31

2.6.2 The Piles Civil Engineering Application : 31

2.6.3 Study of the R-classes of a Large Semigroup : 32

2.7 Conclusion : 32

2.8 Ac kno wledgemen ts : 33

3 P erformance Analysis of the Aurora Or-P arallel Prolog System 36

3.1 In tro duction : 36

3.2 The w orking cycle of Aurora : 38

3.3 Instrumen ting Aurora : 39

3.4 The b enc hmarks : 39

3.5 Basic o v erheads of or-parallel execution : 41

3.6 Lo c king and mo ving o v erheads : 45

3.7 T uning the Manc hester sc heduler : 47

3.8 Conclusions : 47

3.9 Ac kno wledgemen ts : 48

4 Flexible Sc heduli ng of Or-paralleli sm in Aurora: The Bristol Sc heduler 50

4.1 In tro duction : 50

4.2 Sc heduling Strategies : 51

4.2.1 T opmost dispatc hing sc hedulers for Aurora : 52

4.2.2 The Muse Sc heduler : 52

4.3 Principles of the Bristol sc heduler : 53

4.4 Implemen tation of the Bristol sc heduler : 53

4.4.1 Data structures : 53

4.4.2 Lo oking for w ork : 54

4.4.3 Side-e�ects and susp ension : 56

4.4.4 Cut and commit : 56

4.5 P erformance results : 57

4.6 A strategy for sc heduling sp eculativ e w ork : 60

4.7 Conclusions : 60

4.8 Ac kno wledgemen ts : 61

5 In terfacing Engines and Sc hedulers in Or-P arallel Prolog Systems 64

5.1 In tro duction : 64

5.2 Preliminaries : 65

5.3 The T op Lev el View of the In terface : 67

5.4 Common Data Structures : 68

5.5 Finding W ork : 69

5.6 Comm unicatio n with Other W ork ers : 70

5.7 Extensions of the Basic In terface : 70

5.7.1 Simpli�ed Bac ktrac king : 70

5.7.2 Pruning Information : 71

5.8 Implemen tation of the In terface in the Aurora Engine : 71

5.8.1 Boundaries : 71

5.8.2 Bac ktrac king : 71

5.8.3 Memory Managemen t : 72

5.8.4 Pruning Op erators : 72

5.8.5 Premature T ermination : 72

iii

5.8.6 Mo v emen t : 72

5.9 Applying the In terface to Andorra-I : 72

5.10 P erformance Results : 73

5.11 Conclusions and F uture W ork : 73

5.12 Ac kno wledgemen ts : 74

I I Language extensions 79

6 Using Dynamic Predicates in an Or-P arallel Prolog System 80

6.1 In tro duction : 80

6.2 Extensions to Prolog in Aurora : 81

6.3 The Game of Mastermind : 82

6.4 Sync hronisation Primitiv es in Aurora : 83

6.5 The P arallel Mastermind Program : 85

6.6 Using Multiple Clause Data Represen tation : 87

6.7 Predicates for Handling Shared Data : 87

6.8 Exp erimen tal P erformance Results : 89

6.9 Related W ork : 89

6.10 Conclusions and F urther W ork : 90

6.11 Ac kno wledgemen ts : 90

7 Exploiting Or-paralleli sm in Optimisati on Problems 92

7.1 In tro duction : 92

7.2 The Abstract Domain : 93

7.3 The P arallel Algorithm : 94

7.4 Language Extensions : 97

7.5 Implemen tation : 97

7.6 Applications : 98

7.6.1 The Branc h-and-Bound Algorithm : 98

7.6.2 The Alpha-Beta Pruning Algorithm : 99

7.7 P erformance Results : 100

7.8 Related W ork : 101

7.9 Conclusions : 101

I I I Applications 104

8 Application s of the Aurora P arallel Prolog System to Computational Molecular Biology 105

8.1 In tro duction : 105

8.2 Logic Programmi ng and Biology : 106

8.3 Recen t Enhancemen ts to Aurora : 106

8.3.1 Aurora on NUMA Mac hines : 106

8.3.2 Visualization of P arallel Logic : 107

8.4 Use of P attern Matc hing in Genetic Sequence Analysis : 107

8.4.1 Searc hing DNA for Pseudo-knots : 108

8.4.2 Searc hing Protein Sequences : 109

8.5 Ev aluation of Exp erimen ts : 109

8.5.1 The DNA Pseudo-knot Computation : 109

8.5.2 The Protein Motif Searc h Problem : 111

8.6 Conclusion : 114

iv

9 Handling large kno wledge bases in parallel Prolog 117

9.1 In tro duction : 117

9.2 Bac kground : 118

9.2.1 The CUBIQ to ol-set : 118

9.2.2 EMRM: a medical application with a large medical thesaurus : : : : : : : : : : : : : : 119

9.2.3 Or-parallel Prolog systems used in CUBIQ : 120

9.3 Represen ting the SNOMED hierarc h y in Prolog : 120

9.4 The ev olution of the frame represen tation in CUBIQ : 122

9.5 P erformance analysis of SNOMED searc hes : 123

9.5.1 Sequen tial p erformance : 124

9.5.2 P arallel p erformance : 125

9.5.3 Summary : 128

9.6 Conclusions : 128

10 Serving Multipl e HTML Clien ts from a Prolog application 130

10.1 In tro duction : 130

10.2 An o v erview of EMRM : 131

10.3 EMRM with a HTML user in terface : 131

10.4 Problems with single clien t : 132

10.5 Serving m ultiple clien ts : 132

10.6 Using an or-parallel Prolog as a m ulti-clien t serv er : 133

10.7 Presen t status and future w ork : 135

10.8 Conclusion : 135

Conclusions 138

v

Abstract

This thesis describ es w ork on Aurora, an or-parallel logic programming system on shared memory m ul-

tipro cessors. The Aurora system, supp orting the full Prolog language, w as dev elop ed in an in ternational

collab oration, called the Gigalips pro ject.

The con tributions describ ed in the thesis address the problems of implemen tatio n, language and applications

of or-parallel logic programming .

The Aurora implementation con tains t w o basic comp onen ts: the engine, whic h executes the Prolog co de; and

the sc heduler, whic h organises the parallel exploration of the Prolog searc h tree. As our �rst in v estigation in

this area, w e carried out a detailed p erformance analysis of Aurora with the so called Manc hester sc heduler.

Using the results of this study , w e designed the Bristol sc heduler, whic h pro vides a �exible sc heduling

algorithm and impro v ed p erformance on programs in v olving pruning. W e also de�ned a strict engine-

sc heduler in terface, whic h re�ects the main functions in v olv ed in or-parallel Prolog execution. The in terface

has b een used in all subsequen t Aurora extensions, as w ell as in the Andorra-I system.

W e ha v e studied the problems of Prolog language extensions related to parallel execution. W e ha v e ex-

p erimen ted with parallelisation of programs relying on non-declarativ e Prolog features, suc h as dynamic

predicates. W e ha v e designed and ev aluated higher lev el language constructs for the sync hronisation of

parallel execution. W e ha v e also designed a parallel algorithm for solving optimisation problems, whic h

supp orts b oth the minima x algorithm with alpha-b eta pruning and the branc h-and-b ound tec hnique. W e

ha v e prop osed language extensions to encapsulate this general algorithm.

W e ha v e w ork ed on sev eral applic ations of Aurora. Tw o large searc h problems in the area of computa-

tional molecular biology w ere in v estigated: searc h of pseudo-knots in DNA sequences and searc h of protein

sequences for functionally signi�can t sections. A large medical thesaurus w as also transformed in to Pro-

log, and ev aluated on Aurora. Finally a sc heme of a single WWW serv er capable of supp orting m ultiple

concurren t Prolog searc hes w as dev elop ed using Aurora.

The w ork of the author describ ed in this thesis had a signi�can t impact on the Aurora implemen tation. It

has also demonstrated that the system can b e further extended to address sp ecial problem areas, suc h as

optimisation searc h. The applications explored ha v e pro v en that an or-parallel Prolog system can pro duce

signi�can t sp eedups in real-life applications, th us reducing hours of computation to a few min utes.

vi

Ac kno wledgem en ts

I w as in tro duced to the topic of parallel logic programming b y Da vid H. D. W arren, when I joined his

researc h group at the Univ ersit y of Manc hester in 1987, whic h a y ear later mo v ed to the Univ ersit y of

Bristol. I am indebted to Da vid, for in tro ducing me to this topic, for constan t encouragemen t and help,

ev en after m y lea ving England. I enjo y ed w orking with all m y colleagues at Manc hester and Bristol. I w ould

lik e to sp ecially thank T on y Beaumon t, Alan Calderw o o d, F eliks Klu¹niak, and Rong Y ang for n umerous

discussions and help with the w ork describ ed in this thesis.

When I joined Da vid's group, I w as fortunate to b e immediately dra wn in to an informal collab oration,

called the Gigalips pro ject, whic h in v olv ed the Argonne National Lab oratory (ANL), USA and the Sw edish

Institute of Computer Science (SICS). I learned ho w to carry discussions through electronic mail and ho w to

run and debug programs at remote sites. I enjo y ed v ery m uc h the hac king sessions, when the con tributions

dev elop ed at the distan t sites w ere merged and started to w ork together. Again, I w ould lik e to thank all

m y Gigalips colleagues, but esp ecially Mats Carlsson and Ewing Lusk who b ecame p ersonal friends. I am

v ery sad that m y thanks to Andrzej Ciepielewski cannot reac h him an y more.

On m y return to Hungary in 1990, I joined IQSOFT Ltd, led b y Bálin t Dömölki . I am indebted to Bálin t

and the managemen t of IQSOFT, for the supp ort they ga v e to this con tin ued researc h. I w ould lik e to thank

m y colleagues at IQSOFT for helping me in this w ork, esp ecially Zsuzsa F ark as, Kati Molnár, Rob Scott

and Gáb or Umann.

W ork describ ed in this thesis w as supp orted b y gran ts from the UK Science and Engineering Council, the

Europ ean Union Esprit and Cop ernicus programmes, the US-Hungarian Science and T ec hnology Join t F und,

and the Hungarian National Committee for T ec hnical Dev elopmen t.

vii

Chapter 1

In tro duction

This thesis describ es w ork in the area of or-parallel logic programming , carried out during y ears 1987�1996.

This c hapter giv es an o v erview of the thesis. First, the basic ideas of logic programmi ng and its parallel

implem en tations are outlined. Next, a summary of the thesis is presen ted, sho wing the problems to b e

solv ed, the approac h to their solution, the results ac hiev ed, and their utilisation. Finally , the structure of

the remaining part of the thesis is outlined.

1.1 Preliminar ies

This section giv es a brief o v erview of the problem area of the thesis: parallel logic programming. W e �rst

in tro duce the t w o areas in v olv ed: parallel computing and logic programming. W e then discuss approac hes to

parallel execution of logic programs and their implem en tations. W e conclude this section with an o v erview

of the Aurora or-parallel Prolog system whic h is the sub ject of the thesis.

1.1.1 P arallel programming

It is a w ell kno wn fact that the size of soft w are systems gro ws v ery rapidly . Larger soft w are requires bigger

and bigger hardw are resources. Ho w ev er, the sp eed of curren t hardw are is approac hing absolute ph ysical

limits. W e are reac hing a phase when further increase in sp eed can only b e gained b y parallelisation.

P arallelism in computations can b e exploited on v arious lev els. F or example, there can b e parallelisation

within a single pro cessor; one can ha v e a computer with m ultiple pro cessors w orking in parallel; or one can

use computer net w orks distributed w orldwide, as parallel computing resources.

Multipro cessor systems are p ositioned in the middle of this wide range. These are computers with m ultiple

CPUs, coupled either tigh tly (e.g. through a shared memory), or lo osely (e.g. using message passing). In

the last few y ears, m ultipro cessor systems ha v e b ecame more widespread; recen tly ev en p ersonal computer

man ufacturers ha v e started to o�er shared memory m ultipro cessor PCs.

The simplest w a y to mak e use of m ultipro cessor systems is to ha v e the pro cessors p erform indep enden t tasks

in parallel (through e.g. m ultitasking op erating systems). But what can w e do, if w e w an t to use the a v ailable

computing resources to p erform a single h uge task as fast as p ossible? In this case, w e ha v e to parallelise

the algorithm for the task; i.e. w e ha v e to break it do wn in to sev eral smaller co-op erating parts.

There are t w o basic w a ys of parallelising an algorithm. This can either b e done explicitly or implicitly . In

the �rst case, the programmer has to decide whic h parts of the algorithm are to b e executed in parallel,

and ho w should they comm unicate with eac h other. Although to ols and tec hniques ha v e b een dev elop ed

to help pro duce parallel programs, writing suc h algorithms still pro v es to b e v ery di�cult. This is b ecause

the programmer has to understand and con trol the w orkings of sev eral comm unicating instruction threads.

Moreo v er, the debugging of parallel programs is v ery di�cult, as the runs are highly time-dep enden t: t w o

executions of the program will almost de�nitely result in di�eren t timing, and th us in di�eren t comm unicatio n

patterns.

In the second case of implicit parallelism, automatic transformation or compilation to ols p erform the selection

1

of tasks to b e done in parallel, and organise their comm unicatio n. The programmer do es not need to w orry

ab out parallelism, he or she can write the algorithm as if it w as to b e executed on a single pro cessor. The

automatic parallelisation to ols transform the algorithm to an equiv alen t parallel program.

F or traditional, imp er ative programming languages automatic parallelisation is a v ery di�cult task. This is

b ecause at the core of suc h languages is the v ariable assignmen t instruction, and programs are essen tially

se quenc es of suc h assignmen ts. That is wh y automatic parallelisation to ols for imp erativ e languages are

normally restricted to some sp ecial constructs, suc h as for-lo ops.

As opp osed to imp erativ e languages, de clar ative programming languages use the notion of a mathematical

v ariable: a single, p ossibly y et unkno wn v alue. This is often referred to as the �single assignmen t principle�.

Declarativ e languages are th us m uc h more amenable to automatic exploitation of parallelism, while, of course,

still lea ving ro om for explicit parallelisation, as in [38]. Implicit parallelism is esp ecially imp ortan t for lo gic

pr o gr amming , a programmi ng paradigm building on mathematical logic.

1.1.2 Logic programming

Logic programming w as in tro duced in early 1970's b y Rob ert Ko w alski [30], building on resolution theorem

pro ving b y Alan Robinson [34]. The �rst implemen tation of logic programming, the Pr olo g programming

language, w as dev elop ed b y the group of Alain Colmerauer [37].

The basic principle of logic programming is that a program is comp osed of statemen ts of predicate logic,

restricted to the so called Horn clause form. A simple Prolog program b elo w de�nes the grandparent

predicate using the notion of parent .

grandparent(GrandCh ild, GrandParent) :-

parent(GrandChi ld, Parent),

parent(Parent, GrandParent).

Here the :- connectiv e should b e read as implication (), and the comma as conjunction. Capitalised

iden ti�ers stand for v ariables, lo w er case iden ti�ers denote constan ts, function or predicate names. The

ab o v e statemen t can b e read as the follo wing:

GrandChild 's grandparen t is GrandParent if

(there exists a Parent suc h that)

GrandChild 's paren t is Parent , and

Parent 's paren t is GrandParent .

This is the declarativ e reading of the program. But the same program also has a pro cedural meaning:

T o pro v e the statemen t grandparent(Gra ndChi ld, GrandParent)

pro v e the statemen ts:

parent(GrandChi ld, Parent) and

parent(Parent, GrandParent) .

In suc h a pro cedural in terpretation, statemen ts to b e pro v en are often referred to as go als .

Note that the order of pro ving the t w o statemen ts in the grandparen t pro cedure is not �xed, (although one

execution order can b e more e�cien t than another).

Let us no w lo ok at the de�nition of parent ho o d, whic h uses a disjunction (denoted b y a semicolon).

parent(Child, Parent) :-

(mother(Child, Parent)

; father(Child, Parent)

).

This statemen t can b e read declarativ ely as:

Child 's paren t is Parent if

its mother is Parent

or
its father is Parent .

2

The pro cedural reading states that, to pro v e a paren tho o d statemen t, one has to pro v e either a motherho o d

or a fatherho o d statemen t. Suc h a situation, when one of sev eral p ossible alternativ es can b e executed, is

called a choic e p oint . One can visualise a c hoice p oin t as a no de of a tree with branc hes corresp onding to

alternativ es. A set of nested c hoice p oin ts constitute the searc h tree, whic h the execution has to explore in

order to solv e a problem.

The program for paren tho o d can also b e written as:

parent(Child, Parent) :-

mother(Child, Parent).

parent(Child, Parent) :-

father(Child, Parent).

Here w e ha v e t w o alternativ e clauses, b oth of whic h can b e used to pro v e a paren tho o d relation. It is th us

natural to de�ne a pro cedure as the set of clauses for the same predicate, whic h sp ecify ho w to reduce the

goal of pro ving a statemen t to conjunctions and disjunctions of other suc h goals.

Although the pro cedural reading of logic programs do es not �x the order of execution, most logic program-

ming languages do prescrib e an order. In Prolog b oth the and and or connectiv es are executed strictly

left-to-righ t. Corresp ondingly , Prolog tra v erses the searc h tree in depth-�rst, left-to-righ t order. The fact

that the programmer kno ws exactly ho w the pro of pro cedure w orks, mak es this approac h a programmi ng,

rather than a theorem pro ving, discipline.

While the core of Prolog is purely declarativ e, it is imp ortan t to note that the language has sev eral im-

pure, non-declarativ e features. P erhaps the most imp ortan t is the cut op eration, denoted b y an exclama-

tion mark (!), whic h prunes certain branc hes of the searc h tree. Other non-declarativ e elemen ts include

built-in predicates for input-output and for program mo di�cation. An example of the latter is the built-

in assert , with whic h a new clause can b e added to the program, during execution. F or example the

goal assert(mother(abel , eva)) extends the program with the clause mother(abel, eva) . Mo di�able

predicates, suc h as mother in this example, are called dynamic pr e dic ates .

1.1.3 P arallel execution of logic programs

As said earlier, parallel execution of a program requires that the task to b e p erformed is split in to subtasks

that can b e executed on di�eren t pro cessors. F or logic programs, suc h a decomp osition is v ery natural: a

goal is decomp osed in to some other goals built with connectiv es and and or . Corresp ondingly there are t w o

basic kinds of parallelism in logic programmi ng: and-p ar al lelism and or-p ar al lelism .

One can distinguish b et w een indep endent and dep endent and-parallelism. The former o ccurs if t w o subgoals of

a clause do not share an y v ariables. F or example, the goal of matrix-v ector m ultipli cation can b e decomp osed

in to t w o indep enden t subgoals: computing the scalar pro duct of the �rst ro w of the matrix and the v ector;

and computing, recursiv ely , the matrix-v ector pro duct of the remainder of the matrix and the v ector.

W e sp eak ab out dep enden t and-parallelism in a clause, if t w o subgoals share a v ariable. F or example, in

the grandparent example, the t w o parent subgoals share the Parent v ariable. The t w o goals can th us

b e started in parallel, but as so on as one of them instan tiates the common v ariable, the other has to b e

noti�ed ab out this. The goal whic h instan tiates the v ariable can b e though t of as the pro ducer and the

other as the consumer of the v ariable. In more complex cases the pro ducer-consumer in teraction can b e

used for implem en ting a comm uni cation stream b et w een the subgoals. This form of parallelism is also called

str e am-p ar al lelism .

T o exploit or-p ar al lelism , one can use m ultiple pro cessors to explore alternativ e branc hes of the searc h tree.

F or example, when executing the goal parent(abel, Parent) , one of the pro cessors can attempt to solv e the

goal mother(abel, Parent) , and the other the goal father(abel, Parent) . It is inheren t in or-parallelism,

that the t w o subtasks can b e solv ed indep enden tly .

W e no w discuss the case of or-parallelism in more detail, as it forms the basis of this thesis. Let us lo ok at a

sligh tly more complicated example. The task is to c ho ose a holida y destination reac hable from Budap est b y

a single �igh t, or at most t w o connecting �igh ts. W e ha v e a database of �igh ts in the form of Prolog clauses:

flight(budapest, venice, ...).

3

flight(budapest, paris, ...).

flight(paris, nice, ...).

flight(paris, london, ...).

...

These clauses are so called unit clauses, whic h ha v e no preconditions, and so the :- connectiv e is omitted.

The third argumen t of the flight predicate con tains further timetable details of the �igh t (suc h as departure

and arriv al time, da ys of op eration, etc.).

The follo wing is an outline of a program for �nding appropriate holida y destinations:

destination(City):-

flight(budapest , City, TTData),

appropriate(Cit y, [TTData]).

destination(City):-

flight(budapest , Transfer, TTData1),

flight(Transfer , City, TTData2),

appropriate(Cit y, [TTData1,TTData2]).

Here the appropriate predicate has the destination City as its �rst, and the list of timetable data as its

second argumen t. It holds, if the giv en selection of �igh ts satis�es some further unsp eci�ed criteria.

The searc h tree of the ab o v e program is depicted in Figure 1.1.

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

!

!

!

!

!

!

!

!

!
!

A

A

A

A

H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

 B

B

B

B

B

B

Z

Z

Z

Z

Z

Z

Z

Z

direct �igh t transfer �igh t

venice paris ...

paris ...

nice london ...

Figure 1.1: The sear ch tree of the holid a y destina tion pr ogram

A p ossible w a y of exploring or-parallelism in this example is the follo wing. The destination predicate can

b e started b y t w o pro cessors, one exploring the �rst clause (direct �igh ts), and the other the second clause

(transfer �igh ts). The �rst pro cessor so on creates a c hoice p oin t for the flight predicate, and pro ceeds

do wn the �rst branc h, starting to execute the appropriate goal for the venice �igh t data. While this is

done, further pro cessors can join, exploring other c hoices for the flight s. Similarly , the pro cessor w orking

on the second clause for destination can b e help ed b y other pro cessors.

This simple program exempli�es the t w o basic problems to b e solv ed b y an or-parallel implemen tation.

First, a v ariable, suc h as the destination City can b e instan tiated to di�eren t v alues on di�eren t branc hes

of the searc h tree. This requires a v ariable binding sc heme for k eeping trac k of multiple bindings . Second,

sche duling algorithms ha v e to b e devised to asso ciate the pro cessors with the tree branc hes to b e explored.

F or example, when the �rst pro cessor �nishes the computation of the appropriate goal for City=venice ,

it will bac ktrac k to the c hoice p oin t for flight , and ma y �nd that exploration of all alternativ e branc hes

has already b een started b y other pro cessors. In suc h a case the sc heduling algorithm has to �nd a c hoice

p oin t with an unexplored branc h. This pro cess, together with up dating the data structures of the pro cessor

necessary for taking up the new branc h of the tree, is called task switching .

4

1.1.4 P arallel implem en tati on of logic programming

Researc h on parallel execution of logic programs w as started in the early 1980-s. Muc h of the initial e�orts

fo cused on str e am-p ar al lelism . In this, the biggest di�cult y w as caused b y trying to com bine the parallel

execution with Prolog searc h. This w as initially o v ercome b y simply remo ving the p ossibilit y of global searc h,

resulting in the so called committed c hoice languages. In these languages eac h clause has to con tain a commit

pruning op erator, whic h, when reac hed during execution, kills all the other branc hes of the pro cedure. This

w a y the �don't kno w nondeterminism� of Prolog is replaced b y �don't care nondeterminism� of committed

c hoice languages. A detailed surv ey of committed c hoice systems can b e found in [40].

The �rst parallel systems aiming to supp ort unrestricted Prolog language app eared at the end of 1980-s.

An excellen t o v erview of parallel execution mo dels and their implemen tations is giv en in [23]. Here w e only

brie�y surv ey some of the relev an t approac hes.

A crucial p oin t in the design of execution mo dels for indep endent and-p ar al lelism is the detection of inde-

p endence of subgoals. Initial mo dels, suc h as that of Conery [18], relied on costly run-time c hec ks. DeGro ot

dev elop ed the RAP (Restricted And-P arallel) mo del [20], in whic h compile-tim e analysis is used to simplify

the run-time c hec ks needed. A re�nemen t of this approac h b y Hermenegildo led to the creation of the

&-Prolog implemen tati on of indep enden t and-parallelism on shared memory m ultipro cessors [27].

The Basic Andorra Mo del [39] w as the �rst practical approac h reconciling prop er nondeterminism with

dep endent and-p ar al lelism . Here the execution of subgoals con tin ues in and-parallel as long as no c hoice

p oin ts are created. This approac h w as implemen ted in the Andorra-I system.

Ab out t w en t y mo dels for or-p ar al lelism are listed b y [23]. These di�er in the w a y they supp ort the assignmen t

of m ultiple bindings, and whether they use shared memory or not. Mo dels that do not assume the presence of

shared memory rely on either recomputation (the Delphi mo del of Clo c ksin [17]), or cop ying (Conery's closed

en vironmen ts [19], Ali's BC-mac hine mo del [2]). The BC-mac hine mo del, although �rst dev elop ed for sp ecial

hardw are, w as later used for the implemen tatio n of the Muse system for shared memory m ultipro cessors [1].

The early shared memory mo dels, suc h as the directory tree mo del [16], the Argonne [11] and PEPSys [3]

mo dels, had non-constan t v ariable access time, but relativ ely little or no task switc hing o v erheads. More

recen t mo dels fo cused on pro viding constan t-time v ariable binding access at the exp ense of p oten tially non-

constan t-time task switc hing

1

. The most dev elop ed sc heme of this group, the SRI mo del of D. H. D. W arren

[53] forms the basis of the Aurora implem en tation and is describ ed in more detail in the next section.

Sev eral mo dels and implemen tations ha v e b een dev elop ed for exploiting m ultiple forms of parallelism. Sup-

p ort for b oth or- and indep enden t and-parallelism is pro vided b y the PEPSys [3], R OPM [29] and A CE

[24] mo dels, among others. The com bination of dep enden t and-parallelism with or-parallelism app ears in

the Basic Andorra Mo del, and its implemen tatio n, Andorra-I. The am bitious Extended Andorra Mo del [54],

whic h aims to supp ort all three forms of parallelism, has not y et b een implemen ted.

Finally , let us giv e a brief list of researc h groups w orking on parallel logic programming in Hungary . An

early and-parallel logic programmi ng implemen tatio n w as dev elop ed b y Iván F utó's group in the mid 1980-

s. The CS-Prolog (Comm uni cating Sequen tial Prolog) system supp orts m ultiple Prolog threads running

concurren tly on m ulti-transputer systems [21]. The group of Péter Kacsuk at the KFKI-MSzKI Lab oratory

of P arallel and Distributed Systems is w orking on parallel and distributed Prolog implemen tations based on

data�o w principles [28]. The IQSOFT logic programmi ng group to ok part in the dev elopmen t and application

of the Aurora system.

1.1.5 The Aurora or-parallel Prolog system

Aurora is an implemen tation of the full Prolog language supp orting or-parallel execution of programs on

shared memory m ultipro cessors. It exploits parallelism implicitly , without programmer in terv en tion. It w as

dev elop ed through an informal collab oration, called the Gigalips pro ject, of researc h groups at the Univ ersit y

of Bristol (formerly at the Univ ersit y of Manc hester), UK; Argonne National Lab oratory (ANL), USA; the

Sw edish Institute of Computer Science (SICS); and IQSOFT, Hungary (from 1990).

Aurora is based on the SRI mo del [53]. According to this mo del the system consists of sev eral workers

(pro cesses) exploring the searc h tree of a Prolog program in parallel. Eac h no de of the tree corresp onds

1

In [22] it has b een sho wn that of the three main comp onen t s of an or-parallel mo del, the v ariable access, the task switc hing,

and the creation of en vironmen t s, at most t w o can b e of constan t-tim e.

5

to a Prolog c hoicep oin t with a branc h asso ciated with eac h alternativ e clause. No des ha ving at least one

unexplored alternativ e corresp ond to pieces of work a w ork er can select. Eac h w ork er has to p erform activities

of t w o basic t yp es:

� executing the actual Prolog co de,

� �nding w ork in the tree, pro viding other w ork ers with w ork and sync hronising with other w ork ers.

The ab o v e t w o kinds of activities ha v e b een separated in Aurora: those parts of a w ork er that execute the

Prolog co de are called the engine , whilst those concerned with the parallel asp ects are called the sche duler .

In the course of dev elopmen t of Aurora, di�eren t sc heduling tec hniques ha v e b een explored, and sev eral

sc hedulers w ere dev elop ed, suc h as the Argonne [12], Manc hester [13] and Bristol sc hedulers [6].

The engine comp onen t of Aurora is based on SICStus Prolog [15], extended with supp ort for m ultiple

v ariable bindings. V ariable bindings in Prolog can b e classi�ed as either unconditional or conditional. In

the former case, the binding is made early , b efore an y c hoice p oin ts are made, and so it is shared b y all

branc hes. Consequen tly the unconditional bindings can b e stored in the Prolog stac ks, as for sequen tial

implem en tations. F or storing the conditional bindings, the SRI mo del uses binding arr ays , data structures

asso ciated with w ork ers: the Prolog stac k stores a binding arra y index, while the v ariable v alue, lo cal to the

w ork er, is stored in the appropriate elemen t of the w ork er's binding arra y .

The binding arra y sc heme has a constan t-time o v erhead on v ariable access. Ho w ev er, task switc hing in v olv es

non-constan t-time o v erhead: the w ork er has to mo v e from its presen t no de to the no de with w ork, up dating

its binding arra y accordingly . The cost of this up date is prop ortional to the length of the path

2

. The

sc heduler should therefore try to �nd w ork as near as p ossible, to minim ise the o v erheads.

As stated, Aurora supp orts the ful l Prolog language, including the impure, non-declarativ e features. Early

v ersions of Aurora pro vided only the so called asynchr onous v arian ts of side-e�ect predicates, whic h w ere

executed immediately . This mean t, for example, that the output predicates w ere not necessarily executed

in the order of the sequen tial execution.

The �nal v ersion of Aurora executes the side-e�ect predicates in the same order as sequen tial Prolog, as

discussed in [26]. This is ac hiev ed b y susp ending the side-e�ect predicate if it is executed b y the non-leftmost

w ork er. Susp ension means that the w ork er abandons the giv en branc h of the tree and attempts to �nd

some other w ork. When the reason for susp ension ceases to hold, i.e. when all the w ork ers to the left of the

susp ended branc h ha v e �nished their tasks, the branc h is r esume d . Because susp ension and resumption has

signi�can t o v erheads, Aurora still pro vides the �bare� async hronous predicates, for further exp erimen tation.

Implemen ting the cut pruning op erator in an or-parallel setup p oses problems similar to those for the side-

e�ect predicates. A cut op eration ma y b e pruned b y another cut to its left, hence to o early execution of a

cut ma y c hange the Prolog seman tics. Therefore a cut ma y ha v e to b e susp ended, if endangered b y another

cut.

W ork in the scop e of a pruning op erator is called sp e culative , while all other w ork is called mandatory .

P arallel exploration of a sp eculativ e branc h ma y turn out to b e w asteful, if the branc h is pruned later. It is

an adv an tage therefore, if the sc heduler giv es preference to mandatory o v er sp eculativ e w ork. As pruning is

presen t in all real-life Prolog programs, sc heduling sp eculativ e w ork is an imp ortan t issue.

Detailed discussion of issues related to pruning and sp eculativ e w ork, as w ell as early w ork on language

extensions, is con tained in [25].

1.2 Thesis o v erview

This section presen ts a o v erview of the thesis, sho wing the problems to b e solv ed, the approac h to their

solution, the results ac hiev ed, and their utilisation.

1.2.1 Problem form ulation

The o v erall goal of the w ork describ ed in this thesis, as part of a larger researc h thread, is

2

More exactly , the cost of the up date is prop ortiona l to the n um b er of bindings made on the path.

6

to pro v e the viabilit y of using shared memory m ultip ro cessor s for e�cien t or-parallel

execution of Prolog programs.

This goal is ac hiev ed through the dev elopmen t of the Aurora or-parallel Prolog system.

Within this o v erall goal the problems addressed in the thesis can b e classi�ed in to three broad areas:

1. Implemen tati on : building an or-parallel system supp orting the full Prolog language.

2. Extensions : extending the Prolog language to supp ort b etter exploitation of parallelism.

3. Applications : pro v e the usefulness of or-parallel Prolog on large, real-life applications.

W e no w discuss the sp eci�c issues addressed within these areas.

Implemen t ati on

As outlined earlier, sche duling is one of the crucial asp ects of parallel implem en tations. A sc heduler has to

k eep trac k of b oth the w ork ers and the w ork a v ailable. It has to ensure w ork ers are assigned w ork with

as little o v erhead as p ossible. T o supp ort the full Prolog language, the sc heduler has to handle pruning

op erators, side-e�ect predicates and sp eculativ e w ork.

In order to c ho ose the b est sc heduling algorithms, it is imp ortan t to dev elop and ev aluate m ultiple sc hedulers.

F or this, it is crucial to design an appropriate interfac e b et w een the sc heduler and engine comp onen ts of the

parallel system. Dev elopmen t of a prop er in terface also con tributes to the clari�cation of the issues in v olv ed

in exploiting parallelism in Prolog.

Ev aluation of a parallel Prolog implemen tation requires appropriate p erformanc e analysis tec hniques. The

parallel system has to b e instrumen ted to collect p erformance data and t ypical b enc hmarks ha v e to b e

selected. The gathered data has to b e analysed and the main causes of o v erhead iden ti�ed. Results of the

p erformance analysis w ork can con tribute to the impro v emen t or re-design of critical system comp onen ts,

e.g. sc hedulers.

Language extensions

The Prolog language has sev eral impure features, with no declarativ e in terpretation. Language primitiv es of

this kind, suc h as dynamic data base mo di�cation predicates, are quite frequen tly used in large applications.

Although this is often a sign of bad programming st yle, there are cases where suc h usage is justi�ed. F or

example, dynamic predicates can b e used in a natural w a y to implem en t a con tin ually c hanging kno wledge

base.

T o supp ort sequen tial Prolog seman tics in a parallel implemen tatio n, dynamic predicate up dates ha v e to

b e p erformed sequen tially , in strict left-to-righ t order. Suc h restrictions on the execution order, ho w ev er,

in v olv e signi�can t o v erheads. On the other hand, if async hronous dynamic predicate handling is used, one

is confron ted with the usual sync hronisation problems due to m ultiple pro cesses accessing the same memory

cell. T o solv e suc h problems, higher level synchr onisation primitiv es ha v e to b e in tro duced in to the parallel

Prolog system.

Another reason for using dynamic predicates in Prolog is to enhance its simple searc h algorithm. F or example,

optim um searc h algorithms, suc h as branc h-and-b ound and alpha-b eta pruning, rely on comm unicatio n

b et w een the branc hes of the searc h tree. T o extend the searc h mec hanism of Prolog to supp ort suc h adv anced

searc h tec hniques one is forced to use dynamic predicates, with detrimen tal e�ects regarding the exploitation

of parallelism. Rather than to come up with ad ho c solutions for particular searc h problems, it ma y b e

advisable to de�ne generic higher-or der pr e dic ates for optimum se ar ch , whic h can b e implemen ted e�cien tly

in a parallel Prolog setup.

Applicati ons

As said earlier, pro ving the viabilit y of or-parallel Prolog is the main goal of the researc h strand this thesis

is part of. T o demonstrate this, one needs Prolog applic ation pr oblems with abundant or-p ar al lelism . One

7

then has to tak e the Prolog program, normally dev elop ed with sequen tial execution in mind, and transform

it in suc h a w a y that it pro duces go o d sp eedups, when executed in parallel.

1.2.2 Approac h and results

W e no w discuss ho w the problems form ulated in the previous section w ere approac hed, and ho w their

solutions w ere dev elop ed in the con text of the Aurora or-parallel Prolog system.

Implemen t ati on

In early stages of dev elopmen t of Aurora it b ecame clear that the system has relativ ely p o or sp eed-ups for

certain t yp es of applications. The Manc hester sc heduler v ersion of Aurora w as therefore instrumen ted to

pro vide v arious t yp es of pro�ling information. Both frequency and timing data w ere collected and main

sources of o v erhead of parallel execution w ere iden ti�ed. Sp ecial atten tion w as paid to the binding arra y

up date o v erheads asso ciated with the SRI mo del and to the o v erheads of sync hronisation using lo c ks.

The main conclusion of this p erformanc e analysis w ork w as that the high cost of task switc hing in the

examined implemen tati on w as the main cause of p o or sp eed-ups. The cost of up dating the binding arra ys,

whic h w as feared to b e the ma jor cause of o v erhead, turned out to b e insigni�can t. Similarly , lo c king costs

w ere found to b e acceptably lo w and there w as no ma jor increase in the a v erage lo c king time when the

n um b er of w ork ers w as increased.

Based on the exp erience of the p erformance analysis w ork, a new sche duler , the so called Bristol sc heduler,

w as dev elop ed. It emplo ys a new approac h for sharing the w ork in the Prolog searc h tree. The distinguishing

feature of the approac h is that w ork is shared at the b ottom of partially explored branc hes (�dispatc hing on

b ottom-mo st�). This can b e con trasted with the earlier sc hedulers, suc h as the Manc hester sc heduler, whic h

use a �dispatc hing on topmost� strategy . The new strategy leads to impro v ed p erformance b y reducing the

task switc hing o v erheads and allo wing more e�cien t sc heduling of sp eculativ e w ork.

In parallel with the dev elopmen t of the new sc heduler, a new v ersion of the engine-sche duler interfac e

w as designed. This fundamen tal revision of the in terface w as necessitated b y sev eral factors. P erformance

analysis w ork on Aurora had sho wn that some unnecessary o v erheads are caused b y design decisions enforced

b y the in terface. Dev elopmen t of the new sc heduler and extensions to existing algorithms required that the

in terface b ecome more general. The Aurora engine w as rebuilt on the basis of a new SICStus Prolog v ersion.

The in terface required extensions to supp ort transfer of information related to pruning op erators. Finally , it

w as decided that an Aurora sc heduler w as to b e used in the Andorra and/or-parallel system, so the in terface

had to supp ort m ultiple engines in addition to m ultiple sc hedulers.

Language extensions

The problems of p ar al lel exe cution of applications relying on dynamic pr e dic ates w ere studied on programs

for pla ying mastermind, a t ypical problem area using a con tin ually c hanging kno wledge base.

In the case study w e �rst explored some sequen tial programs for pla ying mastermind. Subsequen tly , w e

considered the problems arising at the in tro duction of async hronous database handling predicates. Sev eral

v ersions of the mastermind program w ere dev elop ed, sho wing the use of v arious sync hronisation tec hniques.

As a conclusion of this w ork, a prop osal for extending Aurora with higher lev el sync hronisation primitiv es

w as presen ted.

The second area of language extensions studied w as that of p ar al lel optimisation . A general optim um searc h

algorithm w as dev elop ed, whic h can b e used in the implemen tation of higher order optimisation predicates.

The algorithm co v ers b oth the branc h-and-b ound and the minima x tec hnique, and can b e executed e�cien tly

on an or-parallel Prolog system suc h as Aurora.

Appropriate language extensions w ere prop osed, in the form of new built-in predicates, for em b edding

the algorithm within a parallel Prolog system. An exp erimen tal Aurora implem en tation of the language

extensions using the parallel algorithm w as describ ed and ev aluated on application examples.

8

Applicati ons

T o pro v e the viabilit y of or-parallel Prolog, three large searc h applications w ere p orted to and ev aluated on

Aurora.

Tw o searc h problems w ere in v estigated within the area of c omputational mole cular biolo gy as exp erimen tal

Aurora applications: searc hing DNA for pseudo-knots and searc hing protein sequences for certain motifs.

F or b oth problems the computational requiremen ts w ere large, due to the nature of the applications, and

w ere carried out on a scalable parallel computer, the BBN �Butter�y� TC-2000, with non-uniform memory

arc hitecture (NUMA).

First, exp erimen ts w ere p erformed with the original application co de, whic h w as written with sequen tial

execution in mind. F or the pseudo-knot program, this also in v olv ed adaptation of the lo w lev el C co de for

string tra v ersal

3

to the parallel en vironmen t. These results b eing v ery promising, further e�ort w as in v ested

in tuning the applications so as to �exp ose� more parallelism to the system. F or this w e had to eliminate

unnecessary sequen tial b ottlenec ks, and reorganise the top lev el searc h to p ermit b etter load-balancing.

Note, ho w ev er, that the logic of the program w as not c hanged in this tuning pro cess.

The �nal results of the molecular biology applications w ere v ery go o d. W e obtained o v er 40-fold sp eedups

on the 42-pro cessor sup ercomputer. This mean t con v erting hours of computation in to min utes on scien ti�c

problems of real in terest.

A third application w as examined in the con text of the EMRM electronic medical record managemen t

system protot yp e of the CUBIQ pro ject [52]. The medical thesaurus comp onen t of EMRM is based on

SNOMED (Systematized Nomenclature of Medical Kno wledge) [36]. The SNOMED thesaurus con tains

appro ximately 40,000 medical phrases arranged in to a tree hierarc h y . A series of exp erimen ts w ere carried out

for se ar ching this lar ge me dic al know le dge hier ar chy . W e used sev eral alternativ e represen tation tec hniques

for implemen ting the SNOMED hierarc h y of the EMRM system. P arallel p erformance of these solutions w as

measured b oth on Aurora and on the Muse or-parallel systems.

The exp erimen ts ha v e sho wn that the SNOMED disease hierarc h y can b e e�cien tly represen ted in Prolog

using the general frame-extension of the CUBIQ to ol-set. Critical p oin ts ha v e b een highligh ted in the imple-

men tations, suc h as the issue of sync hronisation at atom construction. When these b ottlenec ks w ere a v oided,

ab out 90% parallel e�ciency could b e ac hiev ed for six pro cessors in complex searc hes of the SNOMED hi-

erarc h y .

Finally , a new application direction w as initiated b y w ork on using Aurora as a v ehicle for implemen ting

a Pr olo g-b ase d WWW server . The goal here is to design a single Prolog serv er capable of in teracting

sim ultaneously with m ultiple clien ts. This issue is imp ortan t as AI applications are normally large and

slo w to start up, so ha ving a separate cop y of the application running for eac h request ma y not b e a viable

solution.

W e ha v e therefore designed a Prolog serv er sc heme, based on the Aurora or-parallel Prolog system, whic h

allo ws m ultiple clien ts to b e executed on a single computer, on a time sharing basis. The solution relies on

the capabilities of Aurora to main tain m ultiple branc hes of the searc h tree. Compared with the approac h

relying on m ultiple copies of the serv er application, our solution is c haracterised b y quic k start-up and

signi�can t reduction in memory requiremen ts. As a further adv an tage, the single serv er approac h allo ws

easy comm unicatio n b et w een the program instances serving the di�eren t clien ts, whic h ma y b e useful e.g.

for cac hing certain common results, collecting statistics, etc.

1.2.3 Utilisation of the results

In this section w e discuss the utilisation of the results ac hiev ed.

The results of the p erformanc e analysis w ork describ ed here serv ed as a basis for practically all subsequen t

p erformance measuremen ts of Aurora, suc h as [33]. The tec hnique used for instrumen tation w as applied

to other Aurora sc hedulers as w ell. The set of b enc hmarks selected w as used not only for further Aurora

analysis, but also for other or-parallel systems, most notably the Muse [1] system.

The Bristol sche duler , the basic design of whic h is presen ted here, has ev olv ed to b e the main sc heduler of

Aurora, and is also used in the Andorra-I parallel system [4]. Extending the ideas describ ed here, the Bristol

sc heduler w as further impro v ed with resp ect to handling sp eculativ e w ork and susp ension [8].

3

The C co de w as included in to the Prolog program through the foreign language in terface.

9

The engine-sche duler interfac e serv ed for implem en ting the Dharma sc heduler [41]. A similar in terface w as

dev elop ed for the Muse system as w ell, see c hapter 8 of [35].

The ideas of language extensions dealing with dynamic predicates and optimisation w ere further dev elop ed

in [9].

The applic ation pr ototyp es ha v e pro v ed that Aurora can b e used in sizable real-life applications. A Pr olo g-

b ase d WWW server approac h, similar to the design presen ted here, has recen tly b een dev elop ed indep enden tly

for the ECLiPSe system [10].

1.3 Structure of the Thesis and con tributi ons

Chapters 2�10 of the thesis con tain m y main publications in the area of or-parallel logic programmi ng,

repro duced here with the kind p ermission of co-authors. They are group ed in to three parts, corresp onding

to the three researc h areas describ ed ab o v e.

In the sequel I giv e a brief outline of the researc h rep orted on in these publications, and describ e m y

con tributions to the w ork.

1.3.1 Implem en tation

Chapter 2: The Aurora or-parallel Prolog system

Authors: Ewing Lusk, Ralph Butler, T errence Disz, Rob ert Olson, Ross Ov erb eek, Ric k Stev ens,

Da vid H. D. W arren, Alan Calderw o o d, Péter Szeredi, Seif Haridi, P er Brand, Mats

Carlsson, Andrzej Ciepielewski, and Bogumiª Hausman

R efer e e d journal article [31].

This is the main pap er on Aurora, written join tly b y the three researc h groups of the Gigalips collab oration.

It describ es the design and implemen tatio n e�orts of Aurora as of 1988-89. My con tributions to the w ork

describ ed here are in the sections on the Manc hester sc heduler, on p erformance analysis and on the Piles

application.

Chapter 3: P erformance analysis of the Aurora or-parallel Prolog system

Author: Péter Szeredi

R efer e e d c onfer enc e article [42].

This pap er describ es the main results of m y p erformance analysis w ork carried out for the Manc hester

sc heduler v ersion of Aurora. More detailed results are giv en in the T ec hnical Rep ort [43].

Chapter 4: Flexible Sc heduli n g of Or-P arallel i sm in Aurora: The Bristol Sc heduler

Authors: An thon y Beaumon t, S Muth u Raman, Péter Szeredi, and Da vid H D W arren

R efer e e d c onfer enc e article [6].

This pap er describ es the design and implem en tation e�orts for the �rst v ersion of the Bristol sc heduler.

F urther details can b e found in [5 , 7]. My main con tribution w as the design and initial implemen tation of

the non-sp eculativ e sc heduling parts of the Bristol sc heduler.

Chapter 5: In terfacing engines and sc hedulers in or-parallel Prolog systems

Authors: Péter Szeredi, Mats Carlsson, and Rong Y ang

R efer e e d c onfer enc e article [49].

This pap er giv es an outline of the Aurora engine-sc heduler in terface. The complete description of the in terface

is con tained in rep orts [48 , 14].

I w as the principal designer of the in terface. I also carried out the implem en tation of the sc heduler side for

b oth the Manc hester and Bristol sc hedulers.

10

1.3.2 Language extensions

Chapter 6: Using dynamic predicates in an or-parallel Prolog system

Author: Péter Szeredi

R efer e e d c onfer enc e article [46].

The pap er describ es the mastermind case study and the language extensions for sync hronisation. An earlier

v ersion of the pap er is a v ailable as [44].

Chapter 7: Exploiting or-paralleli sm in optimisati on problems

Author: Péter Szeredi

R efer e e d c onfer enc e article [47].

This pap er describ es the optimisation algorithm dev elop ed for or-parallel logic programming and the appro-

priate language extensions. [45] con tains an earlier, sligh tly more elab orate accoun t on this topic.

1.3.3 Applications

Chapter 8: Applications of the Aurora parallel Prolog system to computation al molec-

ular biology

Authors: Ewing Lusk, Sh y am Mudam bi, Ross Ov erb eek, and Péter Szeredi

R efer e e d c onfer enc e article [32].

This pap er describ es the pseudo-knot and protein motif searc h problems and their solution on Aurora. My

main con tribution lies in exploring the sequen tial b ottlenec ks and transforming the application programs to

impro v e the exploitation of parallelism.

Chapter 9: Handling large kno wledge bases in parallel Prolog

Authors: Péter Szeredi and Zsuzsa F ark as

Workshop p ap er [50].

This pap er describ es the parallelisation of the medical kno wledge base application of Aurora. My con tribution

co v ers the parallel asp ects of the design, and the parallel p erformance analysis of the application.

Chapter 10: Serving m ultipl e HTML clien ts from a Prolog application

Authors: Péter Szeredi, Katalin Molnár, and Rob Scott

R efer e e d workshop p ap er [51].

The pap er describ es the WWW in terface of the EMRM application, the problems encoun tered during its

dev elopmen t, and a design for a m ulti-clien t WWW-serv er application of Aurora. My con tribution is the

design of the m ulti-clien t serv er.

1.3.4 Summary of publications

Of the nine publications, I am the sole author of three pap ers (c hapters 3, 6, 7). F or a further three

publications, I am the �rst author (c hapters 5, 9, and 10), re�ecting the fact, that I w as the principal

con tributor to the researc h describ ed.

One of the publications app eared in a refereed journal, six in refereed conference pro ceedings, and t w o w ere

presen ted at w orkshops.

References

[1] K. A. M. Ali and R. Karlsson. The Muse approac h to or-parallel Prolog. The International Journal of

Par al lel Pr o gr amming , 1990.

11

[2] Kha yri A. M. Ali. OR-P arallel execution of prolog on BC-Mac hine. In Rob ert A. Ko w alski and Ken-

neth A. Bo w en, editors, Pr o c e e dings of the Fifth International Confer enc e and Symp osium on L o gic

Pr o gr amming , pages 1531�1545, Seatle, 1988. ALP , IEEE, The MIT Press.

[3] U. C. Baron et al. The parallel ECR C Prolog System PEPSys: An o v erview and ev aluation results. In

International Confer enc e on Fifth Gener ation Computer Systems 1988 . ICOT, T oky o, Japan, No v em b er

1988.

[4] An thon y Beaumon t, S. Muth u Raman, Vítor San tos Costa, Péter Szeredi, Da vid H. D. W arren, and

Rong Y ang. Andorra-I: An implemen tation of the Basic Andorra Mo del. T ec hnical Rep ort TR-90-21,

Univ ersit y of Bristol, Computer Science Departmen t, Septem b er 1990. Presen ted at the W orkshop on

P arallel Implemen tatio n of Languages for Sym b olic Computation, Univ ersit y of Oregon, July 1990.

[5] An thon y Beaumon t, S. Muth u Raman, and Péter Szeredi. Sc heduling or-parallelism in Aurora with the

Bristol sc heduler. T ec hnical Rep ort TR-90-04, Univ ersit y of Bristol, Computer Science Departmen t,

Marc h 1990.

[6] An thon y Beaumon t, S Muth u Raman, Péter Szeredi, and Da vid H D W arren. Flexible Sc heduling of

Or-P arallelism in Aurora: The Bristol Sc heduler. In P ARLE91: Confer enc e on Par al lel A r chite ctur es

and L anguages Eur op e , pages 403�420. Springer V erlag, Lecture Notes in Computer Science, V ol 506,

June 1991.

[7] An thon y J. Beaumon t. Sche duling in Or-Par al lel Pr olo g Systems . PhD thesis, Un v ersit y of Bristol,

1995.

[8] T on y Beaumon t and Da vid H. D. W arren. Sc heduling Sp eculativ e W ork in Or-parallel Prolog Systems.

In L o gic Pr o gr amming: Pr o c e e dings of the 10th International Confer enc e . MIT Press, 1993.

[9] T on y Beaumon t, Da vid H. D. W arren, and Péter Szeredi. Impro ving Aurora sc heduling. CUBIQ

Cop ernicus pro ject deliv erable rep ort, Univ ersit y of Bristol and IQSOFT Ltd., 1995.

[10] Stephane Bressan and Philipp e Bonnet. The ECLiPSe-HTTP library . In Industrial Applic ations of

Pr olo g , T oky o, Japan, No v em b er 1996. INAP .

[11] R. Butler, E. Lusk, R. Olson, and Ov erb eek R. A. ANL W AM: A P arallel Implemen tation of the W arren

Abstract Mac hine. In ternal Rep ort, Argonne National Lab oratory, Argonne, IL 60439, 1985.

[12] Ralph Butler, T erry Disz, Ewing Lusk, Rob ert Olson, Ross Ov erb eek, and Ric k Stev ens. Sc heduling

OR-parallelism: an Argonne p ersp ectiv e. In L o gic Pr o gr amming: Pr o c e e dings of the Fifth International

Confer enc e , pages 1590�1605. The MIT Press, August 1988.

[13] Alan Calderw o o d and Péter Szeredi. Sc heduling or-parallelism in Aurora � the Manc hester sc heduler. In

L o gic Pr o gr amming: Pr o c e e dings of the Sixth International Confer enc e , pages 419�435. The MIT Press,

June 1989.

[14] Mats Carlsson and Péter Szeredi. The Aurora abstract mac hine and its em ulator. SICS Researc h Rep ort

R90005, Sw edish Institute of Computer Science, 1990.

[15] Mats Carlsson and Johan Widen. SICStus Prolog User's Man ual. T ec hnical rep ort, Sw edish Institute

of Computer Science, 1988. SICS Researc h Rep ort R88007B.

[16] Andrzej Ciepielewski and Seif Haridi. A formal mo del for or-parallel execution of logic programs. In

IFIP 83 Confer enc e , pages 299�305. North Holland, 1983.

[17] William Clo c ksin. Principles of the DelPhi parallel inference mac hine. Computer Journal , 30(5):386�392,

1987.

[18] John Conery . The AND/OR Pr o c ess Mo del for Par al lel Interpr etation of L o gic Pr o gr ams . PhD thesis,

Univ ersit y of California at Irvine, 1983.

[19] J.S. Conery . Binding en vironmen ts for parallel logic programs in nonshared memory m ultipro cessors.

In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 457�467, San F rancisco, August -

Septem b er 1987. IEEE, Computer So ciet y Press.

12

[20] Doug DeGro ot. Restricted and-parallelism. In Hideo Aiso, editor, International Confer enc e on Fifth

Gener ation Computer Systems 1984 , pages 471�478. Institute for New Generation Computing, T oky o,

1984.

[21] Iván F utó. Prolog with comm unicating pro cesses: F rom T-Prolog to CSR-Prolog. In Da vid S. W arren,

editor, Pr o c e e dings of the T enth International Confer enc e on L o gic Pr o gr amming , pages 3�17, Budap est,

Hungary , 1993. The MIT Press.

[22] Gupta Gopal and Bharat Ja y araman. Optimizing And-Or P arallel implem en tations. In Saum y a De-

bra y and Man uel Hermenegildo, editors, Pr o c e e dings of the 1990 North A meric an Confer enc e on L o gic

Pr o gr amming , pages 605�623. MIT Press, 1990.

[23] Gopal Gupta, Kha yri A. M. Ali, Mats Carlsson, and Man uel Hermenegildo. P arallel execution of logic

programs: A surv ey , 1994. In ternal rep ort, a v ailable b y ftp from ftp.cs.nmsu.edu .

[24] Gopal Gupta, Man uel Hermenegildo, Enrico P on telli, and Vítor San tos Costa. A CE: A nd/Or-parallel

C op ying-based E xecution of logic programs. In P ascal V an Hen tenryc k, editor, L o gic Pr o gr amming - Pr o-

c e e dings of the Eleventh International Confer enc e on L o gic Pr o gr amming , pages 93�109, Massac h usetts

Institute of T ec hnology , 1994. The MIT Press.

[25] Bogumiª Hausman. Pruning and Sp e culative Work in OR-Par al lel PR OLOG . PhD thesis, The Ro y al

Institute of T ec hnology , Sto c kholm, 1990.

[26] Bogumiª Hausman, Andrzej Ciepielewski, and Alan Calderw o o d. Cut and side-e�ects in or-parallel

Prolog. In International Confer enc e on Fifth Gener ation Computer Systems 1988 . ICOT, 1988.

[27] Man uel Hermenegildo. An abstract mac hine for restricted and-parallel execution of logic programs. In

Eh ud Shapiro, editor, Thir d International Confer enc e on L o gic Pr o gr amming, L ondon , pages 25�39.

Springer-V erlag, 1986.

[28] Péter Kacsuk. Distributed data driv en Prolog abstract mac hine (3DP AM). In P . Kacsuk and M. J.

Wise, editors, Implementations of Distribute d Pr olo g , pages 89�118. Wiley & Sons, 1992.

[29] L. V. Kalé. The REDUCE OR pro cess mo del for parallel ev aluation of logic programming . In Pr o c e e dings

of the 4th International Confer enc e on L o gic Pr o gr amming , pages 616�632, 1987.

[30] Rob ert A. Ko w alski. Predicate logic as a programming language. In Information Pr o c essing '74 , pages

569�574. IFIP , North Holland, 1974.

[31] Ewing Lusk, Ralph Butler, T errence Disz, Rob ert Olson, Ross Ov erb eek, Ric k Stev ens, Da vid H. D.

W arren, Alan Calderw oo d, Péter Szeredi, Seif Haridi, P er Brand, Mats Carlsson, Andrzej Ciepielewski,

and Bogumiª Hausman. The Aurora or-parallel Prolog system. New Gener ation Computing , 7(2,3):243�

271, 1990.

[32] Ewing Lusk, Sh y am Mudam bi, Ross Ov erb eek, and Péter Szeredi. Applications of the Aurora parallel

Prolog system to computational molecular biology . In Dale Miller, editor, Pr o c e e dings of the Interna-

tional L o gic Pr o gr amming Symp osium , pages 353�369. The MIT Press, No v em b er 1993.

[33] Sh y am Mudam bi. P erformances of aurora on NUMA mac hines. In Koic hi F uruk a w a, editor, Pr o c e e dings

of the Eighth International Confer enc e on L o gic Pr o gr amming , pages 793�806, P aris, F rance, 1991. The

MIT Press.

[34] J. A. Robinson. A mac hine orien ted logic based on the resolution principle. Journal of the A CM ,

12(23):23�41, Jan uary 1965.

[35] Roland Karlsson. A High Performanc e OR-Par al lel Pr olo g System . PhD thesis, The Ro y al Institute of

T ec hnology , Sto c kholm, 1992.

[36] D. J. Roth w ell, R. A. Cote, J. P . Cordeau, and M. A. Boisv ert. Dev eloping a standard data structure

for medical language � the SNOMED prop osal. In Pr o c e e dings of 17th A nnual SCAMC, Washington ,

1993.

[37] P . Roussel. Prolog: Man uel de reference et d'utilisation,. T ec hnical rep ort, Group e d'In telligence

Arti�cielle Marseille-Lumin y , 1975.

13

[38] P eter V an Ro y , Seif Haridi, and Gert Smolk a. An o v erview of the design of distributed oz. In Se c ond

International Symp osium on Par al lel Symb olic Computation (P ASCO '97) . A CM Press, July 1997.

[39] V. San tos Costa, D. H. D. W arren, and R. Y ang. The Andorra-I Engine: A parallel implem en tation of

the Basic Andorra mo del. In L o gic Pr o gr amming: Pr o c e e dings of the Eighth International Confer enc e .

The MIT Press, 1991.

[40] Eh ud Shapiro. The family of Concurren t Logic Programming Languages. A CM c omputing surveys ,

21(3):412�510, 1989.

[41] Raéd Y ousef Sindaha. Branc h-lev el sc heduling in Aurora: The Dharma sc heduler. In Dale Miller, editor,

L o gic Pr o gr amming - Pr o c e e dings of the 1993 International Symp osium , pages 403�419, V ancouv er,

Canada, 1993. The MIT Press.

[42] Péter Szeredi. P erformance analysis of the Aurora or-parallel Prolog system. In Pr o c e e dings of the

North A meric an Confer enc e on L o gic Pr o gr amming , pages 713�732. The MIT Press, Octob er 1989.

[43] Péter Szeredi. P erformance analysis of the Aurora or-parallel Prolog system. T ec hnical Rep ort TR-89-14,

Univ ersit y of Bristol, 1989.

[44] Péter Szeredi. Using dynamic predicates in Aurora � a case study . T ec hnical Rep ort TR-90-23, Univ ersit y

of Bristol, No v em b er 1990.

[45] Péter Szeredi. Solving optimisation problems in the Aurora or-parallel Prolog system. In An thon y

Beaumon t and Gopal Gupta, editors, Par al lel Exe cution of L o gic Pr o gr ams, Pr o c. of ICLP'91 Pr e-

Conf. Workshop , pages 39�53. Springer-V erlag, Lecture Notes in Computer Science, V ol 569, 1991.

[46] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vija y Sarasw at and

Kazunori Ueda, editors, L o gic Pr o gr amming: Pr o c e e dings of the 1991 International L o gic Pr o gr amming

Symp osium , pages 355�371. The MIT Press, Octob er 1991.

[47] Péter Szeredi. Exploiting or-parallelism in optimisation problems. In Krzysztof R. Apt, editor, L o gic

Pr o gr amming: Pr o c e e dings of the 1992 Joint International Confer enc e and Symp osium , pages 703�716.

The MIT Press, No v em b er 1992.

[48] Péter Szeredi and Mats Carlsson. The engine�sc heduler in terface in the Aurora or�parallel Prolog

system. T ec hnical Rep ort TR-90-09, Univ ersit y of Bristol, Computer Science Departmen t, April 1990.

[49] Péter Szeredi, Mats Carlsson, and Rong Y ang. In terfacing engines and sc hedulers in or-parallel Prolog

systems. In P ARLE91: Confer enc e on Par al lel A r chite ctur es and L anguages Eur op e , pages 439�453.

Springer V erlag, Lecture Notes in Computer Science, V ol 506, June 1991.

[50] Péter Szeredi and Zsuzsa F ark as. Handling large kno wledge bases in parallel Prolog. Presen ted at the

W orkshop on High P erformance Logic Programmi ng Systems, in conjunction with Eigh th Europ ean

Summer Sc ho ol in Logic, Language, and Information, Prague, August 1996.

[51] Péter Szeredi, Katalin Molnár, and Rob Scott. Serving m ultiple HTML clien ts from a Prolog application.

In P aul T arau, Andrew Da vison, Ko en de Bossc here, and Man uel Hermenegildo, editors, Pr o c e e dings

of the 1st Workshop on L o gic Pr o gr amming T o ols for INTERNET Applic ations, in c onjunction with

JICSLP'96, Bonn, Germany , pages 81�90. COMPULOG-NET, Septem b er 1996.

[52] Gáb or Umann, Rob Scott, Da vid Do dson, Zsuzsa F ark as, Katalin Molnár, László Péter, and Péter

Szeredi. Using graphical to ols in the CUBIQ exp ert system to ol-set. In Pr o c e e dings of the F ourth Inter-

national Confer enc e on the Pr actic al Applic ation of Pr olo g , pages 405�422. The Practical Application

Compan y Ltd, April 1996.

[53] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

[54] Da vid H. D. W arren. The Extended Andorra Mo del with Implicit Con trol. Presen ted at ICLP'90

W orkshop on P arallel Logic Programmi ng, Eilat, Israel, June 1990.

14

P art I

Im pl em en tati on

15

Chapter 2

The Aurora Or-P arallel Prolog System

1

Ewing Lusk

Ralph Butler

T errence Disz

Rob ert Olson

Ross Ov erb eek

Ric k Stev ens

Argonne

2

Da vid H. D. W arren

Alan Calderw o o d

Péter Szeredi

3

Bristol

4

Seif Haridi

P er Brand

Mats Carlsson

Andrzej Ciepielewski

Bogumil Hausman

SICS

5

Abstract

Aurora is a protot yp e or-parallel implemen tatio n of the full Prolog language for shared-memory

m ultipro cessors, dev elop ed as part of an informal researc h collab oration kno wn as the �Gigalips

Pro ject�. It curren tly runs on Sequen t and Encore mac hines. It has b een constructed b y adapt-

ing Sicstus Prolog, a fast, p ortable, sequen tial Prolog system. The tec hniques for constructing a

p ortable m ultipro cessor v ersion follo w those pioneered in a predecessor system, ANL-W AM. The

SRI mo del w as adopted as the means to extend the Sicstus Prolog engine for or-parallel op era-

tion. W e describ e the design and main implem en tation features of the curren t Aurora system, and

presen t some exp erimen tal results. F or a range of b enc hmarks, Aurora on a 20-pro cessor Sequen t

Symmetry is 4 to 7 times faster than Quin tus Prolog on a Sun 3/75. Go o d p erformance is also

rep orted on some large-scale Prolog applications.

2.1 In tro duction

In the last few y ears, parallel computers ha v e started to emerge commercially , and it seems lik ely that

suc h mac hines will rapidly b ecome the most cost-e�ectiv e source of computing p o w er. Ho w ev er, dev eloping

parallel algorithms is curren tly v ery di�cult. This is a ma jor obstacle to the widespread acceptance of

parallel computers.

Logic programming, b ecause of the parallelism implicit in the ev aluation of logical expressions, in principle

reliev es the programmer of the burden of managing parallelism explicitly . Logic programming therefore o�ers

the p oten tial to mak e parallel computers no harder to program than sequen tial ones, and to allo w soft w are

to b e migrated transparen tly b et w een sequen tial and parallel mac hines.

1

This pap er has app eared in New Gener ation Computing 7 (1990) [20]

2

Mathematics and Computer Science Division, Argonne National Lab oratory , Argonne, IL 60439, U.S.A.

3

On le ave fr om SZKI, Donáti u. 35-45, Budap est, Hungary

4

Departmen t of Computer Science, Univ ersit y of Bristol, Bristol BS8 1TR, U.K. The gr oup was pr eviously at: Departmen t

of Computer Science, Univ ersit y of Manc hester, Manc hester M13 9PL, U.K.

5

Sw edish Institute of Computer Science, Bo x 1263, S-164 28 Kista, Sw eden

16

It only remains to determine whether a logic programmi ng system coupled with suitable parallel hardw are

can realise this p oten tial. The Aurora system is a �rst step to w ards this goal. Aurora is a protot yp e or-

parallel implemen tatio n of the full Prolog language for shared-memory m ultipro cessors. It curren tly runs on

Sequen t and Encore mac hines. It has b een dev elop ed as part of an informal researc h collab oration kno wn

as the �Gigalips Pro ject�.

The Aurora system has t w o purp oses. Firstly , it is in tended to b e a researc h to ol for gaining understanding

of what is needed in a parallel logic programmi ng system. In particular, it is a v ehicle for making concrete

an abstract parallel execution mo del, the SRI mo del, in order to ev aluate and re�ne it. The in ten tion is to

ev aluate the mo del not only on the presen t hardw are, but also to lo ok to w ards p ossible future hardw are (not

necessarily based on shared ph ysical memory).

Secondly , Aurora is in tended to b e a demonstration system, that will enable exp erience to b e gained of

running large applications in parallel. F or this purp ose, it is vital that the system should p erform w ell on

the presen t hardw are, and that it should b e a complete and practical system to use.

In order to supp ort r e al applications e�cien tly and elegan tly , it is necessary to implemen t a logic programming

language that is at least as p o w erful and practical as Prolog. The simplest w a y to ensure this, and at the

same time to mak e it easy to p ort existing Prolog applications and systems soft w are, is to include full Prolog

with its standard seman tics as a true subset of the language. This w e ha v e tak en some pains to ac hiev e.

The b ottom line for ev aluating a parallel system is whether it is truly comp etitiv e with the b est sequen tial

systems. T o ac hiev e comp etitiv eness, it is necessary to mak e a parallel logic programmi ng system with

a single pro cessor execution sp eed as close as p ossible to state-of-the-art sequen tial Prolog systems, while

allo wing m ultiple pro cessors to exploit parallelism with the minim um of o v erhead. This has b een our goal

in Aurora.

T o summarise the ob jectiv es to w ards whic h Aurora is addressed, they are to obtain truly comp etitiv e p er-

formance on real applications b y transparen tly exploiting parallelism in a logic programming language that

includes Prolog as a true subset.

In this pap er, w e discuss the issues that m ust b e confron ted in or-parallel Prolog implemen tation, and

describ e the design and main implem en tation features of the curren t Aurora system. W e presen t some

exp erimen tal results illustrating the p erformance of the system on a n um b er of b enc hmarks, and also rep ort

our exp erience of p orting a n um b er of large-scale applications to Aurora. W e conclude b y summarising the

curren t state of Aurora and outlining directions for further researc h.

2.2 Bac kground

In this section w e describ e the setting in whic h Aurora w as dev elop ed and giv e a short history of the Gigalips

Pro ject.

2.2.1 Sequen tial Prolog Implem en tations

Prolog implemen tation en tered a new era when the �rst compiler w as in tro duced, for the DEC-10 [26]. The

sp eed of this implemen tatio n, and the p ortabilit y and a v ailabil it y of its descendan t, C-Prolog, set a language

standard, no w usually referred to as the �Edin burgh Prolog�. The DEC-10 compilation tec hniques led as

w ell to a standard implem en tation strategy , usually called the W AM (W arren Abstract Mac hine) [25]. In

a W AM-based implemen tatio n, Prolog source co de is compiled in to the mac hine language of a stac k-based

abstract mac hine. A p ortable em ulator of this abstract mac hine (t ypically written in C) yields a fast, p ortable

Prolog system, and a non-p ortable implemen tatio n of crucial parts of the em ulator can increase sp eed still

further. A parallel implemen tatio n of Prolog is ac hiev ed b y parallelising this em ulator.

There are no w man y high-qualit y commercial and non-commercial Prolog systems based on the W AM. A

parallel implemen tati on can obtain considerable lev erage b y utilising an existing high-qualit y implemen tatio n

as its foundation. W e use the Sicstus [6 , 5] implemen tation, one of the fastest p ortable implem en tations.

Using a fast implem en tation is imp ortan t for t w o reasons. Firstly , the single most imp ortan t factor determin-

ing the sp eed of a parallel v ersion is the sp eed of the underlying sequen tial implemen tatio n. Secondly , man y

researc h issues related purely to m ultipro cessing only b ecome apparen t in the presence of a fast sequen tial

implem en tation. (Sp eedups are to o easy to get when sp eed is to o lo w).

17

2.2.2 Multipro cessors

It is only in the last few y ears that m ultipro cessors ha v e emerged from the computer science lab oratories

to b ecome viable commercial pro ducts mark eted w orldwide. Startup companies lik e Sequen t, Encore, and

Allian t ha v e made shared-memory m ultipro cessors commonpla ce in industry and univ ersities alik e. Suc h

mac hines are relativ ely inexp ensiv e compared with comparable mainfram es, and pro vide a standard op erating

en vironmen t (Unix

T M

) making them extremely p opular as general-purp ose computation serv ers. A similar

rev olution is happ ening with lo cal-memo ry m ultipro cessors, sometimes called �m ulticom puters�, but these

are curren tly more sp ecialised mac hines, despite their scalabilit y adv an tages.

What the new breed of mac hines do es not pro vide is a uni�ed w a y of expressing and con trolling parallelism. A

v ariet y of compiler directiv es and libraries are o�ered b y the v endors, and while they do allo w the programmer

to write parallel programs for eac h mac hine, they pro vide neither syn tactic nor conceptual p ortabilit y . A

n um b er of researc hers are dev eloping to ols to address these issues, but at a relativ ely lo w lev el (roughly the

same lev el as the language they are em b edded in, suc h as C or F ortran). A goal of the Gigalips Pro ject is to

demonstrate the e�ectiv eness of logic programming as a v ehicle for exploiting parallelism on these mac hines.

2.2.3 Or-P arallelism

As is w ell kno wn, there are t w o main kinds of parallelism in logic programs, and-parallelism and or-parallel-

ism. The issues raised in attempting to exploit the t w o kinds of parallelism are su�cien tly di�eren t that

most researc h e�orts are fo cussing primarily on one or the other. Muc h early and curren t w ork has b een

directed to w ards and-parallelism, particularly within the con text of �committed c hoice� languages (P arlog,

Concurren t Prolog, Guarded Horn Clauses) [13 , 23]. These languages exploit dep enden t and-parallelism,

in whic h there ma y b e dep endencies b et w een and-parallel goals. Other w ork [10 , 18] has b een directed to-

w ards the imp ortan t sp ecial case of indep enden t and-parallelism, where and-parallel goals can b e executed

completely indep enden tly .

The committed c hoice languages ha v e b een view ed primarily as a means of expressing parallelism explicitly ,

b y mo delling comm unicating pro cesses. In con trast, one of our main goals is to exploit parallelism implicitly ,

in a w a y that need ha v e little impact on the programmer. This viewp oin t has led us to tak e a rather di�eren t

approac h, and to fo cus in particular on or-parallelism.

There are sev eral reasons for fo cussing on or-parallelism as a �rst step. Brie�y , in the short term, or-parallel-

ism seems easier and more pro ductiv e to exploit transparen tly than and-parallelism. Ho w ev er, none of these

reasons precludes in tegrating and-parallelism at a later stage, and indeed this is precisely the goal of curren t

w ork on the Andorra mo del and language [14 , 31]. The adv an tages of or-parallelism are:

� Generalit y . It is relativ ely straigh tforw ard to exploit or-parallelism without restricting the p o w er of

the logic programming language. In particular, w e retain the abilit y w e ha v e in Prolog to generate all

solutions to a goal.

� Simplici t y . It is p ossible to exploit or-parallelism without requiring an y extra programmer annotation

or complex compile-tim e analysis.

� Closeness to Prolog. It is p ossible to exploit or-parallelism with an execution mo del that is v ery close

to that of sequen tial Prolog. This means that one can tak e full adv an tage of existing implemen tatio n

tec hnology to ac hiev e a high absolute sp eed p er pro cessor, and also mak es it easier to preserv e the

same language seman tics.

� Gran ularit y . Or-parallelism has the p oten tial, at least for a large class of Prolog programs, of de�ning

large-grain parallelism. Roughly sp eaking, the gr ain size of a parallel computation refers to the amoun t

of w ork can b e p erformed without in teraction with other pieces of w ork pro ceeding in parallel. It is

m uc h easier to exploit parallelism e�ectiv ely when the gran ularit y is large.

� Applications . Signi�can t or-parallelism o ccurs across a wide range of applications, esp ecially in the

general area of arti�cial in telligence. It manifests itself in an y kind of searc h pro cess, whether it b e

exercising the rules of an exp ert system, pro ving a theorem, parsing a natural language sen tence, or

answ ering a database query .

18

2.2.4 Issues in Or-P arallel Prolog Implem en tation and Early W ork

The main problem with implemen ting or-parallelism is ho w to represen t di�eren t bindings of the same

v ariable corresp onding to di�eren t branc hes of the searc h space. The c hallenge is to do this in suc h a w a y

that the o v erhead of binding, un binding and dereferencing v ariables is k ept to a minim um compared with fast

sequen tial implemen tatio ns. V arious or-parallel mo dels ha v e b een prop osed [27 , 17, 30 , 1, 9], incorp orating

di�eren t binding sc hemes.

An early binding sc heme w as that of the SRI mo del, �rst suggested informally b y W arren in 1983 and

subsequen tly re�ned [28]. The early form of this mo del partly in�uenced Lusk and Ov erb eek in the design

of the pioneering system, ANL-W AM [12], one of the �rst or-parallel systems to b e implem en ted. Ho w ev er,

they ended up implemen ting an alternativ e, rather more complex, binding sc heme.

ANL-W AM w as �rst implemen ted on the Denelcor HEP and later p orted to other shared-memory mac hines.

It demonstrated that go o d sp eedups could b e obtained on Prolog programs, but su�ered from the fact that

the qualit y of its compiler and em ulator w ere w ell b ehind the state of the art. Also there w ere considerable

o v erheads asso ciated with the binding sc heme and treatmen t of parallel c hoicep oin ts. Ho w ev er, ANL-W AM

pro vided a concrete demonstration of what could b e ac hiev ed, and w as a ma jor inspiration b ehind the

formation of the Gigalips Pro ject. The exp erience of ANL-W AM, together with that from early w ork on

or-parallelism in Sw eden [7 , 8, 17], has led to the re�ned v ersion of the SRI mo del that has no w b een

implem en ted in Aurora.

2.2.5 A Short History of the Gigalips Pro ject

A t the Third In ternational Conference on Logic Programming in London in the summer of 1986, a meeting

w as held of represen tativ es of sev eral groups in terested in v arious asp ects of parallelism in logic programmi ng.

It w as agreed that there w ould b e a core dev elopmen t pro ject, op en to participation b y an y one, and that

an y one with related researc h in terests w as w elcome to sta y in close con tact. Ov er the next y ear the pro ject

b ecame kno wn as the Gigalips Pro ject, and the core dev elopmen t cen tered on the Aurora system describ ed in

this pap er. The implem en tors w ere groups from Argonne National Lab oratory , the Univ ersit y of Manc hester,

and the Sw edish Institute of Computer Science. The Manc hester group subsequen tly mo v ed to the Univ ersit y

of Bristol in the summer of 1988. Beginning in the spring of 1987, gatherings of the k ey participan ts w ere

held appro ximately ev ery three mon ths to decide on ma jor issues and merge w ork that had b een done

lo cally . Also attending these gatherings w ere researc hers from ECR C, Imp erial College, MCC, Stanford and

elsewhere. As a result, the Gigalips Pro ject has b een not only a design and implemen tatio n e�ort, but also

a medium for pursuing common researc h in terests in parallel logic programmi ng systems.

2.3 Design

Aurora is based on the SRI mo del, and most of the design decisions are as describ ed in an earlier pap er

[28]. In this section, w e summarise the main features of the design, emphasising those asp ects whic h are not

co v ered in the earlier pap er.

2.3.1 The Basic SRI Mo del

In the SRI mo del, a group of w ork ers

6

co op erate to explore a Prolog searc h tree , starting at the ro ot (the

topmost p oin t). The tree is de�ned implicitly b y the program, and needs to b e constructed explicitly (and

ev en tually discarded) during the course of the exploration. Th us the �rst w ork er to en ter a branc h constructs

it, and the last w ork er to lea v e a branc h discards it. The actions of constructing and discarding branc hes are

considered to b e the real w ork , and corresp ond to ordinary resolution and bac ktrac king in Prolog. When a

w ork er has �nished one con tin uous piece of w ork, called a task , it mo v es o v er the tree to tak e up another

task. This pro cess is called task switc hing or sc heduli ng . W ork ers try to maximi se the time they sp end

w orking and minimi se the time they sp end sc heduling. When a w ork er is w orking, it adopts a depth-�rst

left-to-righ t searc h strategy as in Prolog.

6

A w ork er is an abstract pro cessing agen t. W e use this term in order to lea v e unsp eci�ed the relationshi ps with hardw are

pro cessors and op erating system pro cesses.

19

The searc h tree is represen ted b y data structures v ery similar to those of a standard Prolog system suc h

as the W AM. W ork ers that ha v e gone do wn the same branc h share data on that branc h. As so on as data

b ecomes p oten tially shareable through creation of a c hoicep oin t, it ma y not b e mo di�ed. T o circum v en t

this restriction, eac h w ork er has a priv ate binding arra y , in whic h it records condition al binding s , i.e.

bindings to v ariables whic h ha v e b ecome shareable. The binding arra y giv es immediate access to the binding

of a v ariable. Conditional bindings are also recorded c hronologically in a shareable binding list called the

trail (similar to that in the W AM). Unconditional bindings are implemen ted as in the W AM b y up dating

the v ariable v alue cell; they do not need to b e recorded in the trail or binding arra y .

Using the binding arra y and trail, the basic Prolog op erations of binding, un binding, and dereferencing

are p erformed with v ery little o v erhead relativ e to sequen tial execution (and remain fast, c onstant-time

op erations). The binding arra y in tro duces a signi�can t o v erhead only when a w ork er switc hes tasks. The

w ork er then has to up date its binding arra y b y deinstalling bindings as it mo v es up the tree and installing

bindings as it mo v es do wn the tree, alw a ys k eeping its binding arra y in step with the trail.

The ma jor adv an tage of the SRI mo del, compared with other mo dels [27 , 12 , 17], is that it imp oses minim al

o v erhead on a w ork er while it is w orking.

2.3.2 Extending the W AM

W e will no w describ e in general terms ho w the SRI mo del has b een implemen ted as an extension to the

W AM. An imp ortan t design criterion has b een to allo w an y c hoicep oin t to b e a candidate for or-parallel

execution.

The no des of the searc h tree corresp ond to W AM c hoicep oin ts, with a n um b er of extra �elds to enable w ork ers

to mo v e around the tree and to supp ort sc heduling generally . The extra �elds dep end on the sc heduling

sc heme, but t ypically include p oin ters to the no de's paren t, �rst c hild no de and next sibling no des, and a

lo c k. Most of these extra �elds do not need to b e initialised, and can b e ignored, un til the no de is made

public , i.e. accessible to other w ork ers. This will b e explained in more detail shortly . Most other W AM data

structures are unc hanged. Ho w ev er trail en tries con tain a v alue as w ell as a v ariable address, en vironmen ts

acquire an extra �eld, and c hoicep oin ts acquire a further t w o �elds to supp ort the binding arra y .

Eac h w ork er main tains a binding arra y to record its conditional bindings. A v alue cell of a v ariable that is

not unconditionally b ound con tains an o�set that iden ti�es the corresp onding lo cation in the binding arra y

where the v alue, if an y , is to b e found. When a v ariable is initialised to un b ound, it is allo cated the next

free lo cation in the binding arra y . Ha ving un b ound v ariables initialised to suc h o�sets simpli�es the testing

of seniorit y that is necessary when one v ariable is b ound to another.

In our implem en tation, there is one w ork er p er op erating system pro cess, and eac h pro cess has a separate

address space whic h ma y b e only partially shared with other pro cesses. W e tak e adv an tage of this b y lo cating

all binding arra ys at a �xed address in unshared virtual memory . This means that w ork ers can address their

binding arra ys directly rather than via a register, and that binding arra y o�sets in v ariable v alue cells can

b e actual addresses.

The binding arra y is divided in to t w o parts: the lo cal bindin g arra y and the global bindin g arra y ,

corresp onding to v ariables in, resp ectiv ely , the W AM (lo cal) stac k and heap (or global stac k). Eac h part

of the binding arra y b eha v es as a stac k gro wing and con tracting in unison with the corresp onding W AM

area. The w ork er main tains a register to k eep trac k of the top of the global binding arra y . The need to

access a similar register for the lo cal binding arra y is a v oided b y p erforming most of the allo cation pro cess

at compile-time (see later).

2.3.3 Memory Managemen t

T o supp ort the or-parallel mo del, the W AM stac ks need to b e generalised to �cactus stac ks� mirroring the

shap e of the searc h tree.

T o ac hiev e this, eac h w ork er is allo cated a segmen t of virtual memory , divided in to four ph ysical stac ks: a

no de stac k , an en vironmen t stac k , a term stac k , and a trail . The �rst t w o corresp ond to the W AM

(lo cal) stac k unra v elled in to its t w o parts, and the second t w o corresp ond to the W AM heap and trail

resp ectiv ely .

Eac h w ork er alw a ys allo cates ob jects in its o wn ph ysical stac ks, but the ob jects themselv es ma y b e link ed

20

(explicitly or implicitly) bac k to ob jects in other w ork ers' stac ks forming a logical stac k.

The main di�erence from the W AM arises when a w ork er needs to switc h tasks. A t a task switc h the w ork er

ma y need to preserv e data at the base of its stac ks for the b ene�t of other w ork ers. In this case, data for the

new task will b e allo cated on the stac ks after the old data. If an y of the old data later b ecomes unneeded,

�holes� will app ear in the stac k. These holes will b e tolerated un til reclaimed b y an extension of the normal

stac k mec hanism. The holes corresp ond to ghost no des , i.e. no des whic h ha v e b een mark ed as logically

discarded b y the last w ork er to need them, but whic h ha v e not y et b een ph ysically remo v ed from memory .

A ghost no de and the asso ciated �holes� in the other stac ks will b e reclaimed when the w ork er who created

them �nds the ghost no de at the top of its no de stac k. This o ccurs at task switc hing.

Regarding t w o p ossible optimisations men tioned in the earlier pap er on the SRI mo del [28], the presen t

Aurora implemen tation do es not p erform promotion of bindings , and straigh teni ng has only b een

implem en ted in an exp erimen tal form (in the Manc hester sc heduler, describ ed later).

2.3.4 Public and Priv ate No des

W e ha v e already men tioned the distinction b et w een public and priv ate no des. It has the e�ect that the

searc h tree is divided in to t w o parts: an upp er, public, part accessible to all w ork ers, and a lo w er, priv ate,

part eac h branc h of whic h is only accessible to the w ork er that is creating it. This division has t w o purp oses:

� It enables a w ork er w orking in the priv ate part of the tree to b eha v e v ery m uc h as a standard sequen tial

engine, without b eing concerned ab out lo c king or main taining the extra data in the tree needed for

sc heduling purp oses.

� It pro vides a mec hanism b y whic h the gran ularit y of the exploited or-parallelism can b e con trolled. By

k eeping w ork priv ate, a w ork er can prev en t its tasks from b ecoming to o fragmen ted.

W e think of the w ork er as ha ving t w o p ersonas: a sc heduler and an engine. When the w ork er en ters the

public part of the tree, it b ecomes a sc heduler, resp onsible for the complexities of mo ving around the public

part of the tree and co ordinating with other w ork ers. When the w ork er en ters the priv ate part of the tree,

it b ecomes an engine, resp onsible for executing w ork as fast as p ossible. P erio dically , the engine pauses to

p erform v arious sc heduling functions, the c hief one of whic h is to mak e its topmost priv ate no de public if

necessary . The frequency with whic h no des are allo w ed to b e made public pro vides the gran ularit y con trol

men tioned.

T o main tain the in tegrit y of the public part of the tree, it is necessary for a (busy) w ork er alw a ys to ha v e a

topmost priv ate no de for the public no de ab o v e it to p oin t to. This priv ate no de has a sp ecial status, in that

t ypically it m ust ha v e a lo c k and sibling and paren t p oin ters, amongst other things. It is called a sen try

no de .

In the initial implemen tation of Aurora, a dumm y no de w as created when a w ork er w as launc hed on a new

task to serv e as the sen try no de. This simpli�ed the adaptation of the existing engine, but resulted in the

searc h tree b ecoming cluttered with sup er�uous dumm y no des. W e ha v e no w implem en ted the concept of

an em bry onic no de as originally describ ed [28]. The em bry onic no de is ��eshed out� b y the engine when

it needs to create a c hoicep oin t. The implemen tation of em bry onic no des in v olv ed separating the �elds of a

no de in to t w o parts, the sc heduler part and the engine part, with a p oin ter from the former to the latter.

This separation w as necessary b ecause a W AM c hoicep oin t is not of a �xed size but v aries according to the

arit y of the predicate.

2.3.5 Sc heduling

The function of the sc heduler is to rapidly matc h idle w ork ers with a v ailable w ork. Principal sources of

o v erhead that arise and need to b e minimi sed include installation and deinstallation of bindings, lo c king to

con trol access to shared parts of the searc h tree, and p erforming the b o okk eeping necessary to mak e w ork

publicly accessible. In addition, one w an ts the sc heduler to prefer �go o d� w ork, for example larger grain size

computations or less sp eculativ e ones. (W ork is said to b e sp eculativ e if it ma y b e pruned, i.e. b ecome

unnecessary , due to a cut or commit).

What mak es the sc heduling problem in teresting is that these goals are not alw a ys compatible. F or example,

large-grain w ork ma y b ecome a v ailable far a w a y in the tree, while smaller-grain or sp eculativ e w ork is

21

a v ailable nearb y . It is not clear what to do with idle w ork ers when there is (temp orarily) no w ork a v ailable

for them. They can sta y where they are or try to guess where w ork will app ear next and p osition themselv es

nearb y . Mo v emen t to w ork is o v er unstable terrain, since the tree is constan tly b eing c hanged b y other

w ork ers, and so a w a y m ust b e found to na vigate through it with as little lo c king as p ossible. Sc heduling

is also complicated b y cut, commit, and susp ension (see b elo w). Finally , a sc heduling algorithm that w orks

w ell on a particular class of programs is lik ely to p erform p o orly on a di�eren t class, so that compromises

are inheren t.

Because sc heduling is suc h an op en researc h problem, w e ha v e exp erimen ted with a n um b er of alternativ e

sc hemes within Aurora. Three quite distinct sc hemes ha v e b een implemen ted and will b e describ ed in a later

section.

2.3.6 Cut, Commit, Side E�ects and Susp ension

Aurora supp orts cut and ca v alier commit . Cut has a seman tics strictly compatible with sequen tial Prolog.

It prunes branc hes to the righ t of the cutting branc h in suc h a w a y that side e�ects (including other cuts)

are prev en ted from o ccurring on the pruned branc hes. Ca v alier commit is a relaxation of cut that prunes

branc hes b oth to the left and righ t of the cutting branc h, and is not guaran teed to prev en t side e�ects from

o ccurring on the pruned branc hes. Cut selects the �rst branc h through a prunable region; commit selects

an y one branc h through a prunable region.

Cut is curren tly implem en ted b y requiring it to susp end un til it is the leftmost branc h within the subtree it

a�ects. This is the simplest but b y no means the most e�cien t approac h. Recen t impro v emen ts [15] require

cut to susp end only so long as it could p ossibly b e pruned b y cuts with smaller scop es. Ca v alier commit is

more straigh tforw ard to implemen t in that it do esn't require an y susp ension mec hanism.

Aurora also supp orts standard Prolog built-in predicates including those whic h pro duce side e�ects. Calls

to suc h predicates are required to susp end un til they are on the leftmost branc h of the en tire tree. W e ha v e

also implemen ted �ca v alier� (or �async hronous�) v ersions of certain predicates, whic h do not require an y

susp ension [16].

2.3.7 Other Language Issues

The curren t implemen tatio n supp orts some in terim program annotation to con trol parallelism. If the decla-

ration:

:- sequential <procedure>/<ari ty>.

is included in a source �le, then the or-branc hes of <procedure>/<ar ity> cannot b e explored in parallel.

Th us a programmer curren tly iden ti�es predicates whose clauses m ust b e executed sequen tially . The compiler

and em ulator are then able to mark c hoicep oin ts according to whether or not they can b e explored in parallel.

All the predicates in a �le ma y b e declared sequen tial b y placing a declaration:

:- sequential.

at the head of the �le. This ma y b e o v erridden for individual predicates b y declaring them parallel (using

analogous syn tax).

Sequen tial declarations w ere in tro duced as an in terim measure b efore cut and side e�ects w ere prop erly

supp orted. A t that time cut b eha v ed as a true cut in sequen tial co de but as a commit in parallel co de. No w

cut and side e�ects are correctly supp orted. Sequen tial declarations are still a v ailable to the programmer as a

means to restrict the parallelism that is exploited. F or non-sp eculativ e w ork, there app ears to b e little p oin t

in restricting the parallelism. F or sp eculativ e w ork, ho w ev er, the presen t sc hedulers do not ha v e an adequate

strategy , and there is therefore curren tly scop e for the programmer to usefully restrict the parallelism [2].

22

2.4 Implemen tatio n

The implemen tation of Aurora is based on Sicstus Prolog com bined with the or-parallel implemen tatio n

framew ork dev elop ed for ANL-W AM. The system is in tended to pro vide a framew ork within whic h v arious

implem en tation ideas could b e tried out. These t w o factors ha v e led to a structure for Aurora consisting of

a n um b er of iden ti�able comp onen ts, eac h relativ ely indep enden t of the others. The main comp onen ts are

the engine and sc heduler.

A clean in terface b et w een the engine and the sc heduler has b een de�ned and implemen ted [3]. It de�nes the

services that the engine m ust pro vide to the sc heduler and those that the sc heduler pro vides to the engine.

This in terface allo ws di�eren t engines or sc hedulers to b e inserted in to the system with the minim um of e�ort.

A sc heduler testb ed, compatible with the in terface, allo ws di�eren t sc hedulers to b e tested on sim ulated

searc h trees in isolation from the full system. This is an in v aluable aid to debugging sc heduling co de.

2.4.1 Prolog Engine

The foundation of Aurora is Sicstus Prolog [6, 5], a relativ ely complete Prolog system implemen ted in C,

whic h has b een p orted to a wide range of Unix mac hines. Aurora is curren tly based on v ersion 0.3 of Sicstus,

although migration to v ersion 0.6 is underw a y . Sicstus comprises a compiler, em ulator, and run-time system.

The most basic comp onen t is the em ulator or engine. The Sicstus engine is a C implemen tatio n of the

W AM with certain extensions, including the abilit y to dela y goals (b y w ait declarations). Choicep oin ts and

en vironmen ts are k ept in separate stac ks, whic h turns out to b e essen tial for the SRI mo del. T o pro duce a

parallel v ersion of the engine supp orting the SRI mo del, a n um b er of c hanges had to b e made. The total

p erformance degradation as a result of these c hanges has b een found to b e around 25% (see later).

2.4.1.1 Cactus Stac k Main tenance

Eac h w ork er main tains the b oundary b et w een the public and priv ate sections of its no de stac k in a b oundary

register whic h p oin ts to the y oungest public no de. This go v erns what part of the no de stac k has to b e k ept

for the b ene�t of other w ork ers. Fields of the y oungest public no de de�ne the b oundaries for the other stac ks

and for the binding arra ys. When a task is started, the b oundary is mo v ed bac k o v er zero or more ghost

no des, th us shrinking the public section. The b oundary register is up dated as the engine mak es w ork public

(see b elo w). It is also used to detect on bac ktrac king when to lea v e the engine.

2.4.1.2 Handling of V ariable Bindings

Adapting the standard W AM for the SRI mo del binding sc heme implies a n um b er of c hanges. Un b ound or

conditionally b ound v ariables are represen ted as bindin g arra y references , i.e. as p oin ters in to a binding

arra y , mark ed with a sp ecial tag. The corresp onding arra y lo cation is initialised to UNBOUND . Other v alues

indicate that the v ariable has b een b ound. When accessing a v ariable or an argumen t of a structure, one

has to cater for the p ossibilit y of encoun tering a binding arra y reference, in whic h case one has to access the

binding arra y . Seniorit y tests (for v ariable-v ariable bindings and for testing whether v ariable bindings need

to b e trailed) are p erformed b y comparing binding arra y references, rather than v ariable addresses.

F or the term stac k, a new W AM register main tains the next a v ailable binding arra y reference, and is incre-

men ted for eac h new v ariable. The situation is somewhat di�eren t for v ariables in the en vironmen t stac k,

as explained in the follo wing section. Choicep oin ts acquire t w o new �elds to record the tops of the binding

arra ys.

2.4.1.3 The En vironmen t Stac k

Allo cating binding arra y slots for v ariables in the en vironmen t stac k is p erformed at compile time, in con trast

to the mec hanism describ ed ab o v e for the term stac k. This is done b y storing in eac h en vironmen t a base

p oin ter in to the lo cal binding arra y , denoted CL(E) , and extending t w o W AM instructions with an extra

argumen t:

23

call(P,n,j)

Call pro cedure P with n p ermanen t v ariables still to b e used, j out of these ha ving b een allo cated

in the lo cal binding arra y b y put_variable . The n and j op erands are denoted EnvSize(I) and

VarCount(I) , resp ectiv ely .

put_variable(Yn,Ai, j)

Set A

i

to reference the new un b ound v ariable Y

n

whose binding arra y reference is computed as j +

the base p oin ter stored in the en vironmen t.

The algorithm to compute A , the top of en vironmen t stac k, is extended to also compute L V , the top of

lo cal binding arra y . If the curren t en vironmen t is y ounger than the curren t c hoicep oin t, then A is E +

EnvSize (CP) (as usual), and L V is CL(E) + VarCount (CP). Otherwise L V is the top of lo cal binding

arra y �eld of B , and A is the top of en vironmen t stac k �eld of Bp . Here Bp is a new W AM register,

denoting the y oungest c hoicep oin t in the w ork er's own no de stac k. It is usually di�eren t from B (the curren t

c hoicep oin t) only when a task is started; as so on as a c hoicep oin t is created, B and Bp get the same v alue.

When adjusting B , Bp has to b e recomputed as w ell. Ho w ev er, this o v erhead w as judged w orth while as it

sp eeds up the computation of A whic h o ccurs more frequen tly than up dates of B .

The base p oin ter �eld CL(E) also serv es as an indicator of the age of an en vironmen t. This pro v es useful

when comparing ages of c hoicep oin ts and en vironmen ts, as address comparisons cannot b e used. The compiler

ensures that the c hain of base p oin ters form a strictly increasing sequence for this comparison to w ork.

2.4.1.4 Cut and Ca v alier Commit

After a cut or commit op eration whic h resets the curren t c hoicep oin t to an earlier v alue N , it b ecomes

mandatory to tidy the p ortion of the trail whic h is y ounger than N . Tidying means to repro cess all bindings

whic h w ere recorded earlier as conditional and mak e them unconditional where appropriate. If this is not

done, there migh t b e garbage references in the trail to a p ortion of the en vironmen t stac k whic h is b eing

reused b y tail recursion optimisation. It is a prop ert y of the SRI mo del that a trailed item alw a ys refers to

a v ariable whose v alue is a binding arra y reference. This prop ert y migh t b e violated if the trail is not tidied,

with fatal e�ects when attempting to reset non-existen t v ariables.

The cut/commit op eration m ust also treat cutting within the priv ate section and cutting in to the public

section as t w o separate cases, and call a sc heduler function to p erform the latter. In the latter case, the

sc heduler ma y refuse to p erform the cut, in whic h case the engine susp ends as describ ed in the follo wing

section. If the sc heduler do es p erform the cut it ma y order other w ork ers to ab ort their curren t tasks.

T o supp ort susp ension of cuts, the compiler pro vides extra information ab out what temp orary v ariables need

to b e sa v ed un til the susp ended task is resumed. This extra information also enco des the distinction b et w een

a cut and a ca v alier commit.

2.4.1.5 A Susp ension Mec hanism

An abilit y w as added to susp end w ork un til the curren t branc h of the computation tree is the left-most one,

either globally or with resp ect to some ancestral no de. The global susp ension test w as added to all built-in

side e�ect predicates. The lo cal test is used for cuts (see ab o v e).

T o susp end w ork, the engine pushes a no de with a single alternativ e denoting the curren t con tin uation,

mak es the en tire priv ate section public

7

, and returns con trol to the sc heduler. It is up to the sc heduler to

decide when the susp ended w ork ma y b e resumed.

2.4.1.6 Other Multipro cessi ng Issues

A mec hanism w as added to allo w the engine to p erio dically p erform certain sc heduling functions, notably to

mak e w ork public or to ab ort the curren t task. A t ev ery pro cedure call, a coun ter con trolling the gran ularit y

is decremen ted to determine whether to seek to p erform suc h action.

7

This is a v oided in the new v ersion of Aurora curren tly b eing implemen ted .

24

Access to certain global data structures (sym b ol tables, predicate databases etc.) had to b e sync hronised b y

using lo c ks. Curren tly eac h w ork er p erforms input/output, although this w ould probably b e b etter handled

b y a dedicated Unix pro cess to a v oid m ultiple accesses to bu�ers and con trol blo c ks.

Sp ecial supp ort for concurren t executions of setof has b een pro vided. In the Aurora implemen tatio n of

setof(X,P,L) , eac h in v o cation acquires its o wn sa v e area , where instances of X are sa v ed. Eac h suc h sa v e

area is itself serialised b y a lo c k, to cater for parallelism within P .

2.4.2 Sc hedulers

Sc heduling issues are an activ e area of researc h within the pro ject, and the engine/sc heduler in terface allo ws

us to exp erimen t with di�eren t alternativ es. T o date four quite distinct sc hedulers ha v e b een implemen ted,

an early in terim solution and three more recen t and more complete solutions: the Manc hester sc heduler, the

Argonne sc heduler, and the W a v efron t sc heduler. These are describ ed b elo w. The W a v efron t sc heduler w as

the last to b e dev elop ed and has only recen tly b ecome fully functional.

The earliest sc heduler w as based on a strategy describ ed b y SICS [17]. The implemen tatio n w as mo deled

lo osely on ANL-W AM and featured a global sc heduling mec hanism. That is, a single lo c k protected the

data structures necessary to determine what branc h of the tree an idle w ork er w ould explore next. It w as

an ticipated that this global lo c k w ould represen t a b ottlenec k as mac hines with more pro cessors b ecome

a v ailable. The later sc hedulers use a more lo cal sc heme for assigning a v ailable w ork to a v ailable w ork ers.

The three curren t sc hedulers are v ery similar in their lev el of completeness, all handling cut, commit and

sequen tial side e�ect predicates correctly . Moreo v er, although they ha v e rather di�eren t w a ys of implemen t-

ing their resp onsibilities, they do share a n um b er of strategy decisions. All three sc hedulers release w ork

only from the topmost no de on a branc h. This ma y b e regarded as a breadth-�rst strategy and is a sim-

ple attempt to maxim i se the size of tasks for their engines. In general the sc hedulers attempt to main tain

one, liv e, shareable no de on their curren t branc h, irresp ectiv e of whether an y other w ork er is curren tly idle

(although the Manc hester sc heduler has relaxed this requiremen t with its �lazy release� mec hanism). In

general, if a cut or side e�ect predicate cannot b e executed due to its not b eing on the leftmost branc h in

the appropriate subtree then the sc hedulers susp end that w ork, freeing the w ork er to lo ok for another task.

None of the sc hedulers curren tly giv es sp ecial treatmen t to sp eculativ e w ork: all w ork is regarded as b eing

equally w orth while; ho w ev er b etter treatmen ts of sp eculativ e w ork are b eing dev elop ed.

2.4.2.1 The Manc hester Sc heduler

The aim of the Manc hester sc heduler [4] is to matc h w ork ers to a v ailable w ork as w ell as p ossible. When

there are w ork ers idle, an y new piece of shareable w ork is giv en directly to the one judged to b e closest in

the searc h tree. Con v ersely , when a w ork er �nishes a task it attempts to claim the nearest piece of a v ailable

w ork; if none exists, it b ecomes idle at its curren t no de in the tree.

The matc hing mec hanism relies up on eac h w ork er ha ving a unique n um b er and there b eing a w ork er map

in eac h no de indicating whic h w ork ers are at or b elo w the no de. There are, in addition, t w o global arra ys,

b oth indexed on w ork er n um b er. One arra y indicates the w ork eac h w ork er has a v ailable for sharing and

its migration cost, and the other indicates the status of eac h w ork er and its migration cost if it is idle. The

migration cost of a no de is tak en to b e the n um b er of trail en tries from the ro ot do wn to that no de. If a

w ork er is lo oking for w ork, then b y examining the bit map in its curren t no de it kno ws whic h w ork arra y

en tries need b e considered and it can c ho ose the one with the lo w est migration cost. If the subtree con tains

no shareable w ork then scanning up the branc h to w ards the ro ot allo ws progressiv ely larger subtrees to b e

considered. The w ork er status arra y allo ws the use of an analogous pro cedure when determining the b est

idle w ork er to hand w ork to.

The execution of cuts and commits also relies on the bitmaps to lo cate and notify the w ork ers in the branc hes

to b e pruned. In general, the task of cleaning up the pruned subtree is left to the w ork ers b eing cut, so that

the cutter can pro ceed with its o wn w ork.

A n um b er of re�nemen ts to the basic sc heduling algorithm ha v e b een in tro duced in to the Manc hester sc hed-

uler.

Shado wing. Idle w ork ers try to distribute themselv es ev enly o v er the tree, eac h shado wing an activ e (w ork-

ing) w ork er, in the hop e that it will release some w ork later on.

25

Dela y ed re-release. When a piece of w ork is acquired b y a w ork er from a no de, release of further alterna-

tiv es from the same no de is disabled for a short p erio d of time. Since it is not kno wn in adv ance ho w

big a task will b e, it w as though t that dela y ed re-release w ould lead to a b etter distribution of w ork

and help a v oiding congestion of w ork ers.

Lazy release. No des are made public only when there are idle w ork ers w aiting for w ork. This w a y one can

a v oid creating public no des that will nev er b e shared. A disadv an tage of this sc heme is that when a

w ork er runs out of w ork it m ust �rst b ecome idle and w ait till the others notice this fact b efore it can

get hold of a piece of w ork.

Straigh t eni ng . This op eration, actually de�ned b y the basic SRI mo del [28], remo v es a dead no de when

a w ork er dies bac k to it lea ving just one other branc h. The structure of the tree can b e simpli�ed

considerably and all the future mo v emen ts of w ork ers through the giv en branc h can b ene�t from the

straigh tening. Note that the promotion of bindings has not b een incorp orated in to the straigh tening

op eration in the curren t implemen tation.

Of the ab o v e re�nemen ts shado wing and lazy release ha v e b een sho wn to b e the most useful [24], while dela y ed

re-release pro v ed to b e detrimen tal for most of the examples. Straigh tening leads to little impro v emen t in

the sp eed, probably b ecause the actual implemen tation of this op eration is quite complex and also b ecause it

causes a noticable increase in o v erall congestion for lo c ks. W e b eliev e that the implemen tation of straigh tening

can b e impro v ed, so that it will ha v e a b ene�cial e�ect on o v erall execution time.

2.4.2.2 The Argonne Sc heduler

The philosoph y of the Argonne sc heduler [2] is to allo w w ork ers to mak e lo cal decisions; v ery little use is

made of global data. An y w ork er that is in the public part of the tree is p ositioned at some particular no de.

In order to �nd w ork to do, it mak es a decision ab out whether to c ho ose an alternativ e at its curren t no de

(if there is one) or to mo v e along an arc of the tree to a nearb y no de and rep eat the decision pro cess. This

lo cal decision and one-step-at-a-time mo v emen t leads to an easily mo di�able sc heduling strategy .

Data to supp ort this strategy is lo cal. A bit in eac h no de indicates whether or not an unexplored alternativ e

exists at this no de or b elo w. These bits attract w ork ers from ab o v e. W ork ers are �eager� in the sense that

as so on as they b ecome a v ailable they b egin an activ e searc h for w ork. Only when they b eliev e they are

optimall y p ositioned to tak e adv an tage of new w ork that migh t app ear do they b ecome inactiv e.

The curren t strategy is to try to main tain at least one activ e public no de on eac h branc h of the tree. Th us

the sc heduler tak es a lib eral approac h to releasing w ork, and w ork ers are corresp ondingly eager in their

pursuit of it, trying to p osition themselv es where w ork migh t app ear ev en if no w ork is curren tly a v ailable.

The p oten tial dra wbac ks of these decisions are that no des ma y b ecome public that are nev er actually shared,

th us needlessly increasing the o v erhead of claiming an alternativ e from the no de. W ork ers in eager pursuit of

p oten tial w ork ma y mo v e a w a y from places in the tree where w ork is just ab out to app ear, so that it w ould

ha v e b een b etter not to b e so �eager�. The impact of these dra wbac ks dep ends in general on the particular

Prolog program b eing executed.

2.4.2.3 The W a v efron t Sc heduler

F rom the viewp oin t of sc heduling, the most in teresting part of the searc h tree is at the b oundary b et w een

public and priv ate regions. In particular, assuming a topmost no de sc heduling strategy , new w ork is found

only at the y oungest public no des. The basic idea b ehind the W a v efron t sc heduler is to link together

these �in teresting� no des allo wing for a more direct access to w ork. W e call this link ed c hain of no des the

w a v efron t .

The most imp ortan t prop ert y of the w a v efron t is that all activ e public no des are to b e found there. Suc h

no des ma y ha v e an y n um b er of c hildren, that is, w ork ers that ha v e tak en an alternativ e and are priv ately

exploring it. The set of c hildren is called the w a v elet , and can b e seen as represen ting a p ossible future

expansion of the w a v efron t. When a w ork er tak es the last alternativ e, linking itself in as the last c hild in the

w a v elet, the w a v efron t is expanded do wn w ards in to the w a v elet. When a w ork er fails up to its public-priv ate

b oundary it lo oks for new w ork. In the case when the w ork er is in a w a v elet, �nding new w ork is trivial, as

the paren t no de is still activ e; the next alternativ e is simply tak en and the sen try no de (see Section 2.3.4)

26

is mo v ed to its new p osition as the last c hild within the w a v elet. If the w ork er is on the w a v efron t, on the

other hand, the w ork er scans the w a v efron t for w ork.

When a w ork er mo v es from one p osition in the tree to another, it m ust up date its binding arra y accordingly ,

using the trail. In the other sc hedulers, w ork ers actually mo v e through the tree no de b y no de up dating

binding arra ys on the w a y . In the W a v efron t sc heduler, the w a v efron t pro vides not only a more direct w a y of

�nding w ork, but also the information necessary for up dating binding arra ys. No des are augmen ted with a

new �eld, called the join, whic h, although b y necessit y b eing placed in one no de, actually de�nes a relation

b et w een t w o neigh b ouring w a v efron t no des. The join is a p oin ter to the lo w est no de that a w a v efron t no de

has in common with its righ t neigh b our. Up dating the binding arra y to re�ect a mo v e b et w een neigh b ouring

no des is then done b y using the logical trail: from the �rst w a v efron t no de to the join no de, to deinstall

bindings, and from the second w a v efron t no de to the join no de, to install bindings.

In the W a v efron t sc heduler, a w ork er that b ecomes idle k eeps its p osition in the w a v efron t while lo oking for

w ork. The lo w est of its t w o joins de�nes the region in whic h it is alone. An idle w ork er p erio dically c hec ks

this region, reclaims memory , and grabs sequen tial w ork, if an y . An idle w ork er p erio dically lo oks for w ork

along the w a v efron t. When w ork is found, the w ork er (1) reserv es the w ork, linking itself in to the w a v elet

as the last c hild, (2) p ossibly p erforms a w a v efron t expansion and installs/deinstalls bindings as appropriate

for its new p osition, and (3) remo v es itself from its previous w a v efron t p osition. Remo ving a no de from the

w a v efron t is simple: at most one of the t w o joins asso ciated with the no de has to b e up dated (the lo w est

is set to the highest). F or a short time, the w ork er, in a sense, exists in t w o places at once, and protects

memory asso ciated with b oth branc hes from reclamation b y other w ork ers.

This w a y of dealing with idle w ork ers has t w o ma jor adv an tages. Firstly , it mak es the public region ab o v e

the w a v efron t en tirely read-only except for public bac ktrac king (and sync hronisation). Secondly , it neatly

divides the w a v efron t in to regions. An idle w ork er need only scan the w a v efron t to its left and righ t as far

as the nearest idle w ork er in either direction.

A w ork er ma y susp end, in whic h case its sen try no de is simply mark ed as susp ended, and the w ork er pro ceeds

to lo ok for other w ork. The sen try no de ma y b e a w a v efron t no de or a w a v elet no de, but in the latter case it

will fairly quic kly �nd itself in the w a v efron t, as its paren t no de b ecomes exhausted. A susp ended no de ma y

exist in the w a v efron t for an arbitrary amoun t of time, but ev en tually either it will b e cut or the susp ension

will b e lifted and w ork resumed at the susp ended no de. Note that, except for susp ensions, the n um b er of

no des in the w a v e fron t is b ounded b y the total n um b er of w ork ers.

The implemen tation of cut and side e�ects dep ends on b eing able to determine whether or not a w ork er

is leftmost within some scop e (p ossibly global). This is ac hiev ed b y sw eeping the w a v efron t to the left.

The join p oin ters will sho w when the scop e b oundary has b een reac hed. W ere it not for p ossible sequen tial

c hoicep oin ts, idle w ork ers could b e ignored for leftmost determinations.

A t the presen t time the W a v efron t sc heduler is still in an early stage of dev elopmen t. A go o d deal of

re�nemen t and exp erimen tation remains to b e done. T o b egin with there are a n um b er of features of the

Manc hester sc heduler (shado wing and lazy release) whic h could b e incorp orated. Ov erall, w e hop e that

the W a v efron t sc heduler will pro vide for greater �exibilit y in exp erimen tation with sc heduling concepts. In

particular, w e are lo oking in to more sophisticated w a ys of dealing with sp eculativ e w ork.

2.4.3 The Graphical T racing F acilit y

Aurora also encompasses a set of to ols for understanding the b eha vior of the system. They include a

mec hanism for recording ev en ts in the sc heduler, and a graphical tracing facilit y for repla ying those ev en ts

on a Sun w orkstation to sho w pictorially ho w the w ork ers explore the searc h tree [11].

In Figure 2.1 w e sho w a t ypical snapshot of the Argonne sc heduler at w ork, tak en near the b eginning of

the searc h for all solutions of the �Zebra� puzzle b y 16 w ork ers. W e are lo oking at the public part of the

tree. Eac h �b ee� at the end of branc h represen ts a w ork er executing sequen tially in the priv ate section. The

no des shap ed lik e honey p ots (attractiv e to b ees) ha v e unexplored alternativ es a v ailable, and no des with

parallel bars across them ha v e alternativ es that can b e explored in parallel. The stalk of non-parallel no des

b eginning at the ro ot arises from the (sequen tial) Prolog shell.

F rom this snapshot w e can tell that lots of w ork is curren tly a v ailable, and that the w ork ers are distributed

fairly ev enly in the tree. W e can see that w ork er 12 has just tak en the last alternativ e from a no de, and so

is in terrupting w ork er 7, telling it to mak e the no de at the top of its stac k public. W ork er 13 is just �nishing

27

Figure 2.1: Snapshot of the graphical tracing facilit y

its branc h, and on the no de b elo w there is another idle w ork er (actually , w ork er 5) that is ab out to tak e up

w ork.

A m uc h b etter feel for the computation is gained b y w atc hing the displa y in action and seeing the w ork ers

mo v e ab out the tree in searc h of w ork. By clic king on the appropriate buttons, one can stop and restart the

displa y , single step for close scrutin y of critical ev en ts, and displa y the predicate names asso ciated with eac h

c hoicep oin t. These lab els are imp ortan t for relating the tree to the original program, but clutter the displa y

and so are not sho wn here.

The graphical tracing facilit y has b een v ery useful for in v estigating the b eha vior of the di�eren t sc hedulers.

It has b een particularly helpful in iden tifying �p erformance bugs�, in whic h a computation is carried out

correctly , but not as fast as it should b e. In man y cases the graphical displa y brings out the problem quite

clearly .

2.5 Exp erimen tal Results

In T ables 2.1, 2.2 and 2.3, w e presen t some p erformance data for Aurora running on a Sequen t Symmetry

under the three sc hedulers. The data is illustrativ e, and should not b e regarded as pro viding a de�nitiv e

comparison of the sc hedulers, or indeed a de�nitiv e picture of Aurora b eha viour. The tables sho w times and

sp eedups for di�eren t n um b ers of pro cessors. F or the Manc hester sc heduler t w o of the re�nemen ts describ ed

in Sec. 2.4.2.1 ha v e b een switc hed on for these runs: shado wing and lazy-release. The b enc hmarks considered

are 8-queens2 , a naïv e (generate and test) v ersion of the 8 Queens problem from ECR C; salt-must2 , a

v ersion of the Salt and Mustard puzzle from Argonne (adapted to remo v e meta-calls); tina , a holida y

28

planning program from ECR C; db5 , the database query part of a Chat-80 natural language query

8

; parse5 ,

the natural language parsing part of the same Chat-80 query .

T able 2.4 sho ws the relativ e sp eed of other Prolog systems compared with Aurora running on one Sequen t

Symmetry pro cessor, for the same b enc hmarks. (The Aurora times are tak en to b e the a v erage for the

three sc hedulers, there b eing no signi�can t di�erence b et w een the sc hedulers on one pro cessor). The main

comparison is with the underlying sequen tial Prolog implem en tation, Sicstus 0.3, also running on a Sequen t

Symmetry . F or additional comparison, w e sho w the relativ e sp eed on a Sun 3/75 of Sictus 0.3, Quin tus

Prolog 2.4, and the most recen t v ersion of Sicstus, v ersion 0.6.

In T able 2.5 w e presen t some sample pro�ling data obtained from running the same b enc hmarks on an

instrumen ted v ersion [24] of Aurora (Manc hester sc heduler) with 20 pro cessors on a Sequen t Symmetry . First

w e giv e the execution time within the instrumen ted system (after substracting the measuremen t o v erheads),

follo w ed b y some statistical data: the n um b er of pro cedure calls (including built-ins); the n um b er of tasks

(engine in v o cations); the a v erage n um b er of calls p er task (the quotien t of the t w o previous quan tities).

The next three columns sho w the total o v erhead needed to supp ort or-parallelism divided in to three main

categories: execution related o v erheads (i.e. the SRI binding sc heme and the p erio dic test for sc heduling

activities during Prolog w ork), task switc hing o v erheads, and idle time. These columns sho w the total time

(including lo c king and migration) sp en t in eac h main activit y b y all pro cessors, expressed as a p ercen tage

of the sequen tial (Sicstus 0.3) execution time. The last t w o columns pro vide, as additional information, the

total time sp en t resp ectiv ely in lo c king and migration (i.e. the installation/deinstallation of bindings needed

on task switc hing), again expressed as a p ercen tage of sequen tial execution time.

The p erformance results that these tables illustrate are encouraging. On one pro cessor, Aurora is only ab out

25% slo w er than Sicstus 0.3, the sequen tial system from whic h it is deriv ed. Sicstus 0.3 is itself only ab out

2.7 times slo w er than Quin tus Prolog, one of the fastest commercial systems. The latest v ersion of Sicstus,

Sicstus 0.6, is ev en faster, only ab out 1.8 times slo w er than Quin tus, and w e exp ect this impro v em en t to

carry o v er to Aurora when migration to v ersion 0.6 has b een completed.

On 20 pro cessors, the Aurora sp eedup (relativ e to its sp eed on one pro cessor) dep ends on the application,

but can b e o v er 18 on programs with almost ideal or-parallelism, while substan tial sp eedups of 10 or more

are obtained on a range of b enc hmarks including some dra wn from real applications in natural language

parsing and database query pro cessing. These sp eedups represen t a real p erformance impro v em en t o v er

sequen tial systems: for example, for the b enc hmarks sho wn, Aurora on 20 pro cessors is 4 to 7 times faster

than Quin tus Prolog on a Sun 3/75. W e shall see in the next section that v ery go o d sp eedups (and absolute

p erformance) are also obtained on a v ariet y of complete, large-scale applications.

The results demonstrate that the o v erheads in tro duced b y adapting a high p erformance Prolog engine for

the SRI mo del are lo w. The pro�ling data sho w that the cost of up dating binding arra ys on task switc hing,

whic h w as feared to b e a ma jor source of o v erhead, is quite small in practice. The relativ ely high migration

cost for the parse5 b enc hmark is caused b y a rather p eculiar shap e of the searc h tree: t w o long branc hes

with some w ork app earing on b oth of these from time to time.

Similarl y , the time sp en t in lo c king is acceptably lo w, at least for the Manc hester sc heduler. It should

b e noted that the lo c king o v erhead in the Manc hester sc heduler is no w lo w partly b ecause the pro�ling

data has b een v ery helpful in lo cating and eliminating congestion in those parts of the algorithm where the

comp etition for lo c ks w as high.

W e b eliev e that the most signi�can t o v erhead is the high, relativ ely �xed, cost of task switc hing that prev ails

for all the sc hedulers in the curren t Aurora implemen tation. As can easily b e calculated from data in

T able 2.5, the cost of a single task switc hing op eration is on a v erage around 7 to 10 (sequen tial) Prolog

pro cedure calls, and this �gure seems to b e relativ ely indep enden t of the nature of the task switc h. This

places a limit on the gran ularit y of parallelism that is w orth exploiting, tasks of less than ab out 10 pro cedure

calls b eing hardly w orth exploiting. It will b e seen that the db5 and parse5 are close to this limit. In

addition to the direct cost of task switc hing, there seems to b e a signi�can t amoun t of idle time whic h

cannot b e explained b y lac k of parallelism, and whic h, w e b eliev e, is caused b y dela ys in creation of w ork,

due to earlier task switc hing o v erheads. Consequen tly the high cost of the task switc hing op eration and

the partitioning of w ork in to sometimes unnecessarily small tasks are the main factors to blame for the less

than p erfect sp eedups. It is p ossible that task switc hing costs can b e reduced b y lo w-lev el tuning of the

engine/sc heduler in terface amongst other things, irresp ectiv e of the high-lev el sc heduling strategy .

8

�Whic h Europ ean coun tries that con tain a cit y the p opulation of whic h is more than 1 million and that b order a coun try

in Asia con taining a cit y the p opulation of whic h is more than 3 million b order a coun try in W estern Europ e con taining a cit y

the p opulation of whic h is more than 1 million?�

29

Processor s

Benc hmark 1 4 8 16 20

8-queens2 29.18 7.31 (3.99) 3.69 (7.91) 1.95 (15.0) 1.58 (18.5)

sm2 *10 11.61 3.00 (3.87) 1.59 (7.30) 1.00 (11.6) 0.80 (14.5)

tina 20.91 5.56 (3.76) 3.01 (6.95) 1.78 (11.7) 1.55 (13.5)

db5 *10 3.78 1.07 (3.53) 0.64 (5.90) 0.44 (8.61) 0.40 (9.47)

parse5 5.88 1.64 (3.59) 1.03 (5.70) 0.75 (7.85) 0.64 (9.19)

T able 2.1: Times (in seconds) and sp eedups for Aurora, Manc hester sc heduler

Processor s

Benc hmark 1 4 8 16 20

8-queens2 29.11 7.37 (3.95) 3.74 (7.78) 1.96 (14.9) 1.59 (18.3)

sm2 *10 11.62 4.00 (2.91) 3.14 (3.70) 0.90 (12.9) 0.75 (15.5)

tina 21.08 5.51 (3.83) 2.98 (7.07) 1.76 (12.0) 1.55 (13.6)

db5 *10 3.85 1.06 (3.63) 0.68 (5.65) 0.45 (8.54) 0.38 (10.1)

parse5 5.89 1.82 (3.24) 1.32 (4.45) 1.07 (5.51) 1.02 (5.75)

T able 2.2: Times (in seconds) and sp eedup for Aurora, Argonne sc heduler

Processor s

Benc hmark 1 4 8 16 20

8-queens2 29.12 7.32 (3.98) 3.78 (7.70) 2.08 (14.0) 1.74 (16.8)

sm2 *10 11.66 3.04 (3.84) 1.52 (7.67) 1.02 (11.4) 1.04 (11.2)

tina 21.13 5.44 (3.88) 2.89 (7.30) 1.72 (12.3) 1.59 (13.3)

db5 *10 3.67 0.98 (3.73) 0.57 (6.49) 0.40 (9.12) 0.39 (9.35)

parse5 6.01 1.65 (3.63) 1.05 (5.71) 0.79 (7.58) 0.57 (10.5)

T able 2.3: Times (in seconds) and sp eedup for Aurora, W a v efron t sc heduler

TIME (sec) RELATIVE SPEED

Aurora 0.0 Sicstus 0.3 Sicstus 0.3 Quintus 2.4 Sicstus 0.6

Benc hmark Symmetry Symmetry SUN 3/75

8-queens2 29.14 1.25 0.91 2.68 1.45

sm2 *10 11.63 1.26 0.92 2.34 1.22

tina 21.04 1.26 0.84 2.29 1.39

db5 *10 3.77 1.17 0.90 2.42 1.28

parse5 5.93 1.23 0.99 2.62 1.52

T able 2.4: Comparing sp eed of other Prolog implemen tations with Aurora

TASK

TOTAL EXECUTION SWITCHING IDLE LOCKING MIGRATION

TIME TOTAL TOTAL CALLS OVERHEADS OVERHEADS TIME TIME TIME

Benc hmark (sec) CALLS TASKS /TASK % of sequentia l execution time (Sicstus 0.3)

8-queens2 1.580 167207 1822 92 25.12% 8.45% 1.68% 0.79% 0.49%

sm2 *10 0.763 135740 3440 39 22.29% 26.03% 17.30% 7.13% 1.71%

tina 1.591 160662 3349 48 31.96% 23.28% 34.57% 10.03% 1.53%

db5 *10 0.441 55450 3145 18 24.04% 71.20% 77.79% 38.55% 5.30%

parse5 0.654 39096 3384 12 31.64% 107.37% 31.65% 10.52% 31.75%

T able 2.5: Pro�le data for Aurora, Manc hester sc heduler, 20 pro cessors

30

Remark ably similar sp eedups on the same b enc hmarks ha v e b een obtained for ECR C's PEPSys mo del [22].

The fact that t w o quite di�eren t mo dels should pro duce similar sp eedups suggests that the sp eedups are

limited mainly b y the in trinsic gran ularit y of the parallelism a v ailable in the examples. Sim ulatio n data b y

Kish Shen suggests that all the examples p oten tially ha v e at least 20-fold parallelism, but that gran ularit y

v aries widely and is v ery �ne in the b enc hmarks with p o orer sp eedups.

2.6 Applicati ons

Besides running small b enc hmarks, w e ha v e p orted a n um b er of large-scale Prolog applications to Aurora to

see ho w easy the p orting is and to in v estigate ho w p erformance fares in real life.

Apart from the applications describ ed in more detail b elo w, other applictions tested are an Andorra Prolog

in terpreter [14], the Satc hmo theorem pro v er (t w o v ersions: the �rst for theorems in Predicate Logic and

the second for Prop ositional Logic), and a lexicon learning program. They sho w sp eedups from go o d (8 on

12 pro cessors) to v ery go o d (11 on 12 pro cessors).

2.6.1 The Pundit Natural Language System

The Pundit natural language system [19] dev elop ed b y the Unisys P aoli Researc h Cen tre consists of a parser

and a broad co v erage restriction grammar. The grammar used consists of 125 BNF rules and 55 restrictions

plus meta-rules handling conjunctions. There are ab out 350 disjunctions in the grammar. A kind of seman tic

parsing (selection) can b e used to reduce the searc h space, but unfortunately it has not b een p ossible to use

this comp onen t in our exp erimen ts.

This large application is p erfectly suited for or-parallel execution. The sp eedups are nearly ideal. The only

c hange w e had to do w as replacing calls to the standard (sync hronous) recorded with async hronous v ersions.

The results are actually b etter than the predictions based on the somewhat p essimistic mo del of parallelism

prop osed b y the P aoli group [19].

F or t ypical sen tences, sp eedups with 12 pro cessors are in the range 9 to 11. F or example, a sp eedup of 11.15

is obtained for the sen tence �L oud noises wer e c oming fr om the drive end during c o ast down � .

2.6.2 The Piles Civil Engineering Application

The Piles program dev elop ed b y the Univ ersit y of Bristol Civil Engineering Departmen t analyses p ossible

faults in concrete piles from acoustic data. The program is essen tially an exp ert system consisting of a

rulebase, a rule in terpreter and a set of facts to b e in terpreted against the rules. A set of test data is

a v ailable for 31 di�eren t piles. Sev en main classes of fault can b e analysed. In practice, the system is used

to �nd all sev en p ossible classes of fault in all the piles tested (31 in this case). This normal mo de of use

giv es v ery go o d or-parallelism (alb eit of a rather trivial kind).

The original Piles program w as written in a di�eren t Prolog dialect (running on an IBM PC) and had to

b e con v erted for running under Sicstus. The use of the clause predicate had to b e eliminated in order to

facilitate compilation of the program. In order to exploit the indexing feature of Sicstus, argumen t p ositions

in certain predicates w ere reordered; this actually yielded a v ery big impro v emen t. In order to o v ercome the

de�ciency of the �oating p oin t op eration of the curren t Aurora implemen tatio n, all �oating p oin t n um b ers

w ere c hanged to in tegers. The core of the program made use of assert and retract to k eep trac k of

the certain maxim a in the searc h space. Suc h use of side e�ect predicates hamp ered the exploitation of

parallelism. The side e�ect predicates w ere initially replaced b y a free_bagof (one whic h can collect its

solutions async hronously in an arbitrary order) and then b y a new built-in predicate called maxof .

With all these c hanges, the time on one pro cessor dropp ed dramatically from 173 sec. to 8.13 sec., and

the sp eedup on 11 pro cessors impro v ed from around 1 with the original program to 9.5 with the ev en tually

re�ned program, the time on 11 pro cessors b eing reduced to 0.85 sec. Giv en that the original program on

an IBM PC to ok on the order of 20 min utes, the total p erformance impro v emen t ac hiev ed is v ery striking,

a factor of around 1500.

The sp eedup describ ed so far arises mainly from analysing 31 piles in parallel, whic h is ho w the application

is actually used. In order to observ e ho w m uc h parallelism is a v ailable at the core of the program, w e

31

in v estigated the p erformance on a single pile seeking a single t yp e of fault. Used in this w a y the program

still sho ws a reasonably go o d sp eedup of around 7 with 11 pro cessors. The use of sequen tial declaration, in

an attempt to fo cus the exploitation of parallelism, did not help in this application.

2.6.3 Study of the R-classes of a Large Semigroup

In the con text of the o v erall automated reasoning researc h at Argonne, there has b een in terest in using v arious

arti�cial in telligence based to ols as aids in the understanding the structure of certain large �nite semigroups

that pla y a fundamen tal role in classifying v arieties of semigroups [21]. A recen t theorem-pro ving run yielded

t w en t y megab ytes of output ab out the semigroup F

3

B

2

1 . Although the n um b er of elemen ts (102,303) w as new

and imp ortan t information, w e w an ted to extract information ab out the R -classes in order to understand

the structure. This required �rst the extraction of 2844 distinguished elemen ts and for eac h of these, a

sp ecialised theorem-pro ving run to iden tify the graph structure of its R -class. Since the theorem-pro ving

runs required sp ecialised inference rules and subsumption criteria, it w as con v enien t to write this program

in Prolog. Since the computation w as so large, it w as w ell w orth sp eeding up, and since it consisted of 2844

indep enden t and relativ ely large computations, there w as ample exploitable parallelism. On 24 Sequen t

Symmetry pro cessors, the sp eedup w as 23.4, the time for the computation b eing reduced from nearly t w o

hours to under �v e min utes. The computation time on the fastest sequen tial Prolog system w e could �nd,

Quin tus Prolog on a Solb ourne Sun-4 clone, w as nearly t w en t y min utes. Th us Aurora w as 3.7 times faster

than the fastest a v ailable sequen tial Prolog system.

2.7 Conclusion

Aurora is a protot yp e or-parallel implemen tatio n of the full Prolog language for shared-memory m ultipro-

cessors. It curren tly runs on Sequen t and Encore mac hines. It has b een constructed b y adapting Sicstus

Prolog, a fast, p ortable, sequen tial Prolog system dev elop ed at the Sw edish Institute of Computer Science.

The tec hniques for constructing a p ortable m ultipro cessor v ersion follo w those pioneered b y Argonne National

Lab oratory in a predecessor system, ANL-W AM. The SRI mo del, as dev elop ed and re�ned at Manc hester

Univ ersit y , w as adopted as the means to generalise the Sicstus Prolog engine for or-parallel op eration.

Aurora has demonstrated the basic feasibilit y of the SRI mo del. A high absolute sp eed p er pro cessor is

attainable, and signi�can t sp eedups can b e obtained through parallelism on real examples. The o v erheads

of up dating binding arra ys on task switc hing seem quite tolerable in practice.

Aurora supp orts the full Prolog language and is able to run large Prolog applications and systems. W e ha v e

demonstrated that substan tial or-parallelism is a v ailable in a v ariet y of real applications, and that this leads

to go o d sp eedups and absolute p erformance when running on Aurora.

As regards the ultimate goal of obtaining truly comp etitiv e b ottom-line p erformance, Aurora on a 20-

pro cessor Sequen t Symmetry is t ypically 4 to 7 times faster than Quin tus Prolog on a Sun 3/75 for a wide

range of examples with su�cien t or-parallelism. On 4 pro cessors Aurora easily outp erforms Quin tus on all

examples with su�cien t parallelism, while on one pro cessor Aurora is only ab out 2.5 times slo w er. As a

p oin t of comparison, Quin tus Prolog is one of the fastest commercial Prolog system, while the Sun 3/75

w as un til recen tly considered to b e a fast pro cessor. T urning to the fastest Prolog system w e could �nd

to da y , Quin tus Prolog on a Solb ourne Sun-4 clone, Aurora w as 3.7 times faster on a large theorem pro ving

application.

Ho w ev er, it can b e argued that Aurora will not b ecome truly comp etitiv e with sequen tial Prolog systems un til

shared-memory m ultipro cessors b ecome c heap er and more cost-e�ectiv e, b earing in mind that a 20-pro cessor

Sequen t Symmetry is an order of magnitude more exp ensiv e than a fast w orkstation. The main factor

prev en ting Aurora from b eing truly comp etitiv e is that m ultipro cessor mac hines, as an emerging tec hnology ,

are still relativ ely exp ensiv e and ha v e lagged b ehind in k eeping pace with the dramatic y early increase in

sequen tial pro cessor sp eeds. Ho w ev er this situation is c hanging. The next generation of fast pro cessors is

lik ely to app ear sim ultaneously in w orkstations and m ultipro cessors that will supp ort Aurora, and at the

same time m ultipro cessors are lik ely to b ecome increasingly comp etitiv e in terms of price/p erformance.

The other factor limiting Aurora comp etitiv eness is the fact that (on equiv alen t hardw are) the Aurora engine

is some 3 times slo w er than the Quin tus engine, due primarily to its b eing a p ortable implemen tatio n written

in C, but re�ecting also the o v erheads of the SRI mo del. W e exp ect this factor to b e reduced b y the migration

32

to Sicstus v ersion 0.6, and further impro v emen ts w ould b e p ossible if the engine w ere implemen ted at as lo w

a lev el as Quin tus. Th us, with suitable tuning of the Aurora engine, truly comp etitiv e p erformance is lik ely

to b e obtainable on the next generation of m ultipro cessors.

The exp erience of implem en ting Aurora has demonstrated that it is relativ ely easy to adapt a state-of-the-

art Prolog implemen tation, preserving the complete Prolog seman tics. The main no v el comp onen t is the

sc heduler co de, whic h is resp onsible for co ordinating the activities of m ultiple w ork ers lo oking for w ork in

a Prolog searc h tree. A clear and simple in terface has b een de�ned b et w een the sc heduler and the rest of

the system. This mak es it easy to exp erimen t with alternativ e sc hedulers (three quite di�eren t sc hedulers

curren tly exist), and should mak e it easier to apply the same parallelisation tec hniques to other existing

Prolog systems.

Aurora is a protot yp e system, and there are man y issues that need further exploration. In particular, more

exp erimen tation is needed with di�eren t sc heduling strategies and mec hanisms. It ma y b e p ossible to reduce

the high cost of task switc hing b y more e�cien t implemen tation, or b y alternativ e sc heduling strategies

whic h do not follo w the �topmost no de� heuristic. F or example, curren t implemen tations of the BC mo del

[1] ac hiev e a m uc h larger e�ectiv e task size b y dividing w ork at the �b ottom-m ost no de� rather than the

topmost.

The curren t sc hedulers are able to handle cut, commit and side e�ects correctly . Ho w ev er, they require

ma jor enhancemen t to handle sp eculativ e w ork e�cien tly . The presen t sc hedulers treat all w ork as b eing

equally w orth while, and mak e no allo w ance for ho w sp eculativ e a piece of w ork ma y b e. A more in telligen t

sc heduling strategy should b e prepared to susp end w ork that has b ecome highly sp eculativ e if there is w ork

a v ailable that is lik ely to b e more pro�table. Th us there is a need for �v olun tary� susp ension in addition

to the presen t �compulsory� susp ension. P ossible sc heduling sc hemes giving preference to non-sp eculativ e

w ork or failing that to the least sp eculativ e w ork a v ailable are b eing discussed [15] and are going to b e

implem en ted and ev aluated in the Aurora system.

The existing Aurora system allo ws researc hers to exp erimen t with or-parallel logic programs. W e are making

the system a v ailable to other researc h groups. W e exp ect to con tin ue to impro v e its capabilities and sp eed,

and to p ort the system to new shared-memory m ultipro cessors as they b ecome a v ailable.

The w ork done so far has inspired man y directions for future researc h. One ma jor extension that w e are

pursuing is the incorp oration of and-parallelism, in the form of the Andorra mo del and language [14 , 31].

The w ork has also inspired ideas for a no v el arc hitecture supp orting shared virtual memory , called the data

di�usion mac hine [29]. W e b eliev e Aurora can con tribute generally to the study of parallelism in logic

programmi ng languages.

2.8 Ac kno wledgemen ts

This w ork w as greatly stim ulated and in�uenced b y man y other colleagues in v olv ed in or asso ciated with the Gigalips

Pro ject. W e thank all of them.

This w ork w as supp orted in part b y the U.K. Science and Engineering Researc h Council, under gran t GR/D97757,

in part b y ESPRIT pro ject 2471 (�PEPMA�), and in part b y the Applied Mathematical Sciences subprogram of the

O�ce of Energy Researc h, U.S. Departmen t of Energy , under con tract W-31-109-Eng-38.

References

[1] Kha yri Ali. Or-Par al lel Exe cution of Pr olo g on BC-Machine . SICS Researc h Rep ort, Sw edish Institute

of Computer Science, 1987.

[2] Ralph Butler, T erry Disz, Ewing Lusk, Rob ert Olson, Ross Ov erb eek, and Ric k Stev ens. Sc heduling

OR-parallelism: an Argonne p ersp ectiv e. In Pr o c e e dings of the Fifth International Confer enc e on L o gic

Pr o gr amming , pages 1590�1605, MIT Press, August 1988.

[3] Alan Calderw o o d. Aurora�description of sc heduler in terfaces. Jan uary 1988. In ternal Rep ort, Gigalips

Pro ject.

33

[4] Alan Calderw o o d and Péter Szeredi. Sc heduling or-parallelism in Aurora � the Manc hester sc heduler.

In Pr o c e e dings of the Sixth International Confer enc e on L o gic Pr o gr amming , pages 419�435, MIT Press,

June 1989.

[5] Mats Carlsson. In ternals of Sicstus Prolog v ersion 0.6. No v em b er 1987. In ternal Rep ort, Gigalips

Pro ject.

[6] Mats Carlsson and Johan Widén. SICStus Prolog User's Man ual. Octob er 1988. SICS Researc h Rep ort

R88007B.

[7] Andrzej Ciepielewski and Seif Haridi. A formal mo del for or-parallel execution of logic programs. In

IFIP 83 Confer enc e , pages 299�305, North Holland, 1983.

[8] Andrzej Ciepielewski, Seif Haridi, and Bogumil Hausman. Initial ev aluation of a virtual mac hine for or-

parallel execution of logic programs. In IFIP-TC10 Working Confer enc e on Fifth Gener ation Computer

A r chite ctur e , Manc hester, U.K., 1985.

[9] William Clo c ksin. Principles of the DelPhi parallel inference mac hine. Computer Journal , 30(5):386�392,

1987.

[10] Doug DeGro ot. Restricted and-parallelism. In Hideo Aiso, editor, International Confer enc e on Fifth

Gener ation Computer Systems 1984 , pages 471�478, Institute for New Generation Computing, T oky o,

1984.

[11] T errence Disz and Ewing Lusk. A graphical to ol for observing the b eha vior of parallel logic programs.

In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 46�53, 1987.

[12] T errence Disz, Ewing Lusk, and Ross Ov erb eek. Exp erimen ts with OR-parallel logic programs. In

Pr o c e e dings of the F ourth International Confer enc e on L o gic Pr o gr amming , pages 576�600, MIT Press,

1987.

[13] Stev en Gregory . Par al lel L o gic Pr o gr amming in Parlo g . Addison-W esley , 1987.

[14] Seif Haridi and P er Brand. Andorra Prolog�an in tegration of Prolog and committed c hoice languages.

In International Confer enc e on Fifth Gener ation Computer Systems 1988 , ICOT, 1988.

[15] Bogumil Hausman. Pruning and sc heduling sp eculativ e w ork in or-parallel Prolog. In P ARLE 89,

Confer enc e on Par al lel A r chite ctur es and L anguages Eur op e , Springer-V erlag, 1989.

[16] Bogumil Hausman, Andrzej Ciepielewski, and Alan Calderw o o d. Cut and side-e�ects in or-parallel

Prolog. In International Confer enc e on Fifth Gener ation Computer Systems 1988 , ICOT, 1988.

[17] Bogumil Hausman, Andrzej Ciepielewski, and Seif Haridi. Or-parallel Prolog made e�cien t on shared

memory m ultipro cessors. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 69�79,

1987.

[18] Man uel Hermenegildo. An abstract mac hine for restricted and-parallel execution of logic programs. In

Eh ud Shapiro, editor, Thir d International Confer enc e on L o gic Pr o gr amming, L ondon , pages 25�39,

Springer-V erlag, 1986.

[19] Lynette Hirsc hman, William Hopkins, and Rob ert Smith. Or-parallel sp eed-up in natural language

pro cessing: a case study . In Pr o c e e dings of the Fifth International Confer enc e on L o gic Pr o gr amming ,

pages 263�279, MIT Press, August 1988.

[20] Ewing Lusk, Ralph Butler, T errence Disz, Rob ert Olson, Ross Ov erb eek, Ric k Stev ens, Da vid H. D.

W arren, Alan Calderw oo d, Péter Szeredi, Seif Haridi, P er Brand, Mats Carlsson, Andrzej Ciepielewski,

and Bogumiª Hausman. The Aurora or-parallel Prolog system. New Gener ation Computing , 7(2,3):243�

271, 1990.

[21] Ewing Lusk and Rob ert McF adden. Using automated reasoning to ols: a study of the semigroup F2B2.

Semigr oup F orum , 36(1):75�88, 1987.

[22] Mic hael Ratcli�e. A progress rep ort on PEPSys. July 1988. Presen tation at the Gigalips W orkshop,

Manc hester.

[23] Eh ud Shapiro, editor. Concurr ent Pr olo g�Col le cte d Pap ers . MIT Press, 1987.

34

[24] Péter Szeredi. P erformance analysis of the Aurora or-parallel Prolog system. In Pr o c e e dings of the

North A meric an Confer enc e on L o gic Pr o gr amming , pages 713�732, MIT Press, Octob er 1989.

[25] Da vid H. D. W arren. A n A bstr act Pr olo g Instruction Set . T ec hnical Note 309, SRI In ternational, 1983.

[26] Da vid H. D. W arren. Applie d L o gic�Its Use and Implementation as a Pr o gr amming T o ol . PhD thesis,

Edin burgh Univ ersit y , 1977. Av ailable as T ec hnical Note 290, SRI In ternational.

[27] Da vid H. D. W arren. Or-parallel execution mo dels of Prolog. In T APSOFT'87, The 1987 International

Joint Confer enc e on The ory and Pr actic e of Softwar e Development, Pisa, Italy , pages 243�259, Springer-

V erlag, Marc h 1987.

[28] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

[29] Da vid H. D. W arren and Seif Haridi. Data Di�usion Mac hine�a scalable shared virtual memory m ulti-

pro cessor. In International Confer enc e on Fifth Gener ation Computer Systems 1988 , ICOT, 1988.

[30] Harald W estphal, Philipp e Rob ert, Jacques Chassin, and Jean-Claude Syre. The PEPSys mo del: com-

bining bac ktrac king, and- and or-parallelism. In The 1987 Symp osium on L o gic Pr o gr amming, San

F r ancisc o, California , IEEE, 1987.

[31] Rong Y ang. Solving simple substitution ciphers in Andorra-I. In Pr o c e e dings of the Sixth International

Confer enc e on L o gic Pr o gr amming , pages 113�128, MIT Press, June 1989.

35

Chapter 3

P erformance Analysis of the Aurora

Or-P arallel Prolog System

1

Péter Szeredi

2

Departmen t of Computer Science

Univ ersit y of Bristol, Bristol BS8 1TR, U.K.

Abstract

Aurora is a protot yp e or-parallel implem en tation of the full Prolog language for shared memory

m ultipro cessors based on the SRI mo del of execution. The capabilities of Aurora in exploiting

parallelism v ary from application to application: some sho w almost linear sp eed-up, whilst for

others the sp eed-up is m uc h w orse than the theoretical maxim um .

The Manc hester v ersion of the Aurora system has b een instrumen ted to pro vide v arious t yp es of

pro�ling information. Main sources of o v erhead in parallel execution ha v e b een iden ti�ed and the

frequency of sp eci�c ev en ts, as w ell as the time sp en t in eac h of them has b een measured. Sp ecial

atten tion has b een paid to the binding arra y up date o v erheads asso ciated with the SRI mo del and

to the o v erheads of sync hronisation using lo c ks.

W e presen t a short description of the instrumen ted Aurora system and ev aluate the basic set

of pro�ling data. Our main conclusion is that the high cost of task switc hing in the presen t

implem en tation is the main cause of p o or sp eed-ups. The cost of up dating the binding arra ys,

whic h w as feared to b e the ma jor cause of o v erhead, seems to b e rather small. Similarly , lo c king

costs are acceptably lo w and there is no signi�can t increase in the a v erage lo c king time.

3.1 In tro duction

Aurora is a protot yp e or-parallel implemen tation of the full Prolog language for shared memory m ultipro-

cessors, curren tly running on Sequen t and Encore mac hines. It has b een dev elop ed in the framew ork of

the Gigalips pro ject [5], a collab orativ e e�ort b et w een Argonne National Lab oratory in Illinois, Univ ersit y

of Bristol (previously Univ ersit y of Manc hester) and the Sw edish Institute of Computer Science (SICS) in

Sto c kholm.

The SRI mo del [11] has b een adopted as the basis of Aurora. According to this mo del the system consists

of sev eral workers (pro cesses) exploring the searc h tree of a Prolog program in parallel. Eac h no de of the

tree corresp onds to a Prolog c hoicep oin t with a branc h asso ciated with eac h alternativ e clause. As the tree

is b eing explored, eac h no de can b e either live , i.e. ha ving at least one unexplored alternativ e, or de ad . Liv e

1

This pap er has app eared in the pro ceedings of NA CLP'89 [10]

2

On le ave fr om SZKI, Donáti u. 35-45, Budap est, Hungary

36

no des corresp ond to pieces of w ork a w ork er can select. Eac h w ork er has to p erform activities of t w o basic

t yp es:

� executing the actual Prolog co de,

� �nding w ork in the tree, pro viding other w ork ers with w ork and sync hronising with other w ork ers.

The ab o v e t w o kinds of activities ha v e b een separated in Aurora: those parts of a w ork er that w ork on

executing the Prolog co de are called the engine , whilst those concerned with the parallel asp ects are called

the sche duler . The engine used in Aurora is a mo di�ed v ersion of SICStus Prolog (v ersion 0.3).

In accordance with the SRI mo del eac h w ork er has a separate binding arr ay to store its o wn bindings to

p oten tially shared v ariables (conditional bindings). This tec hnique allo ws constan t time access to a v alue of

a shared v ariable, but imp oses an o v erhead of up dating the binding arra ys whenev er a w ork er has to mo v e

within the searc h tree. The n um b er of bindings made on the giv en path of mo v emen t is called the migr ation

c ost , since it is prop ortional to the up dating o v erhead of binding arra ys.

The or-tree is divided to an upp er, public , part accessible to all w ork ers and a lo w er, private , part. A w ork er

exploring its priv ate region do es not ha v e to b e concerned with sync hronisation or main taining sc heduling

data � it can w ork v ery m uc h lik e a standard Prolog engine. The b oundary b et w een the public and priv ate

regions c hanges dynamically . One of the critical asp ects of the sc heduling algorithm is to decide when to mak e

a no de public, allo wing other w ork ers to share w ork at it. The curren t Aurora sc hedulers use a disp atching

on topmost strategy: a no de is made public when all no des ab o v e it are dead, i.e. ha v e no more alternativ es

to explore. This means that eac h w ork er tries to k eep a single piece of w ork on its branc h a v ailable to other

w ork ers.

Three separate sc hedulers are b eing dev elop ed curren tly for Aurora. The Argonne sc heduler [3] relies on

data stored in the tree itself to implemen t a lo cal strategy according to whic h liv e no des �attract� w ork ers

without w ork. When sev eral w ork ers are idle they will comp ete to get to a giv en piece of w ork and the

fastest one will win. In con trast with this the Manc hester sc heduler [4] tries to select the nearest w ork er in

adv ance, without mo ving o v er the tree. It uses global data structures to store information on a v ailable w ork

and w ork ers as w ell as data stored in the tree itself. The w a v efron t sc heduler [2] tries to ac hiev e the goal of

optimal matc hing b et w een w ork and w ork ers using a sp ecial distributed data structure, the wavefr ont , whic h

links all the liv e no des and idle w ork ers in to a doubly link ed list.

Our p erformance analysis w ork aims at understanding the factors in�uencing the b eha viour of Aurora sc hed-

ulers. The measuremen ts w ere p erformed on the Manc hester sc heduler. Considerable part of the analysis,

ho w ev er, applies to design decisions that are common to all three sc hedulers. The ma jor goals of our w ork

are the follo wing:

� to measure the costs asso ciated with the SRI binding sc heme, b oth during Prolog execution in the

engine and within the sc heduler activities,

� to ev aluate the e�ciency implications of some design issues in Aurora, suc h as the priv ate-public

division of the searc h tree and the engine-sc heduler in terface,

� to iden tify the ma jor algorithmic comp onen ts of the Manc hester sc heduler and assess their e�ect on

the p erformance of the system,

� to analyse the lo c king o v erheads in the Manc hester sc heduler,

Section 3.2 outlines the structure of the Manc hester sc heduler and Section 3.3 brie�y describ es our instru-

men tation of the system. Section 3.4 in tro duces the b enc hmarks used in the analysis and presen ts some

basic timing data, while Section 3.5 con tains detailed data and ev aluation of the basic o v erhead activities.

Section 3.6 co v ers lo c king and migration o v erheads. In Section 3.7 some extensions to the basic sc heduling

algorithm are brie�y describ ed and ev aluated. Finally Section 3.8 summarises the conclusions of the pap er.

Rep ort [9] is an extended v ersion of this pap er, giving more detailed ev aluation of p erformance issues and

data for individual b enc hmarks as w ell.

37

3.2 The w orking cycle of Aurora

The basic w orking cycle of the Aurora system (with the Manc hester sc heduler) is presen ted in Fig. 3.1. Eac h

b o x in this �gure represen ts a basic activit y that has b een measured in our pro�ling. T asks concerned with

the execution of side e�ect predicates ha v e not b een sho wn on the �gure in order to simplify the presen tation.

The main data structures used b y the Manc hester sc heduler are in tro duced brie�y to mak e the discussion

self con tained. Ev ery no de of the searc h tree has a n um b er of sc heduler sp eci�c �elds of whic h the w ork er

bit-map is of ma jor imp ortance. Eac h bit in this �eld corresp onds to a sp eci�c w ork er and indicates whether

the giv en w ork er is at or b elo w the no de. There are t w o global arra ys b oth indexed on a unique w ork er

iden ti�er. The worker arra y stores information on w ork ers including an indication of the migration cost

(b et w een the w ork er's curren t no de and the ro ot) if the w ork er is idle and an in terrupt message area whic h

allo ws one w ork er to notify another ab out a sp eci�c ev en t. The other main global data structure is the arra y

of queues eac h of whic h stores a p oin ter to a single liv e no de (if an y) the giv en w ork er has to share on its

branc h, together with the migration cost.

WORK

failed bac k

to a public no de

CHECK

PARALLEL

duties

MAKE a no de PUBLIC

-

�

pro cess INTERRUPT S
-

�

�

-

public CUT/COMM IT
�

-

public BACKTRACK

?

�

-

liv e

no de

dead

shared no de

FIND WORK

?

IDLE RELEASE WORK

-

�

?

GO TO WORK

???

w ork

found

no w ork

found

handed

w ork

grabb ed

w ork

Figure 3.1: The w orking cycle of A ur ora (Manchester scheduler)

The basic activit y of eac h w ork er is to do the �real� work , i.e. Prolog execution (resolution and bac ktrac king).

Some of the built-in predicates to b e executed need additional care due to the parallel en vironmen t, most

notably cut and c ommit to a public no de. Another kind of o v erhead arises from the fact that the w ork er has

to che ck p erio dically if it has an y duties concerning p ar al lel execution (this is done at ev ery n th Prolog call,

n = 5 b y default

3

). The duties include c hec king if it has receiv ed an y interrupts (e.g. ab out ha ving b een

cut), and also c hec king if it is feasible to make some of its newly created no des public (i.e. a v ailable to other

w ork ers). When a no de is made public, an idle w ork er is in terrupted to do the releasing of w ork (see b elo w).

If there are no idle w ork ers the address of the new public no de is dep osited in the w ork er's queue.

A con tin uous piece of w ork executed b y a w ork er is called a task . A w ork er normally �nishes its task when

it fails bac k to a public no de and then it do es public b acktr acking . If the no de in question is still liv e, the

w ork er can claim the next alternativ e and return to w ork. If the no de is dead and not shared with others

an y more, then the w ork er can reco v er the no de and con tin ue the public bac ktrac king with the paren t of

the no de. If, ho w ev er, the no de in question is dead and shared, then the w ork er has to abandon its curren t

branc h and try to �nd work in some other part of the searc h tree.

The w ork er uses the bit-map in its curren t no de to determine whic h w ork ers are b elo w him and examines

the corresp onding queues to lo cate the nearest piece of w ork. If no w ork is found in this subtree, it rep eats

the same pro cedure for the paren t of the curren t no de. If w ork is found ev en tually , the w ork er grabs it (i.e.

3

This frequency of c hec ks has b een found the most b ene�cial for the Manc hester sc heduler [8]

38

claims it for itself) and go es to work . This in v olv es mo difying its binding arra y as w ell as up dating sc heduler

information in the a�ected no des of the tree. When the w ork er is p ositioned at the appropriate no de, it

en ters its main w orking mo de again.

When no w ork is a v ailable some w ork ers ma y b ecome id le . When, later on, a no de is made public b y an

activ e (w orking) w ork er, the idle w ork er who is nearest to this no de needs to b e selected and handed the

w ork. T o let the activ e w ork er con tin ue with its Prolog w ork as so on as p ossible, this selection pro cess, called

r ele asing work , is actually done b y one of the idle w ork ers. The releasing w ork er will consider progressiv ely

larger subtrees around the new public no de in its searc h for the nearest idle w ork er (including itself). The

w ork er arra y and the bit-maps will b e used during this searc h m uc h in the same w a y as for �nding w ork.

When the appropriate idle w ork er is selected, it is handed the giv en piece of w ork. This idle w ork er will then

lea v e its idle state, go to the appropriate no de of the tree and start w orking. Occasionally an idle w ork er

ma y notice a piece of w ork app earing in a queue and grab it on its o wn initiativ e, lea ving idle state and

going to w ork.

3.3 Instrumen tin g Aurora

The Aurora implemen tatio n has b een instrumen ted to collect v arious p erformance data. The execution cycle

of the system has b een divided to a n um b er of disjoin t activities as depicted in Fig. 3.1 (WORK , CUT/COMMIT ,

CHECK PARALLEL , etc.). The n um b er of times a giv en t yp e of activit y has b een p erformed as w ell as the

total time sp en t in it ha v e b een collected. F urthermore t w o sub-categories ha v e b een distinguished: separate

time accum ulators and ev en t coun ters ha v e b een pro vided for lo c king and for mo ving (up dating the binding

arra ys) within eac h of the main categories.

Additional coun ters ha v e b een inserted for the basic Prolog ev en ts: calls (Prolog pro cedure calls � including

most of built-in predicates), backtracks , creation of nodes (c hoicep oin ts), conditional bindings (i.e.

bindings to p oten tially shared v ariables) and also for move bindings i.e. those installed b y w ork ers mo ving

around the tree.

The pro�ling exp erimen ts w ere run under the D YNIX

T M

op erating system on a Sequen t Symmetry

T M

S27

m ultipro cessor equipp ed with t w elv e pro cessors and 16 Mb ytes of memory . Since w e w an ted eac h w ork er

to b e assigned the full p o w er of a CPU, w e used at most 11 w ork ers to lea v e one pro cessor aside for the

computing requiremen ts of the op erating system.

E�orts ha v e b een made to accoun t for the measuremen t o v erheads b y excluding the time actually sp en t

in measuremen t from the times accum ulated for sp eci�c activities. The net running times obtained b y

subtracting the a v erage o v erhead from the times measured are only a few p ercen t higher than the times

obtained from an uninstrumen ted system. W e b eliev e that this distortion resulting from the instrumen tation

is reasonably lo w and th us measuremen ts do re�ect what is happ ening in the original, uninstrumen ted system.

3.4 The b enc hmarks

W e used the Chat-80 natural language query system as one of the main sources for the p erformance analysis

of Aurora. Benc hmarks parse1 � parse5 run the parsing comp onen t of Chat-80 to �nd all p ossible parses

of v arious queries. The Prolog translations of t w o queries w ere tak en as represen tativ es of database searc h

t yp e applications (db4 and db5). The translation used w as that pro duced b y Chat, but with the extra lev el

of query in terpretation and all cuts remo v ed.

F urther b enc hmarks w ere adapted from those used b y the PEPSys group at ECR C: farmer , a small program

for planning the farmer's crossing a riv er with a w olf, a goat and a cabbage; house , the �who o wns the zebra�

puzzle, using constrain t directed searc h; 8-queens2 , the naiv e (generate and test) v ersion of 8 queens;

8-queens1 , a more e�cien t algorithm for 8 queens, whic h c hec ks the state of the c hess-b oard in eac h step;

tina , a holida y planning program. Finally sm2 , the salt-m ustard puzzle originating from Argonne, has also

b een included. It has b een sligh tly mo di�ed to a v oid the frequen t meta-calls of the original v ersion.

All the ab o v e b enc hmarks lo ok for all solutions of the problem. Although there are cuts in some of the

programs, these ha v e small scop e and so the amoun t of additional (sp eculativ e) w ork done when running in

parallel is minim al (cf. Section 3.5, T able 3.3).

T able 3.1 sho ws the running times in seconds, with sp eed-ups (relativ e to the 1 w ork er case) giv en in

39

paren theses. The last column sho ws the running time on SICStus Prolog v ersion 0.3, the Prolog system on

whic h the engine of Aurora is based. The �sp eed-up� �gure in this column, (the ratio of the running time

on Aurora with 1 w ork er and the running time on SICStus) is actually indicating the o v erheads of extending

the Prolog system to allo w or-parallel execution.

Aurora

Goals Workers

Group * rep etitions 1 4 8 11 Sicstus 0.3

8-queens1 11.33 2.87 (3.95) 1.47 (7.71) 1.11 (10.2) 9.08 (1.25)

8-queens2 33.60 8.39 (4.00) 4.27 (7.87) 3.19 (10.5) 26.04 (1.29)

H tina 23.73 6.16 (3.85) 3.29 (7.21) 2.53 (9.38) 18.89 (1.26)

sm2 *10 13.57 3.52 (3.86) 1.86 (7.30) 1.43 (9.51) 10.49 (1.29)

A VERA GE (3.92) (7.52) (9.91) (1.27)

parse2 *20 10.14 3.07 (3.30) 2.17 (4.68) 1.98 (5.13) 7.99 (1.27)

parse4 *5 9.38 2.64 (3.55) 1.66 (5.65) 1.44 (6.51) 7.38 (1.27)

parse5 6.63 1.81 (3.66) 1.13 (5.87) 0.95 (6.99) 5.25 (1.26)

M db4 *10 3.62 1.01 (3.58) 0.59 (6.14) 0.47 (7.70) 3.04 (1.19)

db5 *10 4.41 1.23 (3.59) 0.71 (6.21) 0.57 (7.74) 3.69 (1.20)

house *20 9.22 2.61 (3.53) 1.58 (5.84) 1.31 (7.06) 7.37 (1.25)

A VERA GE (3.54) (5.73) (6.86) (1.24)

parse1 *20 2.72 0.98 (2.78) 0.86 (3.17) 0.87 (3.14) 2.13 (1.27)

parse3 *20 2.33 0.92 (2.53) 0.82 (2.85) 0.80 (2.93) 1.81 (1.28)

L

farmer *100 5.37 2.63 (2.04) 2.52 (2.13) 2.53 (2.12) 4.09 (1.31)

A VERA GE (2.45) (2.72) (2.73) (1.29)

T able 3.1: R un times f or benchmarks

F or simpler b enc hmarks the timings sho wn refer to rep eated runs, the rep etition factor b eing sho wn in the

�rst column. Additionally , eac h timing w as carried out sev eral times and the shortest of these is displa y ed

in the table.

The b enc hmarks in T able 3.1 are divided in to three groups according to the sp eed-ups sho wn:

� 8-queens1 , 8-queens2 , tina and salt-mustard sho w v ery go o d sp eed-up (around 10 for 11 w ork ers);

� parse2 , parse4 , parse5 , db4 , db5 and house sho w relativ ely go o d sp eed-ups (5�8 for 11 w ork ers);

� parse1 , parse3 and farmer sho w rather bad sp eed-ups (2�3 for 11 w ork ers).

Because of space limitations the a v erage data for these groups will b e presen ted in the follo wing sections,

rather then to sho w the b enc hmarks individually . The three groups will b e referred to as Group H (high

sp eed-up), Group M (medium sp eed-up) and Group L (lo w sp eed-up).

Some of the b enc hmarks used in this analysis w ere ev aluated b y Kish Shen [7] using his sim ulator similar

to that describ ed in [6]. T able 3.2 sho ws the results of sim ulation in t w o v arian ts. The �rst part of the

table assumes no o v erheads asso ciated with task switc hing, while the second part assumes an o v erhead of

8 resolution time units. The table sho ws sim ulation results for 4�11 w ork ers and also giv es the maxim um

ac hiev able sp eed-up with the actual n um b er of w ork ers needed to pro duce the sp eed-up sho wn in paren theses.

The sim ulation results con�rm our grouping: the b enc hmark in Group H sho ws a v ery high lev el of parallelism

(o v er 500-fold under ideal conditions), the b enc hmarks in Group M ha v e a medium amoun t of parallelism,

while the ones in Group L ha v e a rather lo w lev el of parallelism (the ideal maxim um sp eed-up b eing b elo w

12). The discrepancy b et w een the actual results and the �gures predicted b y the sim ulator for the 8 resolution

units o v erhead is the smallest for the 4 w ork ers case: a few p ercen t for Groups H and M and 10-26% for

Group L. This gap widens as more w ork ers are considered, reac hing 30% for Group M and 50% for Group

L. W e will return to commen t on this di�erence after w e ha v e presen ted the actual o v erheads.

40

No overheads Overhead = 8 resolutio ns / task

Workers Workers

Group Goals 4 8 11 Max speed-up 4 8 11 Max speed-up

H 8-queens1 4.00 7.98 10.96 > 536 (w > 800) 3.99 7.95 10.90 > 440 (w > 800)

parse2 4.00 7.93 10.67 26.38 (w=66) 3.45 5.97 7.17 13.33 (w=126)

parse4 4.00 7.98 10.89 41.26 (w=216) 3.84 6.63 8.47 22.68 (w=285)

parse5 4.00 7.99 10.98 58.46 (w=256) 3.85 6.96 8.98 32.40 (w > 100)

M

db4 3.99 7.94 10.88 159.7 (w=800) 3.84 7.43 10.13 78.15 (w=400)

house 3.96 7.76 10.51 53.72 (w=190) 3.69 6.73 8.71 30.54 (w=187)

A VERA GE 3.99 7.92 10.79 3.73 6.74 8.69

parse1 3.96 6.80 8.37 11.46 (w=37) 3.05 4.30 4.66 5.49 (w=50)

parse3 3.92 6.97 8.71 11.46 (w=35) 2.86 4.07 4.44 5.34 (w=48)

L

farmer 3.34 4.31 4.53 4.53 (w=10) 2.58 3.02 3.15 3.31 (w=16)

A VERA GE 3.74 6.03 7.20 2.83 3.80 4.08

T able 3.2: Speed-up of OR-p arallel Pr olog execution - simula tion resul ts

3.5 Basic o v erheads of or-parallel execution

COND.

Benc h- BACK- % of BINDs COND.

mark CALLS TRACKS NODES PUBLIC per CALLS BINDINGS

Groups per TASK per TASK per TASK NODES CALL INCREASE INCREASE

Group H

w = 1 30175.82 27867.74 23552.59 0.03% 0.39

w = 4 547.84 485.65 407.68 0.51% 0.39 0.00% 0.49%

w = 8 202.11 163.20 149.67 1.24% 0.39 0.03% 1.56%

w = 11 100.82 75.10 70.61 2.01% 0.40 0.07% 2.98%

Group M

w = 1 2429.24 1293.92 1017.37 0.21% 0.57

w = 4 44.16 24.65 18.47 3.85% 0.60 6.01%

w = 8 19.49 10.84 7.96 8.72% 0.65 14.18%

w = 11 15.52 8.62 6.31 10.90% 0.67 17.81%

Group L

w = 1 227.83 142.42 135.42 0.36% 0.73

w = 4 9.62 5.69 5.11 12.64% 0.91 0.45% 29.36%

w = 8 6.82 4.03 3.62 18.80% 0.98 0.76% 45.28%

w = 11 6.49 3.85 3.48 20.18% 1.00 0.98% 47.59%

T able 3.3: Basic st a tistical d a t a

T able 3.3 presen ts a set of engine related frequency data to help in understanding the timing data in the

sequel. The �rst three columns of the table con tain the a v erage n um b er of calls, no des and bac ktrac ks p er

task and so pro vide a go o d indication of a v erage task size. The next column giv es a related piece of data:

the p ercen tage of public no des among all no des, i.e. the prop ortion of the public part within the searc h

tree. The �gures in these columns indicate that there is a dramatic decrease in task size as the n um b er of

w ork ers increases and the three groups are visibly separated. It is w orth noting, ho w ev er, that the decrease

for Group L is m uc h less sharp than for the other t w o groups. This is b ecause the a v erage task size in Group

L is not m uc h more than 5 Prolog calls whic h is the default p erio d b et w een in v o cations of CHECK PARALLEL .

This means that there will b e no parallel activit y (and so no no de will b e made public) in the �rst 5 calls

within eac h task.

41

The �fth column con tains the n um b er of conditional bindings p er Prolog call. Although the group a v erages

do increase going from Group H to L, it is w orth noting that while the �w orst� b enc hmark, farmer, has

0.49 bindings p er call, one of the �b est�, tina, has 0.67 (for 11 w ork ers). The �gures for the individual

b enc hmarks v ary from 0.18 (db4 and db5) to 1.25 (parse3). While there is a 7-fold di�erence in the n um b er

of conditional bindings for these b enc hmarks, the v ariation in the actual o v erhead is m uc h smaller: 19% to

28% (as sho wn in the last column of T able 3.1). This indicates that the signi�cance of the actual binding

o v erhead is m uc h smaller than that of the general o v erhead of handling the binding arra y references during

the uni�cation pro cess.

The CALLS INCREASE column sho ws the increase in the n um b er of Prolog calls executed during the

b enc hmark. This is an indication of ho w m uc h unnecessary sp e culative work is p erformed b y the system.

Suc h w ork is undertak en when a w ork er c hoses a branc h that later will b e cut, th us causing co de to b e

executed that w ould not b e run in the sequen tial case. The amoun t of unnecessary sp eculativ e w ork is

rather small for our examples, basically b ecause they w ere c hosen not to con tain ma jor cuts (e.g. there are

none in Group M, at all). Nev ertheless it is imp ortan t to kno w for the ev aluation of timing results that there

is no signi�can t increase in the actual Prolog w ork to b e p erformed in our b enc hmarks when going from 1

to more w ork ers.

The increase in the n um b er of conditional bindings is due to the fact that when the last alternativ e is tak en

from a shared c hoicep oin t, the latter can not b e discarded (as it w ould b e in the sequen tial case). This causes

some additional bindings to b ecome conditional. The original SRI-mo del en visaged that when all but one

w ork er bac ktrac k ed to a c hoicep oin t these bindings could b e pr omote d to b ecome unconditional, but this has

not y et b een implemen ted in Aurora. The increase in the n um b er of conditional bindings is naturally related

to the n um b er of public no des (column 4) and so it is m uc h bigger for the lo w gran ularit y b enc hmarks than

for the high gran ularit y ones.

Benc h- WORK CHECK MAKE BACK- FIND RELEASE GO TO OTHER IDLE TOTAL

mark PAR. PUBLIC TRACK WORK

Groups % of sequential running time (Sicstus 0.3)

Group H

w = 1 129.74 1.03 0.02 0.06 0.03 130.88

w = 4 129.05 1.06 0.40 0.77 0.26 0.05 0.20 0.43 1.15 133.37

w = 8 129.72 1.07 0.97 1.61 0.98 0.20 0.78 0.96 3.82 140.11

w = 11 130.59 1.10 1.44 2.33 1.69 0.32 1.36 1.44 6.18 146.45

Group M

w = 1 125.42 1.25 0.12 0.34 0.15 127.26

w = 4 126.67 1.28 2.06 4.18 1.87 0.51 1.97 2.12 3.48 144.15

w = 8 128.09 1.39 4.78 9.83 6.92 2.08 10.41 4.86 14.83 183.20

w = 11 129.38 1.46 6.08 13.21 9.85 3.39 17.07 6.15 25.14 211.72

Group L

w = 1 130.32 1.06 0.26 0.72 0.33 132.70

w = 4 138.36 1.42 7.93 13.30 7.93 4.82 10.01 11.00 33.10 227.86

w = 8 146.14 1.82 12.59 20.05 15.28 17.94 28.71 20.45 162.76 425.74

w = 11 146.81 1.92 13.27 21.56 13.74 27.77 33.90 22.54 306.31 587.82

T able 3.4: Basic pr ofile of the benchmarks

T able 3.4 sho ws ho w the time sp en t in solving a particular b enc hmark is divided b et w een v arious activities

of Fig.3.1. The time giv en for a sp eci�c activit y is the total time for all w ork ers including the time needed

for lo c king and mo ving o v er the tree. Since there are only a few cuts and commits to public no des in

the b enc hmarks, �gures for these and for pro cessing in terrupts ha v e b een included in the OTHER column

whic h also co v ers the cost of the actual tests and pro cedure calls needed to implemen t the basic lo op of the

sc heduler. T o mak e the times for di�eren t b enc hmarks comparable they are expressed as a p ercen tage of

sequen tial execution time (using SICStus Prolog 0.3), i.e. what could b e considered �real� Prolog w ork.

A few notes on some columns of T able 3.4 follo w.

WORK � The o v erhead (i.e the p ercen tage o v er 100%) app earing in the 1 w ork er case is basically the cost

42

of the SRI binding sc heme. This is roughly prop ortional to the sequen tial execution time v arying b et w een

25% and 30% of the latter. The increase for the case of more w ork ers is due to sev eral factors: increase in

the n um b er of conditional bindings, sp eculativ e w ork, and decrease in gran ularit y (causing some hardw are

related execution o v erheads, e.g. paging or the n um b er of cac he misses, to increase).

CHECK PARALLEL � The time sp en t in c hec king if an y parallel activities need to b e done during w ork is

acceptably small, around 1-2%. The actual time of a single CHECK PARALLEL ev en t is fairly constan t for the

case of 1 w ork er (5-6 � sec), the mark ed di�erence b et w een Group M and the other t w o groups is caused b y

di�erences in a v erage Prolog call times (since this activit y is p erformed p erio dically , ev ery n th pro cedure

call). As the n um b er of w ork ers increases the tests in v olv ed in c hec king parallel duties b ecome more complex

and the a v erage ev en t time increases up to 10 � sec. This explains wh y Group M, ha ving the highest cost for

the 1 w ork er case, is �o v ertak en� b y Group H.

MAKE PUBLIC : : : IDLE � These columns of the table refer to activities related to task switc hing, i.e. to those

along the main lo op of Fig. 3.1: bac ktrac king, lo oking for w ork, returning to w ork. (Although making a

no de public is not itself part of the main lo op, it is a prerequisite for an y tasks to b e created at the giv en

no de.) The table sho ws these o v erheads to increase considerably when the gran ularit y decreases, whic h is

quite natural considering that lo w er gran ularit y means more frequen t execution of the main lo op. The rise

is most sharp for the IDLE column. This column, in fact, di�ers from the previous ones in that the time

sp en t b eing idle dep ends on the amoun t of parallelism a v ailable in the program. Benc hmarks in Group L

are c haracterised b y a rather lo w lev el of parallelism (cf. T able 3.2) whic h causes the sharp increase in the

IDLE column.

AVERAGE TIME per TASK (msec)

Benc h- TASK SWITCHING OVERHEADS IDLE PROLOG

mark EXEC- MAKE BACK- FIND REL. GO TO OTHER TOTAL OVER- CALL

Groups UTION PUBLIC TRACK WORK HEAD (msec)

Group H

w = 1 5863.03 0.12 0.22 0.10 0.44 0.16

w = 4 112.92 0.12 0.18 0.10 0.03 0.07 0.11 0.61 0.31 0.16

w = 8 36.26 0.14 0.20 0.15 0.03 0.13 0.13 0.77 0.46 0.16

w = 11 17.73 0.15 0.20 0.18 0.03 0.15 0.13 0.84 0.52 0.16

Group M

w = 1 418.04 0.07 0.20 0.09 0.37 0.14

w = 4 6.70 0.10 0.18 0.09 0.03 0.10 0.09 0.59 0.17 0.15

w = 8 2.77 0.10 0.20 0.15 0.04 0.22 0.10 0.80 0.31 0.15

w = 11 2.26 0.10 0.22 0.17 0.05 0.29 0.10 0.93 0.41 0.15

Group L

w = 1 39.57 0.09 0.21 0.09 0.39 0.17

w = 4 1.86 0.10 0.18 0.10 0.06 0.13 0.14 0.71 0.42 0.18

w = 8 1.35 0.11 0.19 0.14 0.16 0.26 0.18 1.04 1.45 0.19

w = 11 1.29 0.11 0.19 0.12 0.24 0.29 0.19 1.15 2.64 0.19

T able 3.5: P arallel o verheads per t ask

T o get a clearer picture of the cost of v arious activities, a v erage o v erheads p er task ha v e b een calculated and

sho wn in T able 3.5. Eac h column, except the last, sho ws ho w m uc h time is sp en t in a sp eci�c activit y during

an a v erage task (more exactly during one execution of the main lo op of Fig. 3.1). The EXECUTION column

sho ws the sum of the WORK and CHECK PARALLEL times. By comparing �gures for v arious o v erheads to the

ones in this column one can judge the impact of the giv en o v erhead on the total run time. The follo wing

columns sho w sp eci�c o v erheads � �rst the group of task switc hing o v erheads, and then the IDLE time. The

last column giv es the execution time of a Prolog pro cedure call to help in terpret all the other times in the

table.

The task switc hing o v erheads increase in v arious degree when the n um b er of w ork ers go es up. The cost of

bac ktrac king is quite stable, around 0.2 msec, and there is only a small increase in the cost of making no des

public. Finding w ork tak es ab out 80% more time for 11 w ork ers than for four in Groups H and M, but in

43

Group L this o v erhead sho ws a decrease for 11 w ork ers. This e�ect is due to the fact that as the amoun t

of parallelism runs out, �nding w ork succeeds m uc h less often - and an unsuccessful attempt to �nd w ork

is m uc h c heap er than a successful one. This also explains wh y the cost of releasing w ork is m uc h higher for

Group L than for the other t w o groups: as there is an abundance of idle w ork ers for b enc hmarks in Group

L, m uc h larger prop ortion of tasks is created b y releasing w ork rather than b y �nding w ork. The cost of

going to w ork increases sharply for 4-11 w ork ers, esp ecially for Group M where it almost trebles. The total

of task switc hing o v erheads increases b y 30-60% b et w een 4 and 11 w ork ers � the ma jor con tributors to the

increase b eing: GO TO WORK , FIND WORK (Group H and L) and RELEASE WORK (Group L).

Lo oking at the IDLE column in T able 3.5 it is quite in teresting to note that all �gures except the last t w o

sho w the a v erage idle time b eing b et w een

1

3

and

2

3

of total task switc hing o v erheads. Let us examine to

what exten t this idle time is justi�ed b y the lac k of parallelism in our b enc hmarks. The sim ulation results

(T able 3.2) pro vide us with data on ho w m uc h time w ould b e sp en t idle under ideal conditions (no task

switc hing o v erheads) � let us call this primary idle time. Denoting the full (ideal) run time for N w ork ers

b y T

N

, the primary idle time b y P

N

and the Prolog execution time b y E , the follo wing equations hold:

T

N

=

E + P

N

N

S peedup

N

=

T

1

T

N

=

N � E

E + P

N

since P

1

= 0 , and th us

P

N

E

=

N

S peedup

N

� 1 (3.1)

TOTAL NON PRIMARY

EXECUTION NON TASK IDLE TIME

TIME PRIMARY TOTAL PRIMARY PRIMARY SWITCHING as % of TASK

per TASK IDLE IDLE IDLE TIME IDLE TIME OVERHEAD SWITCHIN G

Group Goals (msec) TIME % AVERAGE TIME per TASK (msec) OVERHEAD

H 8-queens1 19.71 0.36% 0.38 0.07 0.30 1.03 29.55%

parse2 *20 1.66 3.09% 0.61 0.05 0.55 1.18 46.94%

parse4 *5 2.52 1.01% 0.32 0.03 0.29 1.11 26.15%

M parse5 2.98 0.18% 0.20 0.01 0.20 1.29 15.08%

db4 *10 1.64 1.10% 0.25 0.02 0.23 0.48 47.76%

house *20 2.96 4.66% 0.74 0.14 0.60 0.99 60.91%

parse1 *20 1.28 31.42% 1.86 0.40 1.45 1.03 141.00%

L parse3 *20 1.33 26.29% 2.35 0.35 2.00 1.07 186.30%

farmer *100 1.28 142.83% 3.71 1.83 1.87 1.34 139.52%

T able 3.6: Primar y idle time

This means one can calculate the amoun t of primary idle time with resp ect to the execution time if the

ideal sp eed-up is giv en. When the ab o v e form ula (3.1) is applied to the b enc hmarks in T able 3.2, it turns

out that the calculated primary idle time accoun ts for only 5-20% of measured idle time (except for farmer

where it is ab out 50%). The unaccoun ted part v aries from 0.2 msec to 0.6 msec p er task within Groups

H and M, but is 1.5-2 msec p er task in Group L (for 11 w ork ers). One could distinguish b et w een sev eral

reasons for this additional amoun t of idle time:

a. task switc hing o v erheads � b ecause there is a dela y in starting a task due to task switc hing o v erheads,

there will b e a dela y in creating new pieces of w ork within that task, whic h ma y cause other w ork ers

to b ecome idle. One w ould exp ect this kind of idle o v erhead to b e prop ortional to the task switc hing

o v erheads.

b. to o �ne grained parallelism � the sc heduler will not exploit an y parallelism during the �rst few (in our

case 5) calls of a task. In fact this is a desired feature as long as task switc hing o v erheads tak e the

equiv alen t of 5-10 pro cedure calls.

44

c. administration costs � time needed for en tering and exiting the idle state ma y prolong the time sp en t

idle, if that w ould otherwise b e shorter than the time needed for administration.

In Groups H and M the non-primary idle time p er task lies b et w een 15% and 60% of task switc hing o v erheads.

W e b eliev e that this amoun t of idle time could b e justi�ed b y dela ys in task switc hing o v erheads (p oin t a.).

On the other hand, for the b enc hmarks in Group L run with more than four w ork ers a considerable part

of non-primary idle time is caused b y the inabilit y of the sc heduler to explore v ery �ne grained parallelism

(p oin t b. ab o v e), as indicated b y signi�can t decrease in idle time for these b enc hmarks when the frequency

of CHECK PARALLEL is set to 1.

Let us examine some di�erences in the o v erheads within the groups. The a v erages for the total of task

switc hing o v erheads in T able 3.5 do not sho w a signi�can t v ariation b et w een the groups. The totals for

individual b enc hmarks, ho w ev er, v ary considerably , ranging from 0.48 msec (db4) to 1.34 msec (farmer)

for 11 w ork ers. Detailed analysis of our p erformance data [9] sho ws that the time needed for ma jor sc heduling

ev en ts (suc h as MAKE PUBLIC , FIND WORK) is fairly constan t

4

. The fr e quency of these ev en ts (i.e. ho w often

do es a sp eci�c ev en t o ccur during a task) v aries considerably , and so this is the main cause of the di�erences

in total task switc hing costs.

The frequency of sc heduling ev en ts (other than bac ktrac king) is strongly related to the branc hing factor of

the public tree, i.e. the a v erage n um b er of branc hes b elo w public no des. As con�rmed b y the measuremen ts,

the bigger the n um b er of branc hes, the greater is the c hance that public bac ktrac king leads to a liv e no de,

th us reducing the need for going through the FIND - RELEASE - GO TO WORK lo op.

Let us summarise the results of the this section. The total run time of a program in Aurora can b e split up

in to the follo wing comp onen ts:

run time = exe cution time + task switching overhe ads + id le time

where

exe cution time = se quential exe cution time + exe cution overhe ads

The exe cution_overhe ads are prop ortional to the se quential_exe cution_time (roughly 25-30%, except for

the v ery �ne gran ularit y b enc hmarks). The task_switching_overhe ads are prop ortional to the n um b er of

tasks: 0.5-1.5 msec p er task (for 11 w ork ers), dep ending up on the branc hing factor of the searc h tree. Finally

id le time is in�uenced b y sev eral factors: the theoretical amoun t of parallelism a v ailable in the program (cf.

primary idle time), dela ys in creation of w ork due to the task switc hing o v erheads and the gran ularit y of

a v ailable parallelism (to o �ne grained parallelism is to o exp ensiv e to b e exploited with the curren t sc heduler).

The �rst t w o factors seem to b e relev an t to the medium-coarse gran ularit y programs (the non-primary part

of the idle time b eing ab out 15-60% of task switc hing o v erheads), while for the �ne gran ularit y examples the

third factor gains crucial imp ortance.

Let us no w turn to the question of discrepancies b et w een sim ulator predictions and actual measuremen ts.

As sho wn in T able 3.5 the group a v erage of total task switc hing o v erheads go es up to the equiv alen t of ab out

6 Prolog calls (reac hing 7 calls for some of the individual b enc hmarks). A t the same time the sp eed-ups

are signi�can tly w orse than the ones predicted b y the sim ulator for the o v erhead of 8 resolution time units

(T able 3.2). One of the main reasons for this di�erence in sp eed-ups is the fact that the sim ulator has a

di�eren t notion of a task : when a w ork er bac ktrac ks to a liv e shared no de and is able to pic k up a new branc h

at that no de, then the w ork done on the new branc h will not b e treated as a new task b y the sim ulator.

More imp ortan tly the basic sc heduling algorithm causes some subtrees that are nev er shared to b e split in to

sev eral tasks. This is b ecause eac h w ork er tries to k eep a liv e no de public on its branc h and so ma y mak e

no des public unnecessarily . A re�nemen t of the sc heduling algorithm, lazy release of w ork, whic h aims at

a v oiding this b eha viour, is outlined in Section 3.7.

3.6 Lo c king and mo ving o v erheads

Lo c ks are used within the Aurora implemen tation to sync hronise v arious activities of w ork ers exploring the

Prolog searc h tree in parallel. Lo c king is needed when extending or shrinking the public part of the tree and

also when up dating v arious sub�elds of the sc heduler data structures, e.g. bit-maps in the no des, in terrupt

message areas in the w ork er data structures etc. The standard lo c king macros are used as pro vided b y the

D YNIX op erating system. These macros in v olv e a busy w aiting lo op if the lo c k is held b y another w ork er.

4

with the exception of GO TO WORK for parse5 , see Section 3.6 for details.

45

TOTAL LOCKING TIME

Benc h- MAKE BACK- FIND REL. GO TO OTHER IDLE TOTAL as % of

mark PUBL. TRACK WORK OVERHEAD FULL RUN

Groups Average locking time (� sec) TIME TIME

Group H

w = 1 4 4 4 4.95% 0.02%

w = 4 4 7 5 6 6 7 7 6 6.00% 0.19%

w = 8 4 8 5 8 5 9 16 7 6.51% 0.51%

w = 11 4 11 6 8 6 9 16 8 6.94% 0.82%

Group M

w = 1 5 4 5 4.29% 0.02%

w = 4 4 5 5 6 6 7 5 6.07% 0.68%

w = 8 4 8 6 7 6 15 7 6.86% 1.94%

w = 11 4 8 7 8 7 18 8 7.02% 2.59%

Group L

w = 1 4 4 4 4.11% 0.04%

w = 4 4 8 6 6 7 10 7 7 7.10% 2.68%

w = 8 4 12 8 7 9 14 14 10 7.31% 4.65%

w = 11 4 14 10 7 9 21 21 12 6.96% 5.13%

T able 3.7: Locking st a tistics

In the instrumen ted v ersion of Aurora the time needed for acquiring lo c ks has b een accum ulated separately

within eac h of the activities of Fig. 3.1. This pro v ed to b e extremely useful in iden tifying those activities

where the congestion of w ork ers comp eting for lo c ks w as the biggest. Some algorithms within the Manc hester

sc heduler ha v e b een rewritten to a v oid holding lo c ks for unnecessarily long time and a restricted use has

b een made of the sp eci�c atomic op erations pro vided b y the 80386 pro cessor to a v oid lo c king. This help ed

to reduce the a v erage lo c king time to b elo w 10 � sec for most of examples as sho wn in T able 3.7.

The �rst part of T able 3.7 giv es the a v erage lo c king time within eac h of the main activities of Fig. 3.1 and

the a v erage of all lo c king times (the TOTAL column). Some �elds are left empt y � this means there are no

lo c king op erations within the giv en activit y for the giv en n um b er of w ork ers. The minim al time required to

grab a lo c k is ab out 4 � sec, the di�erence b et w een that and the �gures sho wn is the time sp en t in the busy

w aiting lo op. The �gures in the table indicate that there is still some congestion in bac ktrac king and in the

idle activities.

In the second part of T able 3.7 the p ercen tage of total lo c king time is sho wn b oth within the total (task

switc hing and idle) o v erhead time and within the full run time. It is quite reassuring to note that ev en in

the w orst case of Group L, w=11, just 5% of total run time is sp en t in lo c king, and only

2

3

of that is sp en t

in the busy w aiting lo op (8 � sec out of the a v erage 12 � sec lo c king time).

T able 3.8 sho ws v arious data on migration (binding arra y up date) costs. F or the purp ose of this table

parse5 has b een excluded from Group M and has b een sho wn separately , as it exp oses one of the w eak

p oin ts of the Manc hester sc heduler.

The �rst part of the table sho ws the p ercen tage of time sp en t up dating binding arra ys within v arious

o v erhead categories, of whic h, naturally , GO TO WORK is the most signi�can t. The next t w o columns refer to

this sp eci�c category: the n um b er of mo v es (n um b er of no des stepp ed through) and the migration time for

an a v erage GO TO WORK ev en t. This is follo w ed b y the n um b er of bindings that ha v e to b e handled during

one a v erage mo v e, while the last t w o columns giv e the p ercen tage of migration time within total o v erhead

time and within the full run time.

The group a v erages in T able 3.8 sho w that the o v erall e�ect of migration costs is not v ery signi�can t: it

accoun ts for at most 10% of total o v erheads and at most 5% of full run time. The data for parse5 is more

alarming: almost 30% of o v erhead time is due to migration costs. The cause of this lies in a rather sp ecial

shap e of the searc h tree of parse5 : it has t w o long branc hes with rather small amoun ts of w ork app earing

on b oth of these from time to time. A w ork er lo oking for w ork ma y �nd that the only piece of w ork a v ailable

at that v ery momen t is on the other branc h, in whic h case it will pic k up that piece of w ork, irresp ectiv e of

46

MIGRATIO N TIME within GO TO WORK MIGR. TOTAL MIGR. TIME

Benc h- BACK- GO TO OTHER IDLE number MIGR. BINDs as % of

mark TRACK WORK of TIME per OVERHEAD FULL RUN

Groups % of full time of the overhead MOVES (msec) MOVE TIME TIME

Group H

w = 1 5.12% 2.62% 0.00%

w = 4 7.50% 30.58% 0.50% 1.99% 4.40 0.06 0.46 4.49% 0.10%

w = 8 7.81% 31.22% 0.42% 1.42% 6.41 0.07 0.49 4.94% 0.28%

w = 11 7.77% 31.04% 0.62% 1.15% 6.77 0.08 0.49 5.14% 0.43%

Group M'

w = 1 3.17% 1.75% 0.01%

w = 4 8.74% 41.48% 5.63% 3.94 0.10 1.34 8.03% 0.98%

w = 8 8.57% 42.65% 4.71% 6.47 0.17 1.57 10.41% 3.29%

w = 11 8.14% 41.99% 4.32% 7.60 0.20 1.56 10.37% 4.18%

parse5

w = 1 2.79% 1.56% 0.00%

w = 4 13.50% 61.21% 13.63% 8.54 0.29 3.66 19.00% 1.48%

w = 8 12.41% 60.76% 10.91% 12.53 0.44 3.66 22.63% 5.94%

w = 11 9.59% 62.35% 15.99% 14.20 0.68 3.55 28.01% 9.36%

Group L

w = 1 2.60% 1.42% 0.01%

w = 4 9.05% 43.21% 0.97% 5.79% 4.00 0.10 1.71 8.78% 3.08%

w = 8 8.81% 42.28% 1.19% 3.08% 5.28 0.14 1.73 7.30% 4.50%

w = 11 8.28% 42.67% 1.17% 2.17% 5.22 0.15 1.78 5.67% 4.09%

T able 3.8: Migra tion costs

the distance. A more re�ned sc heduling algorithm could start mo ving to w ards a v ery distan t piece of w ork

without actually reserving it and could rev erse its decision if a new piece of w ork app ears nearb y .

3.7 T uning the Manc hester sc heduler

Three re�nemen ts of the Manc hester sc heduling algorithm, aimed at increasing task size and reducing task

switc hing costs, ha v e b een ev aluated in the expanded v ersion [9] of the presen t pap er. Tw o of these ha v e

b een found b ene�cial: lazy release of w ork (no des not b eing made public if there are no idle w ork ers)

and straigh tening (the tree structure b eing simpli�ed b y remo ving dead non-fork no des as describ ed in [11]).

There is up to 10% impro v emen t in sp eed after these t w o re�nemen ts ha v e b een applied as sho wn in T able 3.9,

in spite of some shortcomings of their presen t implemen tation.

3.8 Conclusions

The Manc hester v ersion of the Aurora or-parallel Prolog system has b een ev aluated on a div erse set of

b enc hmarks for up to elev en pro cessors. The main comp onen ts of the implemen tatio n ha v e b een iden ti�ed

and the system has b een instrumen ted to collect b oth time and frequency data for these comp onen ts.

The analysis of the p erformance data con�rms the correctness of main design decisions of Aurora. The SRI

binding sc heme is sho wn to imp ose a constan t o v erhead of ab out 30% on the sequen tial execution time. The

migration costs of up dating binding arra ys, whic h w ere feared to b e a ma jor source of o v erhead, pro v ed to

constitute a rather small prop ortion of total o v erheads for most of the b enc hmarks.

The costs asso ciated with sync hronisation using lo c ks ha v e also b een examined. The pro�ling data has

b een used to lo cate and eliminate those parts of the sc heduling algorithm where the congestion of w ork ers

47

Workers

Goals * rep etitions 1 4 8 11

8-queens1 11.47 2.87 (4.00) 1.45 (7.91) 1.07 (10.7)

8-queens2 32.72 8.30 (3.94) 4.17 (7.85) 3.06 (10.7)

tina 23.74 6.22 (3.82) 3.26 (7.28) 2.49 (9.54)

sm2 *10 13.56 3.45 (3.93) 1.80 (7.53) 1.35 (10.0)

A VERA GE (3.92) (7.64) (10.2)

parse2 *20 10.18 3.21 (3.17) 2.18 (4.68) 1.97 (5.17)

parse4 *5 9.47 2.58 (3.67) 1.83 (5.18) 1.49 (6.36)

parse5 6.72 1.90 (3.54) 1.28 (5.26) 1.08 (6.22)

db4 *10 3.62 0.98 (3.70) 0.55 (6.60) 0.44 (8.25)

db5 *10 4.42 1.18 (3.75) 0.68 (6.50) 0.54 (8.17)

house *20 9.13 2.54 (3.60) 1.46 (6.26) 1.18 (7.76)

A VERA GE (3.57) (5.74) (6.99)

parse1 *20 2.72 0.99 (2.75) 0.83 (3.28) 0.87 (3.13)

parse3 *20 2.32 0.93 (2.50) 0.80 (2.91) 0.80 (2.91)

farmer *100 5.33 2.58 (2.07) 2.49 (2.14) 2.47 (2.16)

A VERA GE (2.44) (2.78) (2.73)

T able 3.9: Timing resul ts with straightening and lazy release

comp eting for lo c ks w as highest. In the new system, lo c king accoun ts for only ab out 6-7% of total o v erhead

time, increasing only sligh tly for more w ork ers.

There is a signi�can t administrativ e o v erhead asso ciated with task switc hing, whic h is equiv alen t to 4�7

Prolog calls p er task. This puts a relativ ely high burden on programs with small task size. F urthermore

there is a signi�can t amoun t of idle time whic h cannot b e explained b y lac k of parallelism. W e b eliev e that

this part of the idle time is caused b y dela ys in creation of w ork due to earlier task switc hing o v erheads.

Consequen tly task switc hing, and esp ecially public bac ktrac king, seems to b e the ma jor source of o v erhead

in the or-parallel execution.

Sev eral w a ys of reducing the task switc hing costs can b e en visaged, in addition to the re�nemen ts outlined

in Section 3.7. The unit cost of task switc hing could b e reduced b y simplifying and tuning the sc heduling

algorithm. The engine-sc heduler in terface could b e mo di�ed to allo w the engine to explore sev eral branc hes

of a public no de within a single task, a v oiding some administrativ e costs of exiting and reen tering the

engine. Finally , the recen t results of the BC-mac hine pro ject [1] indicate that dispatc hing on b ottommost

(i.e. releasing w ork at the y oungest no de on a w ork er's stac k) ma y result in signi�can t reduction in task

switc hing costs.

3.9 Ac kno wledgemen ts

The author w ould lik e to thank his colleagues in the Gigalips pro ject at Argonne National Lab oratory , the

Sw edish Institute of Computer Science, and the Univ ersit y of Bristol. Thanks are due in particular to Alan

Calderw o o d and Da vid W arren.

The w ork w as supp orted b y the UK Science and Engineering Researc h Council and b y the ESPRIT pro ject

PEPMA.

References

[1] Kha yri Ali. Or-parallel execution of Prolog on BC-Mac hine. SICS Researc h Rep ort, Sw edish Institute

of Computer Science, 1987.

[2] P er Brand. W a v efron t sc heduling. In ternal Rep ort, Gigalips Pro ject, 1988.

48

[3] Ralph Butler, T erry Disz, Ewing Lusk, Rob ert Olson, Ross Ov erb eek, and Ric k Stev ens. Sc heduling

OR-parallelism: an Argonne p ersp ectiv e. In L o gic Pr o gr amming: Pr o c e e dings of the Fifth International

Confer enc e , pages 1590�1605. The MIT Press, August 1988.

[4] Alan Calderw oo d and Péter Szeredi. Sc heduling or-parallelism in Aurora � the Manc hester sc heduler.

In Pr o c e e dings of the Sixth International Confer enc e on L o gic Pr o gr amming , pages 419�435. The MIT

Press, June 1989.

[5] Ewing Lusk, Da vid H. D. W arren, Seif Haridi, et al. The Aurora or-parallel Prolog system. In Interna-

tional Confer enc e on Fifth Gener ation Computer Systems 1988 , pages 819�830. ICOT, T oky o, Japan,

No v em b er 1988.

[6] Kish Shen. An in v estigation of the Argonne mo del of or-parallel Prolog. Master's thesis, Univ ersit y of

Manc hester, 1986.

[7] Kish Shen. P ersonal comm uni cation, Octob er 1988.

[8] Péter Szeredi. More b enc hmarks of Aurora. In ternal Rep ort, Gigalips Pro ject, Marc h 1988.

[9] Péter Szeredi. P erformance analysis of the Aurora or-parallel Prolog system. T ec hnical Rep ort TR-89-14,

Univ ersit y of Bristol, 1989.

[10] Péter Szeredi. P erformance analysis of the Aurora or-parallel Prolog system. In Pr o c e e dings of the

North A meric an Confer enc e on L o gic Pr o gr amming , pages 713�732. The MIT Press, Octob er 1989.

[11] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

49

Chapter 4

Flexible Sc heduling of Or-parallelism in

Aurora: The Bristol Sc heduler

1

An thon y Beaumon t, S Muth u Raman

2

, Péter Szeredi

3

and Da vid H D W arren

Departmen t of Computer Science, Univ ersit y of Bristol,

Bristol BS8 1TR, U.K.

Abstract

Aurora is a protot yp e or-parallel implem en tation of the full Prolog language for shared memory

m ultipro cessors, based on the SRI mo del of execution. It consists of a Prolog engine based on

SICStus Prolog and sev eral alternativ e sc hedulers. The task of the sc hedulers is to share the w ork

a v ailable in the Prolog searc h tree

This pap er describ es the Bristol sc heduler. Its distinguishing feature is that w ork is shared at the

b ottom of partially explored branc hes (�dispatc hing on b ottom-most�). This can b e con trasted with

the earlier sc hedulers, whic h use a �dispatc hing on topmost� strategy . W e argue that dispatc hing

on b ottom-most can lead to go o d p erformance, b y reducing the o v erheads of sc heduling.

Our approac h has b een to �nd the simplest sc heduler design whic h could ac hiev e p erformance

comp etitiv e with earlier more complex sc hedulers. This design giv es us a �exibilit y in deciding

strategies for sharing w ork and allo ws us to examine w a ys of impro ving the p erformance on b oth

non-sp eculativ e and sp eculativ e w ork. W e note that in sp eculativ e regions the priorit y of some w ork

is higher than others. W e ha v e in v estigated strategies whic h help w ork ers to a v oid lo w priorit y w ork.

W e presen t the basic design of the Bristol sc heduler, discussing the data structures and the main

algorithms. W e also presen t p erformance results for the new sc heduler using a n um b er of b enc hmark

programs and large applications. W e sho w that the p erformance of the Bristol sc heduler compares

fa v ourably with other sc hedulers. Our w ork also sho ws that sp ecial treatmen t of sp eculativ e w ork

leads to impro v ed p erformance.

Keyw ords: Implemen tation, Or-parallelism, Multipro cessors, Sc heduling.

4.1 In tro duction

Aurora is a protot yp e or-parallel implemen tatio n of the full Prolog language for shared-memory m ultipro-

cessors, curren tly running on Sequen t and Encore mac hines. It has b een dev elop ed in the framew ork of

1

This pap er has app eared in the pro ceedings of P ARLE'91 [3]

2

Visiting fr om National Cen tre for Soft w are T ec hnology , Gulmohar Cross Road 9, Juh u, Bom ba y 400 049, India

3

On le ave fr om SZKI, IQSOFT, Donáti u. 35�45, Budap est, Hungary

50

the Gigalips pro ject, a collab orativ e e�ort b et w een groups at Argonne National Lab oratory , Univ ersit y of

Bristol, and the Sw edish Institute of Computer Science (SICS). A full description of Aurora can b e found

elsewhere [9].

Aurora is based on the SRI mo del [14] in whic h or-parallel execution of Prolog programs consists of the

exploration of a searc h tree in parallel b y a n um b er of workers . A w ork er is de�ned as an abstract pro cessing

agen t. During execution, a tree of no des is created, where eac h no de represen ts a Prolog c hoicep oin t. A

w ork er will b egin w orking on a task b y taking an alternativ e from a no de, creating a new arc of the tree.

The task will b e explored in the normal sequen tial Prolog manner, and will end when the w ork er runs out

of w ork. The w a y w ork ers mo v e around the tree and comm uni cate with eac h other in order to �nd tasks is

determined b y some sche duling str ate gy .

Branc hes of the tree are extended during resolution and destro y ed on bac ktrac king. A ma jor problem

in tro duced b y or-parallelism is that some v ariables ma y b e sim ultaneously b ound b y w ork ers exploring

di�eren t branc hes of the tree. The SRI mo del dictates that eac h w ork er will main tain a binding arr ay to

hold the bindings asso ciated with its curren t branc h. W e can sa y that a w ork er is p ositione d at a no de, when

its binding arra y holds the bindings asso ciated with the path b et w een the ro ot and the giv en no de. Mo ving

up a branc h in v olv es remo ving bindings, while mo ving do wn in v olv es adding bindings to the binding arra y .

In Aurora the searc h tree is divided in to public and private regions, the b oundary b et w een the t w o b eing

mark ed b y a sentry no de . Priv ate regions con tain no des whic h are explored b y a single w ork er, and for

w ork ers to b e able to share w ork at a no de, that no de has to b e made public. Another distinction is that

no des can b e either p ar al lel or se quential through user declarations. Alternativ es from sequen tial no des can

only b e executed one at a time. W e can also think of eac h no de as b eing either live (i.e. ha ving unexplored

alternativ es) or de ad (no alternativ es to explore). A no de is called a fork no de if it has more than one c hild.

An Aurora w ork er consists of t w o comp onen ts: the engine , whic h is resp onsible for executing the Prolog co de

and the sche duler , resp onsible for �nding w ork in the tree and for sync hronising with other w ork ers. There is a

strict in terface b et w een these comp onen ts [13] whic h enables indep enden t dev elopmen t of di�eren t sc hedulers.

Aurora execution is go v erned b y the engine: whenev er the engine runs out of w ork in its priv ate region it

will ask the sc heduler to �nd more; a pro cess called task switching . The Aurora engine is based on SICStus

Prolog v ersion 0.6 whic h has b een extended to comply with b oth the SRI mo del and the engine/sc heduler

in terface.

4.2 Sc heduling Strategies

W e no w discuss the problem of �nding a new task for a w ork er whic h has run out of w ork. W e ha v e already

stated that w ork can only b e tak en from public no des, therefore idle w ork ers m ust �nd a liv e, parallel, public

no de. If w e assume that initially all w ork is public then w e could allo w idle w ork ers to searc h the tree to

�nd w ork. This will allo w w ork to b e found from an y branc h but not without some cost. An idle w ork er

ma y ha v e to searc h a large n um b er of no des b efore w ork is found, and also the searc h will require some

sync hronisation to a v oid searc hing branc hes as they are b eing reclaimed b y bac ktrac king w ork ers.

T o fo cus the searc h in to areas of the tree where w ork ma y b e more lik ely to b e found w e could searc h only

those branc hes whic h are curren tly b eing extended b y busy w ork ers. Selected w ork ers could b e scanned to

assess whether the branc h they are w orking on con tains w ork or not.

W e should note ho w ev er that a branc h can b e explored quic k er b y a single w ork er if that w ork er k eeps the

task priv ate, rather than making some or all of it public. This indicates that if all w ork ers are busy then

there is no reason to mak e w ork public and therefore it w ould b e b etter to assume that initially all w ork is

priv ate and that w ork ers mak e w ork public on demand only .

F ollo wing this approac h, an idle w ork er searc hing for a new task migh t select a w ork er whic h has priv ate w ork

and ask it to share some or all of it. W e m ust remem b er ho w ev er that searc hing for w ork only on branc hes

whic h are curren tly b eing explored assumes that all liv e no des ha v e at least one busy w ork er p ositioned

b elo w them, if this assumption is not true, some no des will b ecome inaccessable.

Another consideration is whic h of the a v ailable tasks an idle w ork er should prefer. When earlier sc hedulers

w ere designed it w as though t that a w ork er should k eep most of its w ork priv ate to mak e its task as large as

p ossible. Only the topmost task w as made a v ailable to other w ork ers. If the busy w ork er k ept the topmost

task public and that task w as not quic kly exhausted then the w ork er w ould not b e in terfered with as it

explored the rest of the branc h. This is kno wn as topmost disp atching .

51

An alternativ e strategy in v estigated in this pap er is b ottom-most disp atching when w ork is shared at the

b ottom of partially explored branc hes and w e will discuss this later.

4.2.1 T opmost dispatc hing sc hedulers for Aurora

There w ere three earlier sc hedulers for Aurora, all using topmost dispatc hing.

The Argonne sc heduler [5] uses lo cal information that is main tained in eac h no de to indicate whether there

is w ork a v ailable b elo w the no de. W ork ers searc h the tree, using this lo cal information to migrate to w ards

regions of the tree where w ork is a v ailable. The w ork ers alw a ys tak e the topmost task from a branc h since

this is alw a ys the �rst task found as they mo v e do wn. A bitmap in eac h no de indicates whic h w ork ers are

p ositioned at or b elo w the no de and w ork ers are required to up date these bitmaps as they mo v e around the

tree. Information in the bitmaps can b e used to lo cate other w ork ers, for example in the case of pruning

a subtree it is necessary to inform the w ork ers whic h are p ositioned in that subtree that they ha v e b een

pruned.

The Manc hester sc heduler [6] tries to matc h idle w ork ers with the nearest a v ailable outstanding task, where

�nearness� is measured b y the n um b er of bindings to b e up dated b et w een the w ork er's curren t p osition

and the a v ailable w ork. Minimising the distance b et w een w ork er and task means that the w ork er will not

consider an y task b elo w the topmost one on eac h branc h. Again bitmaps are emplo y ed to mark the presence

of w ork ers on a branc h. The Manc hester sc heduler uses them b oth for matc hing idle w ork ers to a v ailable

w ork and for lo cating w ork ers during pruning.

The W a v efron t sc heduler [4] emplo ys a data structure kno wn as the w a v efron t whic h links all the topmost

liv e no des together. W ork ers �nd w ork b y tra v ersing the w a v efron t. As no des are exhausted the w a v efron t

is extended to allo w access to the next liv e parallel no de.

T opmost dispatc hing, used b y all of these sc hedulers, has the disadv an tage that unless the topmost task

is large it will b e quic kly exhausted and the w ork er will ha v e to rep eat its searc h for w ork. This leads to

relativ ely high task switc hing costs for �ne gran ularit y programs and also slo ws do wn the busy w ork ers since

they ha v e to sp end more time main taini ng a liv e public no de at the top of their branc h.

4.2.2 The Muse Sc heduler

Another approac h to the or-parallel implem en tation of Prolog is the Muse system [1][2] whic h is based

on ha ving sev eral sequen tial Prolog engines, eac h with lo cal address space and some shared memory space.

W ork ers in Muse cop y eac h other's state rather than sharing it as is the case in Aurora. P oten tially increasing

the o v erheads in v olv ed in task switc hing. Therefore Muse requires a w a y of reducing the frequency of task

switc hes in v olving cop ying.

The Muse sc heduler uses b ottom-most dispatc hing, so that a busy w ork er, when in terrupted for w ork, will

share all no des on its branc h. This allo ws an idle w ork er to b egin w ork at the b ottom-mo st of these no des.

The adv an tage of this strategy is that once the w ork at the b ottom-most no de is exhausted, more w ork

can b e found b y simply bac ktrac king to the next liv e parallel no de, further up the branc h. Bac ktrac king

to a public no de is more exp ensiv e than bac ktrac king to a priv ate one, ho w ev er these minor task switc hes

are m uc h less exp ensiv e than the major task switc hes whic h require a wider searc h for w ork. It has b een

found that b ottom-most dispatc hing can reduce sc heduling o v erheads b y increasing the n um b er of minor

task switc hes and reducing the n um b er of ma jor task switc hes.

T o help an idle w ork er decide whic h busy w ork er to in terrupt for w ork, Muse in tro duces the concept of

richness . Eac h branc h of the tree has an asso ciated ric hness, whic h is an estimate of the amoun t of w ork on

that branc h. In the m use system, ric hness is based on the n um b er of unexplored alternativ es on the branc h.

An idle w ork er will c ho ose a busy w ork er from the subtree b elo w the idle w ork er's curren t no de, the c hoice

of w ork er dep ends on the ric hness of eac h busy w ork er's branc h. The idle w ork er will in terrupt the w ork er

whic h is w orking on the ric hest branc h, ie. has the most w ork to share, whic h will further help in increasing

the ratio of minor to ma jor task switc hes.

52

4.3 Principles of the Bristol sc heduler

In designing the Bristol sc heduler w e to ok in to consideration the results from p erformance analyses of earlier

sc hedulers and used this information to try and incorp orate the b est features of other sc hedulers in to our

design.

A p erformance analysis of the Manc hester sc heduler [12] indicated that the migration of w ork ers to new tasks

w as not a signi�can t o v erhead and that m uc h more imp ortan t w as the administrativ e o v erhead asso ciated

with task switc hing, estimated to b e equiv alen t to 4-7 Prolog calls p er task. The conclusions of this analysis

are that simplifyi ng the sc heduling algorithm and tuning the sc heduler could reduce the costs of task switc hing

and, more imp ortan tly , minim ise the n um b er of ma jor task switc hes. Keeping this in mind w e ha v e tried to

k eep the design of the Bristol sc heduler as simple as p ossible.

One of the requiremen ts of the Bristol sc heduler is that it should b e �exible enough for us to try di�eren t

sc heduling strategies and this will allo w us to compare b ottom-most and topmost dispatc hing using the

same sc heduler. Ho w ev er, based on the go o d results of the Muse sc heduler, w e decided to use b ottom-most

dispatc hing as the default strategy . The k ey o v erhead in earlier Aurora sc hedulers is the ma jor task switc h.

If b ottom-most dispatc hing reduces the n um b er of ma jor task switc hes, and if minor task switc hes are not

v ery exp ensiv e then the total sc heduling o v erheads will b e reduced.

A second reason for using the b ottom-most dispatc hing strategy is its suitabilit y for sc heduling sp e culative

w ork. This is illustrated b y the follo wing program:

p:- condition, !, pred1.

p:- pred2.

All w ork in the second clause is said to b e sp eculativ e b ecause if c ondition succeeds then the second branc h

will b e pruned a w a y . In tuitiv ely , it w ould seem b etter to direct w ork ers to help in ev aluating c ondition ,

rather than pr e d2 . Similarly , one w ould w an t to giv e higher priorit y to w ork whic h is further to the left

within c ondition [7]. Therefore, in a sp eculativ e subtree the deep est w ork on the left-hand branc h is the

least sp eculativ e and should ha v e the highest priorit y .

Earlier sc hedulers could not handle sp eculativ e w ork at all e�ectiv ely . Our aim is to implemen t an e�ectiv e

sp eculativ e sc heduling tec hnique within the Bristol sc heduler. The b ottom-most dispatc hing strategy helps

in directing w ork ers to deep er regions of the searc h tree but this is not su�cien t on its o wn as a sc heduling

strategy since the deep er branc hes ma y not b e the least sp eculativ e. What w e require is some w a y of

concen trating w ork ers in the leftmost region of a sp eculativ e subtree.

This suggests that rather than rely on taking w ork from busy w ork ers, idle w ork ers w ould need to scan a

sp eculativ e subtree to �nd the least sp eculativ e a v ailable w ork. Our design allo ws us to exp erimen t with

suc h a strategy .

A problem with b ottom-most dispatc hing is that it increases the size of the public region of the tree and

bac ktrac king through this region (public b acktr acking) is more exp ensiv e than priv ate bac ktrac king. W e will

try to analyse the e�ect of this problem b y comparing b ottom-mo st and topmost dispatc hing strategies using

the Bristol sc heduler.

4.4 Implemen tatio n of the Bristol sc heduler

During this section w e will discuss some of the issues in v olv ed in the implemen tatio n of the Bristol sc heduler.

4.4.1 Data structures

W e include the notion of ric hness in tro duced b y the Muse sc heduler and use an estimate of the n um b er of

liv e no des on a branc h as the ric hness of eac h branc h. Actually , eac h no de is giv en a ric hness whic h is an

estimate of ho w man y liv e no des there are ab o v e it.

Primarily a w ork er w an ts to kno w if another w ork er has w ork a v ailable and m ust b e able to send a message

to it, for example, to ask for w ork. In our implem en tation, eac h w ork er has a message area, enabling other

53

w ork ers to send messages to it, and a record of the ric hness of its curren t branc h whic h can b e read b y other

w ork ers.

T o giv e some indication of a w ork er's p osition in the tree, eac h w ork er has an asso ciated r o ot no de, whic h is

de�ned to b e the ro ot of the subtree in whic h that w ork er is leftmost. Initially , this is equal to the w ork ers'

sen try no de when it �rst starts w ork. The iden ti�er of the w ork er is stored in its ro ot no de, and that w ork er

will b e kno wn as the owner of the no de. All no des subsequen tly created will con tain a p oin ter (so called r o ot

p ointer) to that w ork ers' ro ot no de.

A w ork er's ro ot ma y c hange due to the actions of other w ork ers in bac ktrac king. When a w ork er bac ktrac ks

to a fork no de from the �rst c hild, lea ving another w ork er b elo w, then the bac ktrac king w ork er m ust mo v e

the ro ot of the remaining w ork er up the tree to re�ect the c hange. This is illustrated in Figure 4.1 where

w ork er A bac ktrac ks out of the left subtree, lea ving w ork er B as the new leftmost w ork er (the letters in the

ro ot no des sho w the iden tit y of the w ork er they b elong to). In this case, w ork er A will put B's iden tit y in to

its old ro ot and mak e that no de the new ro ot of w ork er B. B's old ro ot has its ro ot p oin ter set to p oin t to

the new ro ot.

A

B

Worker A

Worker B

B

Live parallel node

Parent Pointer

Worker A

Worker B

B

Root node with
worker id.

Root pointer

Figure 4.1: W orker A ba cktra cking to a f ork node

In a sp eculativ e region w e will w an t to �nd the leftmost (least sp eculativ e) task, and therefore will need

some w a y of searc hing a subtree from left to righ t. By follo wing the ro ot p oin ters to a ro ot no de and �nding

its o wner, w e ha v e a w a y of �nding the leftmost w ork er in an y subtree, and w e can also tell if that w ork er

has w ork a v ailable. T o con tin ue searc hing for w ork, a w ork er requires some w a y of �nding the b ottom of the

leftmost branc h and mo ving righ t. Eac h w ork er main tains a p oin ter to its sen try no de whic h marks the leaf

of the public branc h. After iden tifying the o wner of a ro ot no de and if that w ork er has no priv ate w ork then

the w ork er's sen try no de p oin ter is used as a w a y of gaining access to the b ottom of that w ork er's branc h.

The o wners iden tit y in a ro ot no de acts as a le af p ointer .

In order to simplify the further searc h for w ork the notion of right p ointer is in tro duced. This is illustrated

in Figure 4.2 where w e can see ho w the tree is organised. The righ t p oin ter p oin ts to the next sibling, if there

is one. F or the righ tmost c hild of a liv e no de the righ t p oin ter will p oin t to itself, indicating the p oten tial

w ork presen t there. F or the righ tmost c hild of a dead no de the righ t p oin ter will p oin t up w ards to the �rst

ancestor whic h has either a righ t sibling or a liv e paren t.

W e use a �ag to indicate that the righ t p oin ter of a no de p oin ts to a righ t sibling and not to some other

no de. Using the ro ot, leaf and righ t p oin ters a w ork er can searc h around the tree from left to righ t. This

metho d of linking the no des of a tree to allo w left to righ t tra v ersal w as tak en from the data structure used

in Andorra-1 for main taining the goal list [10].

4.4.2 Lo oking for w ork

The engine will hand o v er con trol to the sc heduler when the w ork er bac ktrac ks to its sen try no de and the

sc heduler will b e resp onsible for �nding w ork in the public region of the tree. W e are exploring t w o di�eren t

54

A

B

C

Worker A

Worker B

Worker C

B

Live parallel node

Right Pointer

Parent Pointer

Root node with
worker id.
(leaf pointer)

Root pointer

Figure 4.2: Or ganisa tion of the tree

strategies whic h the sc heduler will use to �nd w ork, the richest worker strategy and the left-to-right se ar ch

strategy .

4.4.2.1 The ric hest w ork er strategy

F ollo wing the ric hest w ork er strategy , the sc heduler will attempt to �nd w ork in t w o w a ys; Firstly it will

bac ktrac k through the no des ab o v e the w ork er's curren t p osition to see if an y w ork can b e found nearb y . If

a liv e parallel no de can b e found then the sc heduler tak es an alternativ e from it and returns con trol bac k to

the engine to restart w ork. If no w ork can b e found then the other w ork ers will b e scanned to see if they

ha v e w ork a v ailable. The idle w ork er will iden tify the w ork er whic h is w orking on the ric hest branc h and

in terrupt it for w ork. That w ork er will then mak e all of its priv ate no des public and the idle w ork er can

b egin w ork at the b ottom of that branc h. Note that the n um b er of no des b eing made public is �exible in

that w e could limit this n um b er and therefore b ottom most dispatc hing need not necessarily b e used.

This strategy has the adv an tage that w ork is made public only on demand, so if a w ork er is not in terrupted

for w ork it will not mak e an y no des public. W ork ers ma y ha v e to migrate further when taking w ork from

another w ork er. W e hop e that the b ottom-most dispatc hing strategy will minim ise the n um b er of ma jor

task switc hes, and most w ork will b e found quic kly from a no de just ab o v e the w ork ers curren t p osition.

4.4.2.2 Left to righ t searc h

W e w an t to get some indication of ho w m uc h can b e gained b y treating sp eculativ e w ork di�eren tly from non-

sp eculativ e w ork and ha v e explored an alternativ e strategy , whic h w e call left-to-righ t searc h. The assumption

b ehind this strategy is that the whole tree is sp eculativ e and that w ork on the leftmost branc h has the highest

priorit y , and the priorit y of w ork decreases the further a w a y it is from the leftmost branc h. This assumption

clearly represen ts to o narro w a view of sp eculativ e w ork; in general all w ork is non-sp eculativ e unless it is in

the scop e of a pruning op erator. Setof (and bagof) create subtrees whic h are lo cally non-sp eculativ e ev en if

the setof itself is sp eculativ e, ie all branc hes should ha v e equal priorit y . W e describ e a more re�ned strategy

for handling sp eculativ e w ork in Section 4.6.

55

Related w ork b y Sindaha [11] uses a similar metho d to searc h for w ork in a sp eculativ e subtree. Ho w ev er

the left to righ t searc h is implem en ted b y explicitly linking the sen try no des of all branc hes to create a data

structure similar to the w a v efron t. W ork ers �nd w ork b y tra v ersing this data structure. This w ork is not as

far adv anced as the Bristol sc heduler but w e hop e later to compare this approac h with our o wn.

The left to righ t searc h strategy also uses b ottom-most dispatc hing. Finding w ork will again b egin b y

bac ktrac king through the no des immedia tely ab o v e the w ork er's curren t p osition to �nd nearb y w ork. If no

w ork can b e found the w ork er will searc h the tree from left to righ t, b y follo wing the ro ot, leaf and righ t

p oin ters. The leftmost w ork er can b e iden ti�ed as the o wner of the ro ot of the tree, the sc heduler will searc h

righ t from the leftmost w ork er un til it �nds either a w ork er with priv ate w ork whic h it can share, or a liv e

parallel no de.

4.4.3 Side-e�ects and susp ension

A goal of the Aurora system is to implemen t all standard Prolog built-in predicates, preserving their sequen-

tial seman tics. T o ac hiev e this, w e dela y the execution of a call to a side-e�ect predicate un til it b ecomes

leftmost in the whole tree. W e implemen t this dela y b y allo wing w ork ers to susp end a branc h when executing

a side-e�ect predicate. There are some sp ecial predicates, for example those used in the implemen tatio n of

setof , where it is su�cien t to ensure that the branc h is leftmost within some subtree. Chec king whether

a w ork er is leftmost within some subtree is done simply b y testing if the w ork er's ro ot no de is at or ab o v e

the ro ot of the subtree. Async hronous v ersions of these side-e�ect predicates are also pro vided and these

susp end only if they o ccur within the scop e of a cut and ma y b e pruned.

T o susp end a branc h, all a w ork er m ust do is to mark its ro ot no de as susp ended and mak e the ro ot of the

susp ended no de p oin t do wn to the sen try no de on the susp ended branc h. The sc heduler will then �nd a new

task for the susp ending w ork er to b egin.

W e next lo ok at ho w susp ended branc hes can b e restarted. If a w ork er bac ktrac ks out of, and reclaims, the

leftmost c hild of a no de, it will c hec k to see if there is a susp ended righ t sibling of that no de. If there is, it

will delete the susp ended �ag and pro ceed to c hec k if the branc h has no w b ecome leftmost in the subtree

in whic h it w as susp ended. If this is the case the w ork er will restart the susp ended branc h. If the branc h

cannot b e restarted the w ork er will set the susp ended �ag in its o wn ro ot and carry on lo oking for w ork. The

susp ended branc h will w ait un til some other w ork er notices the new susp ended no de while bac ktrac king.

4.4.4 Cut and commit

Aurora supp orts t w o pruning op erators: the con v en tional Prolog cut , whic h prunes all branc hes to its righ t

and a symmetric v ersion of cut called c ommit , whic h prunes branc hes b oth to its left and righ t. T o preserv e

the sequen tial seman tics, a pruning op eration will not go ahead if there is a c hance of it b eing pruned itself

b y a cut with a smaller scop e. It ma y b e p ossible to impro v e on this and w e are in v estigating the metho d

whic h has b een implemen ted in Muse where the w ork er will not susp end the branc h but partially do the

pruning and lea v e the rest to b e done as and when it ceases to b e endangered b y the cut.

A pruning op eration should susp end only if a branc h to its left leads to a cut of smaller scop e. But, to

determine whether a particular pruning op eration should susp end or not w e need some information ab out

the presence and scop e of cuts in the tree.

The engine-sc heduler in terface [13] mak es the necessary information a v ailable to the sc heduler and w e use it

to implemen t the Bristol sc heduler's pruning op erators in the follo wing w a y .

The sc heduler decorates the tree with information ab out the presence and scop e of cuts. When a no de is

created whic h has parallel alternativ es con taining cut, then that no de is mark ed as a cut b oundary no de.

Eac h no de con tains a cut coun ter, whic h indicates the n um b er of cuts in the w ork er's con tin uation when the

no de w as created. The w ork er also k eeps a cut coun ter and this is incremen ted when a clause con taining

cuts is en tered and decremen ted whenev er a cut is executed. When executing a cut, a w ork er will c hec k if

an y of the no des b elo w the cut b oundary ha v e c hildren to the left and are either mark ed as a cut b oundary

or ha v e a cut coun ter greater than the w ork ers curren t cut coun ter. If suc h a left sibling is found then the

cut will b e susp ended. F or a more detailed description of decorating the tree with cut scop e information the

reader is referred elsewhere [7].

W e will no w lo ok at ho w pruning is implemen ted in the Bristol sc heduler. A pruning w ork er will visit eac h

56

no de b elo w the b oundary no de of the cut (or commit), �rst remo ving all unexplored alternativ es at the

no de's paren t, and then pruning all the righ t siblings of the no de. If the pruning op eration is commit then

left siblings m ust b e pruned to o. All siblings except the leftmost will b e ro ot no des.

T o prune a sibling, the w ork er will mark the no de as pruned and try to iden tify the w ork er whic h will

tak e resp onsibilit y for clearing the pruned subtree a w a y . Unless the sibling no de is susp ended, this means

the w ork er will in terrupt the o wner of the no de. That w ork er will then pass on the in terrupt to an y other

w ork ers in the subtree. T o prune the leftmost sibling in the case of commit, then the w ork er m ust follo w the

no de's ro ot p oin ter to �nd its ro ot. If its ro ot is not mark ed susp ended then the o wner of the ro ot will b e

in terrupted with the information that its subtree is pruned.

If an y of the siblings are susp ended, it is not p ossible to iden tify w ork ers whic h are in the subtree b elo w that

no de. These subtrees m ust b e searc hed to inform an y w ork ers whic h are w orking there that they ha v e b een

pruned, although all the pruning w ork er will do is to mark ed them as unsearc hed. The searc h will b e carried

out b y one of the pruned w ork ers as it mo v es out of its o wn pruned subtree. The pruning w ork er will only

searc h pruned subtrees if no other w ork er can b e found to do the job for it. In this case it will searc h un til

it �nds the �rst w ork er to b e pruned and then that w ork er will tak e o v er an y further searc hing.

Cut node

A

B

C

D

E F

Wkr: A Wkr: B Wkr: C Wkr: D

Wkr: E Wkr: F

Region to
be pruned

A

suspended node

Left root node

Figure 4.3: W orker A About to perf orm a cut

Figure 4.3 sho ws an example where w ork er A w an ts to p erform a cut up to the cut b oundary and there

are �v e other w ork ers in the region whic h is to b e pruned. W ork er A will b e able to iden tify and in terrupt

w ork ers B , E and F . W ork er B will searc h the subtree whose ro ot w as susp ended at the time w ork er A did the

pruning and will in terrupt w ork er C . That w ork er will in turn in terrupt w ork er D . The in terrupted w ork ers

will then bac ktrac k out of the pruned region and lo ok for w ork elsewhere.

4.5 P erformance results

T o assess the p erformance of v arious asp ects of the Bristol sc heduler, w e ha v e used a n um b er of b enc hmarks

and application programs, descriptions of whic h can b e found elsewhere [12][8]. All the programs w ere run

on a Sequen t Symmetry using the F o xtrot v ersion of Aurora.

T o disco v er whic h dispatc hing strategy should b e preferred, w e ha v e run the Bristol sc heduler on a n um b er

of programs using 10 w ork ers under b oth topmost and b ottom-most dispatc hing. W e obtained �gures on the

57

frequency and duration of task switc hes in eac h program. T ask switc hing b egins when a w ork er bac ktrac ks

to its sen try no de and ends when a new task is found and con trol passes bac k to the engine. A distinction is

dra wn b et w een minor task switc hes, whic h end when w ork is disco v ered on the same branc h, and ma jor task

switc hes, when the w ork er �nds that no w ork is left on its curren t branc h and it m ust �nd w ork from another

part of the tree. Bottom-most dispatc hing should reduce the n um b er of exp ensiv e ma jor task switc hes, while

increasing the n um b er of minor task switc hes. T able 4.1 sho ws for eac h program the a v erage n um b er of task

switc hes made b y eac h w ork er, and also giv es the a v erage duration of eac h task switc h in microseconds.

Num b er Av erage duration

Bottom-most T opmost Bottom-most T opmost

dispatc hing dispatc hing dispatc hing dispatc hing

Program Ma jor Minor Ma jor Minor Ma jor Minor Ma jor Minor

parse1 7.7 12.5 8.5 11.5 2315 310 2037 232

parse2 11.0 26.0 14.2 19.7 1554 219 1377 187

parse3 7.2 12.0 7.7 10.5 2431 209 2342 202

parse4 12.2 47.2 34.7 46.5 1929 229 1560 212

parse5 13.0 87.2 58.7 75.0 2114 213 1707 187

db4 4.5 21.5 5 14.7 1808 196 1386 175

db5 5.0 25.7 6.5 17.7 1465 191 1351 170

farmer 3.7 4.7 4.0 4.2 3298 192 3596 180

house 4.2 13.2 4.0 3.2 1756 255 1873 184

8queens1 1.5 9.25 10.2 10.2 2623 247 1293 204

8queens2 1.7 18.7 16.0 15.5 2674 217 1096 165

tina 21.5 92.7 17.7 52.7 3925 208 4072 168

saltm ustard 1.0 3.7 1.0 1.5 2256 231 2276 190

protein 12.0 163.0 74.0 232.0 2804 103 1264 97

w arplan 12.7 60.0 30.5 37.2 5347 247 2864 209

T able 4.1: T able sho wing the a vera ge number of t ask switches made by ea ch w orker and the

a vera ge dura tion in micr oseconds, of ea ch t ask switch

W e �nd that the n um b er of ma jor task switc hes is signi�can tly reduced while the n um b er of minor task

switc hes is sligh tly increased. Also the a v erage duration of b oth ma jor and minor task switc hes tends to

increase somewhat. This re�ects the increased size of the public region of the tree, under b ottom-most

dispatc hing there will b e more public bac ktrac king to b e done b efore the w ork er ev en tually �nds a new task.

T o get a clearer picture of ho w m uc h time w as sp en t in task switc hing w e computed the p ercen tage of total

time, whic h on a v erage, eac h w ork er sp en t in task switc hing. This information is sho wn in Figure 4.4. W e

can see from this graph that b ottom-most dispatc hing leads to less time sp en t task switc hing in all but

�v e of our programs. F rom this w e can conclude that in general it will b e b etter to emplo y b ottom-most

dispatc hing, although there will b e some o ccasions when w e will lose out. It ma y ev en tually b e p ossible for

the sc heduler to recognise whic h dispatc hing strategy should b e used but curren tly w e do not ha v e enough

information to implemen t this.

W e next compare the Bristol sc heduler with the Manc hester sc heduler, a topmost dispatc hing sc heduler

whic h is the most dev elop ed of the existing Aurora sc hedulers. The results, giv en in T able 4.2, re�ect fairly

closely what w e w ould exp ect from the comparison of topmost and b ottom-most dispatc hing in the Bristol

sc heduler, although the Manc hester sc heduler p erforms b etter on a couple of the b enc hmarks where w e

migh t ha v e predicted equal or b etter p erformance b y the Bristol sc heduler. This ma y b e partly due to the

Manc hester sc heduler's strategy of matc hing idle w ork ers to the nearest a v ailable w ork whereas, with the

Bristol sc heduler, this do es not happ en.

T o obtain a comparison of t w o similar b ottom-most dispatc hing sc hedulers, w e ha v e compared Aurora under

the Bristol sc heduler with Muse 0.6 (Figure 4.3). This v ersion of Muse supp orts some form of dela y ed release

whic h is not y et supp orted b y the Bristol sc heduler. Also, the m use system has b een compiled using the

GNU C compiler, whic h allo ws use of inline declarations, while the Bristol sc heduler w as not.

Generally the Bristol sc heduler pro duces b etter sp eedups than the Muse sc heduler, but this is generally

58

10

20

30

40

50

60

70

parse2

parse3

parse5

db4

db5

farm
er

house

8queens1

8queens2

tina

csm

protein

w
arplan

Bottom most
dispatching

Topmost
dispatching

parse4

parse1

Percentage of time spent
task switching (per worker)

Figure 4.4: Graph of the per cent a ge of tot al time ea ch w orker spends in t ask switching

somewhat out w eighed b y the faster engine p erformance of Muse. Muse's faster engine p erformance is due to

the o v erhead of the SRI mo del in Aurora whic h adds ab out 25% to the single w ork er run time. This is m uc h

greater than the corresp onding o v erhead in Muse whic h is around 5%.

The next part of our p erformance analysis lo oks at our strategies for handling sp eculativ e w ork. The left

to righ t searc h strategy is used here to �nd out what the b ene�ts migh t b e of treating sp eculativ e w ork

di�eren tly and what the o v erheads are. W e will later prop ose a b etter strategy for adapting the Bristol

sc heduler for sp eculativ e w ork. W e �rst lo ok at the o v erheads of the left to righ t searc h strategy in �nding

all solutions. T able 4.4 sho ws that the 10 w ork er p erformance is degraded b y ab out 11%, and this is due

b oth to the extra sync hronisation required in searc hing for w ork in this manner, and also due to the fact

that taking the leftmost a v ailable w ork ma y not giv e the w ork er access to as man y liv e no des as the deep est

a v ailable w ork w ould ha v e done. Therefore the n um b er of ma jor task switc hes is increased.

W e no w tak e a n um b er of application programs and lo ok at the sp eedups obtained when �nding the �rst

(leftmost) solution, comparing the Manc hester sc heduler with three v ersions of the Bristol sc heduler; ric hest

w ork er, an impro v ed v ersion of ric hest w ork er where idle w ork ers try to �nd w ork from the leftmost w ork er

b efore trying the ric hest w ork er and the left-to-righ t searc h. The results are sho wn in T able 4.5. Since

sp eculativ e computation alw a ys giv es some v ariation in run times, dep ending on ho w w ell the w ork ers w ere

utilised during the computation, w e presen t the sp eedups a ranges of b est�w orst. The results are giv en

in T able 4.5, and sho w that when the computation in v olv es sp eculativ e w ork, the b ottom-most dispatc hing

strategies all p erform b etter than the Manc hester sc heduler. The impro v ed ric hest w ork er strategy giv es some

impro v em en t o v er the original ric hest w ork er strategy but the left-to-righ t searc h giv es the b est p erformance.

59

Bristol Sc heduler Manc hester Sc heduler

Goals [*Times] 1wkr 10wkrs 1wkr 10wkrs

parse1 *20 1.95 0.74(2.62) 1.94 0.81(2.38)

parse2 *20 7.37 1.50(4.90) 7.35 1.69(4.34)

parse3 *20 1.68 0.67(2.49) 1.66 0.72(2.29)

parse4 *5 6.85 1.04(6.57) 6.80 1.24(5.47)

parse5 4.96 0.64(7.78) 4.79 0.85(5.61)

db4 *10 3.11 0.44(7.06) 3.06 0.41(7.53)

db5 *10 3.79 0.52(7.30) 3.72 0.51(7.34)

farmer*100 3.77 1.95(1.93) 3.80 2.26(1.68)

house*20 5.55 0.94(5.88) 5.17 0.85(6.05)

8-queens1 8.48 0.88(9.65) 8.28 0.83(9.93)

8-queens2 21.89 2.21(9.91) 21.66 2.16(10.0)

tina 19.72 2.14(9.23) 18.77 1.99(9.41)

sm2 *10 11.65 1.32(8.82) 11.27 1.23(9.19)

protein 28.56 3.01(9.49) 27.66 2.94(9.41)

w arplan (blo c ks) 2.73 0.33(8.27) 2.50 0.38(6.58)

w arplan (strips) 42.44 4.62(9.19) 40.40 4.46(9.06)

A VERA GE (6.94) (6.64)

T able 4.2: T able comp aring A ur ora under the Bristol and Manchester schedulers (r untimes

in seconds with speedups in bra ckets)

4.6 A strategy for sc heduling sp eculativ e w ork

In order to impro v e on our relativ ely crude left to righ t searc h strategy for sp eculativ e w ork, w e ha v e designed

a b etter strategy whic h will b e implemen ted in a future v ersion of the Bristol sc heduler.

F or this more general strategy , w e no longer treat the whole tree as b eing sp eculativ e but allo w for in-

termingling of sp eculativ e and non-sp eculativ e subtrees. W e will w an t to distribute w ork ers ev enly among

sp eculativ e subtrees so as not to fo cus to o man y resources in to one particular subtree. W e will also w an t

w ork ers to b e able to reassess ho w sp eculativ e their curren t branc h is. F or example, a task whic h w as the

least sp eculativ e of a particular subtree at one momen t ma y later b ecome the most sp eculativ e if branc hes

app ear to its left. W ork ers should b e able to susp end suc h a task in fa v our of a task on one of the higher pri-

orit y branc hes to its left, an op eration kno wn as voluntary susp ension . W e b eliev e that v olun tary susp ension

is crucial for e�ectiv e handling of sp eculativ e w ork.

Since it is v ery di�cult to compare the sp eculativ eness of t w o tasks in separate sp eculativ e subtrees w e will

not allo w w ork ers to mo v e from one sp eculativ e subtree to another.

Our strategy can then b e summarised as follo ws:

� First try to obtain non-sp eculativ e w ork.

� If only sp eculativ e w ork exists then �nd w ork from the sp eculativ e subtree con taining the smallest

n um b er of w ork ers.

� Alw a ys searc h sp eculativ e subtrees from left to righ t.

� Allo w w ork ers to p erio dically consider v olun tary susp ension of sp eculativ e w ork, in order to �nd less

sp eculativ e w ork.

4.7 Conclusions

W e presen ted a simple, �exible sc heduler based on the principle of �dispatc hing on b ottom-most�. W e

ha v e describ ed the algorithms for �nding w ork, public bac ktrac king, pruning and susp ension. The curren t

60

Aurora Muse

Goals [*Times] 1wkr 10wkrs 1wkr 10wkrs

parse1 *20 1.95 0.74(2.62) 1.58 0.58(2.72)

parse2 *20 7.37 1.50(4.90) 5.89 1.19(5.03)

parse3 *20 1.68 0.67(2.49) 1.36 0.60(2.27)

parse4 *5 6.85 1.04(6.57) 5.53 0.82(6.74)

parse5 4.96 0.64(7.78) 3.91 0.51(7.67)

db4 *10 3.11 0.44(7.06) 2.38 0.35(6.80)

db5 *10 3.79 0.52(7.30) 2.91 0.42(6.93)

farmer*100 3.77 1.95(1.93) 3.12 1.90(1.64)

house*20 5.55 0.94(5.88) 4.35 0.89(4.89)

8-queens1 8.48 0.88(9.65) 6.64 0.70(9.49)

8-queens2 21.89 2.21(9.91) 17.14 1.77(9.68)

tina 19.72 2.14(9.23) 14.79 1.66(8.91)

A VERA GE (6.28) (6.06)

T able 4.3: A ur ora under the Bristol scheduler, comp ared with Muse (r untimes in seconds

with speedups in bra ckets)

implem en tation supp orts the full Prolog language.

W e ha v e presen ted �gures to sho w that b ottom-most dispatc hing generally pro duces b etter p erformance in

Aurora than topmost dispatc hing, since it decreases the duration of time w ork ers sp end in task switc hing.

The results from running b enc hmark and application programs sho w that it is p ossible to get v ery go o d

sp eedups for non-sp eculativ e computation from the Bristol sc heduler using the ric hest w ork er strategy .

Comparing that v ersion of the Bristol sc heduler with the Manc hester sc heduler w e note that the Bristol

sc heduler's b ottom-most dispatc hing strategy pa ys o� on the parsing examples where the searc h trees are

deep and narro w. The Manc hester sc heduler p erforms b etter on those examples where the searc h tree is

shallo w and broad.

Sp eedups from the Bristol sc heduler are generally b etter then those obtained from the Muse system, although

that system obtains somewhat b etter o v erall sp eed b ecause of the lo w er o v erhead in v olv ed in adapting Sicstus

Prolog to the Muse mo del.

When w orking on programs with large amoun ts of sp eculativ e w ork w e can b ene�t b y emplo ying a strategy

whic h prefers to sc hedule w ork on left of the sp eculativ e region. W e can conclude that ev en though there is an

o v erhead asso ciated with using the left to righ t searc h strategy , whic h is due to the need for sync hronisation

during the searc h, w e can b ene�t b y using it to sc hedule w ork from regions where w ork on the left side is of

higher priorit y .

W e ha v e describ ed a general strategy for handling sp eculativ e w ork, whic h, based on the results presen ted

here, w e b eliev e will giv e impro v ed p erformance on sp eculativ e w ork. Our future w ork will cen ter on imple-

men ting this strategy and analysing its p erformance.

4.8 Ac kno wledgemen ts

The Authors are indebted to other mem b ers of the Gigalips pro ject for careful reading and in v aluable

commen ts on this pap er, to Mats Carlsson for his w ork on The Aurora engine and in terface, to Bogdan

Hausman for his w ork on sp eculativ e sc heduling, and to Kha yri Ali and Roland Karlsson for their commen ts

and for pro viding the b enc hmark timings from Muse.

This w ork w as supp orted b y ESPRIT pro jects 2471 (�PEPMA�) and 2025 (�EDS�). S Muth u Raman w as

supp orted b y a UN Dev elopmen t Programme F ello wship.

61

Ric hest Left to

w ork er righ t searc h

Goals [*Times] 1wkr 10wkrs 10wkrs

parse1 *20 1 2.62 2.44

parse2 *20 1 4.90 4.14

parse3 *20 1 2.49 2.24

parse4 *5 1 6.57 5.71

parse5 1 7.78 6.79

db4 *10 1 7.06 6.78

db5 *10 1 7.30 6.65

farmer*100 1 1.93 1.68

house*20 1 5.88 4.44

8-queens1 1 9.65 8.83

8-queens2 1 9.91 9.43

tina 1 9.23 7.89

sm2 *10 1 8.82 7.77

A VERA GE 6.47 5.75

T able 4.4: Speedups f or different scheduling stra tegies (Bristol scheduler)

Aurora Sc heduling strategy

one Manc hester ric hest leftmost left to

Application w ork er sc heduler W ork er then ric hest righ t searc h

Protein 1 2.90�2.65 2.30�1.96 3.28�2.97 4.46�4.36

Puzzle 1 1.13�1.09 1.33�1.25 2.64�1.77 6.10�5.06

W arplan 1 1.15�1.08 1.11�1.06 1.12�1.10 1.57�1.36

16Queens 1 1.05�1.05 3.35�2.31 3.38�3.30 6.40�3.78

triangle 1 6.44�6.00 7.06�6.60 7.20�6.60 7.68�7.34

tina 1 4.56�4.41 4.56�4.22 4.70�4.48 4.86�4.63

Av erage 1 2.87�2.71 3.28�2.90 3.72�3.37 5.18�4.42

T able 4.5: Speedups (best�w orst) with 10 w orkers finding the first solution

References

[1] Kha yri Ali. Or-p ar al lel exe cution of Pr olo g on BC-Machine . SICS Researc h Rep ort, Sw edish Institute

of Computer Science, 1987.

[2] Kha yri A. M. Ali and Roland Karlsson. The Muse or-parallel Prolog mo del and its p erformance. In

Pr o c e e dings of the North A meric an Confer enc e on L o gic Pr o gr amming , MIT Press, Octob er 1990.

[3] An thon y Beaumon t, S Muth u Raman, Péter Szeredi, and Da vid H D W arren. Flexible Sc heduling of

Or-P arallelism in Aurora: The Bristol Sc heduler. In P ARLE91: Confer enc e on Par al lel A r chite ctur es

and L anguages Eur op e , Springer V erlag, June 1991.

[4] P er Brand. W a v efron t sc heduling. 1988. In ternal Rep ort, Gigalips Pro ject.

[5] Ralph Butler, T erry Disz, Ewing Lusk, Rob ert Olson, Ross Ov erb eek, and Ric k Stev ens. Sc heduling

OR-parallelism: an Argonne p ersp ectiv e. In Pr o c e e dings of the Fifth International Confer enc e on L o gic

Pr o gr amming , pages 1590�1605, MIT Press, August 1988.

[6] Alan Calderw o o d and Péter Szeredi. Sc heduling or-parallelism in Aurora � the Manc hester sc heduler.

In Pr o c e e dings of the Sixth International Confer enc e on L o gic Pr o gr amming , pages 419�435, MIT Press,

June 1989.

62

[7] Bogumiª Hausman. Pruning and Sp e culative Work in OR-Par al lel PR OLOG . PhD thesis, The Ro y al

Institute of T ec hnology , Sto c kholm, 1990.

[8] F eliks Klu¹niak. Developing Applic ations for A ur or a . T ec hnical Rep ort TR-90-17, Univ ersit y of Bristol,

Computer Science Departmen t, August 1990.

[9] Ewing Lusk, Da vid H. D. W arren, Seif Haridi, et al. The Aurora or-parallel Prolog system. New

Gener ation Computing , 7(2,3):243�271 , 1990.

[10] V. San tos Costa, D. H. D. W arren, and R. Y ang. The Andorra-I Engine: A parallel implemen tatio n

of the Basic Andorra mo del. In L o gic Pr o gr amming: Pr o c e e dings of the 8th International Confer enc e ,

MIT Press, 1991.

[11] Raed Sindaha. Sc heduling sp eculativ e w ork in the Aurora or-parallel Prolog system. Marc h 1990.

In ternal Rep ort, Gigalips Pro ject, Univ ersit y of Bristol.

[12] Péter Szeredi. P erformance analysis of the Aurora or-parallel Prolog system. In Pr o c e e dings of the

North A meric an Confer enc e on L o gic Pr o gr amming , pages 713�732, MIT Press, Octob er 1989.

[13] Péter Szeredi, Mats Carlsson, and Rong Y ang. In terfacing engines and sc hedulers in or-parallel prolog

systems. In P ARLE91: Confer enc e on Par al lel A r chite ctur es and L anguages Eur op e , Springer V erlag,

June 1991.

[14] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

63

Chapter 5

In terfacing Engines and Sc hedulers in

Or-P arallel Prolog Systems

1

Péter Szeredi

2

, Rong Y ang

Departmen t of Computer Science

Univ ersit y of Bristol

Bristol BS8 1TR, U.K.

Mats Carlsson

Sw edish Institute of Computer Science

P .O. Bo x 1263

S-164 28 Kista, Sw eden

Abstract

P arallel Prolog systems consist, at least conceptually , of t w o comp onen ts: an engine and a sc heduler.

This pap er addresses the problem of de�ning a clean in terface b et w een these comp onen ts. Suc h an

in terface has b een designed for Aurora, a protot yp e or-parallel implemen tation of the full Prolog

language for shared memory m ultipro cessors.

The practical purp ose of the in terface is to enable di�eren t engine and sc heduler implem en tations

to b e used in terc hangeably . The dev elopmen t of the in terface has, ho w ev er, con tributed in great

exten t to the clari�cation of issues in exploiting or-parallelism in Prolog. W e b eliev e that these

issues are relev an t to a wider circle of researc h in the area of or-parallel implemen tatio ns of logic

programmi ng.

W e b eliev e that the concept of an engine-sc heduler in terface is applicable to a wider range of parallel

Prolog implemen tatio ns. Indeed, the presen t in terface has b een used in the Andorra-I system, whic h

supp orts b oth and- and or-parallelism.

Keyw ords: Or-P arallel Execution, Multipro cessors, Implemen tatio n T ec hniques, Sc heduling.

5.1 In tro duction

P arallel Prolog systems consist, at least conceptually , of t w o comp onen ts: an engine , whic h is resp onsible for

the actual execution of the Prolog co de, and a sche duler , whic h pro vides the engine comp onen t with w ork.

This pap er addresses the problem of de�ning a clean in terface b et w een these comp onen ts. W e fo cus on a

particular in terface whic h has ev olv ed within the implemen tati on of an or-parallel Prolog system, Aurora.

The in terface has successfully b een used to connect the Aurora engine with four di�eren t sc hedulers. It has

subsequen tly b een applied in the implemen tation of the and-or-parallel language Andorra-I, th us pro ving

that its generalit y extends b ey ond or-parallel Prolog.

Aurora is a protot yp e or-parallel implemen tation of the full Prolog language for shared memory m ultipro-

1

This pap er has app eared in the pro ceedings of P ARLE'91 [16]

2

On le ave fr om SZKI IQSOFT, Donáti u. 35-45, Budap est, Hungary.

64

cessors, based on the SRI mo del of execution [17], and curren tly running on Sequen t and Encore mac hines.

It has b een dev elop ed in the framew ork of the Gigalips pro ject [11], a collab orativ e e�ort b et w een groups

at the Argonne National Lab oratory in Illinois, the Univ ersit y of Bristol (previously at the Univ ersit y of

Manc hester) and the Sw edish Institute of Computer Science (SICS) in Sto c kholm.

The issue of de�ning a clear in terface b et w een the engine and sc heduler comp onen ts of Aurora w as raised

in the early stages of the implem en tation e�ort. Ross Ov erb eek made the �rst attempt to form ulate suc h

an in terface and Alan Calderw o o d pro duced the v ersion [7] used in the �rst generation of Aurora (based on

SICStus Prolog v ersion 0.3).

A fundamen tal revision of the in terface w as necessitated b y sev eral factors. P erformance analysis w ork on

Aurora [14] has sho wn that some unnecessary o v erheads are caused b y design decisions enforced b y the

in terface. Dev elopmen t of new sc hedulers and extensions to existing algorithms required the in terface to b e

made more general. The Aurora engine has also b een rebuilt on the basis of SICStus Prolog v ersion 0.6.

The new in terface, describ ed in the presen t pap er, is part of the second generation of Aurora. The ma jor

c hanges with resp ect to the previous in terface are the follo wing:

� execution is go v erned b y the engine, rather than the sc heduler;

� the set of basic concepts has b een made simpler and more uniform;

� sev eral p oten tial optimisations are supp orted;

� the in terface is extended to supp ort transfer of information related to pruning op erators [10].

The pap er is organised as follo ws. Section 5.2 summarises the SRI mo del and de�nes the necessary concepts.

Section 5.3 giv es a top lev el view of the in terface. Section 5.4 presen ts the data structures in v olv ed in

the in terface, while Sections 5.5 and 5.6 describ e engine-sc heduler in teractions in v arious phases of Aurora

execution. Section 5.7 sho ws the extensions: handling of pruning information and v arious optimisations.

Section 5.8 discusses the ma jor issues in v olv ed in implemen ting the Aurora engine side of the in terface.

Section 5.9 describ es ho w the in terface w as utilised to in tro duce or-parallelism in to the Andorra-I system

[12]. Section 5.10 presen ts preliminary p erformance results from the Aurora implemen tation. W e end with

a short concluding section.

A complete description of the in terface is con tained in [15].

5.2 Preliminar ies

Aurora is based on the SRI mo del [17]. According to this mo del the system consists of sev eral workers

(pro cesses) exploring the searc h tree of a Prolog program in parallel. Eac h no de of the tree corresp onds

to a Prolog choic ep oint with a branc h asso ciated with eac h alternativ e clause. A predicate can optionally

b e declared se quential b y the user, to prohibit parallel exploration of alternativ e clauses of a predicate.

Corresp onding no des are also annotated as sequen tial. All other no des are p ar al lel .

As the tree is b eing explored, eac h no de can b e either live , i.e. ha v e at least one unexplored alternativ e, or

de ad . A no de is a fork no de if there are t w o or more branc hes b elo w it; otherwise, it is a nonfork no de . A

fork no de cannot b e sequen tial. Liv e parallel no des, and liv e sequen tial no des with no branc hes b elo w them,

corresp ond to tasks that can b e executed b y w ork ers. Eac h w ork er has to p erform activities of t w o basic

t yp es:

� executing the actual Prolog co de;

� �nding w ork in the tree, pro viding other w ork ers with w ork and sync hronising with other w ork ers.

In accordance with the SRI mo del eac h w ork er has a separate binding arr ay , in whic h it stores its o wn

bindings to p oten tially shared v ariables (conditional bindings). This tec hnique allo ws constan t time access

to the v alue of a shared v ariable, but imp oses an o v erhead of up dating the binding arra ys whenev er a w ork er

has to mo v e within the searc h tree.

The or-tree is divided in to an upp er, public , part accessible to all w ork ers and a lo w er, private , part accessible

to only one w ork er. A w ork er exploring its priv ate region do es not ha v e to b e concerned with sync hronisation

65

or main taini ng sc heduling data; it can w ork v ery m uc h lik e a standard Prolog engine. The b oundary b et w een

the public and priv ate regions c hanges dynamically . It is one of the critical asp ects of the sc heduling algorithm

to decide when to mak e a no de public, allo wing other w ork ers to share w ork at it. In the ma jorit y of

sc hedulers, the w ork er will mak e his sentry no de, i.e. his topmost priv ate no de, public when all no des ab o v e

it ha v e b ecome dead, i.e. ha v e no more alternativ es to explore. This means that eac h w ork er tries to k eep a

piece of w ork on its branc h a v ailable to other w ork ers.

W1 W2 W3 W4

PUBLIC

PRIVATE
S1 S2 S3 S4

= dead node

= live node

D2

Figure 5.1: The or-tree of the SRI model

F or example, in Figure 5.1, an or-tree b eing explored b y four w ork ers (W1�W4) is sho wn. The w ork ers'

sen try no des are denoted S1�S4. Assume that there is an unexplored alternativ e at no de D2. No w if the

branc h b eing explored b y w ork er W1 dies bac k and W1 tak es the alternativ e at D2, the no de D2 will b ecome

dead, and the sc heduler will normally extend the public region to include no des S2�S3 so as to k eep a piece

of w ork a v ailable on ev ery branc h.

The exploration b y a w ork er of its priv ate region constitutes that w ork er's assignment , whic h normally

terminates if the w ork er bac ktrac ks in to the public part. The assignmen t terminates prematurely if the

branc h is susp ende d , or if it is prune d b y some other w ork er.

There are three pruning op er ators curren tly supp orted b y Aurora: the con v en tional Prolog cut , whic h prunes

all branc hes to its righ t and a symmetric v ersion of cut called c ommit , whic h prunes branc hes b oth to its

left and righ t. A cut or a commit m ust not, and will not, go ahead if there is a c hance of b eing pruned b y

a cut with a smaller scop e. The third t yp e of pruning op erator is the c avalier c ommit whic h is executed

imm ediately , ev en if endangered b y a smaller cut. The ca v alier commi t is pro vided for exp erimen tal purp oses

only , it is exp ected to b e used in exceptional circumstances, for op erations similar to abort in Prolog. W ork

done in the scop e of a pruning op erator is said to b e sp e culative .

Susp ension is used to preserv e the observ able seman tics of Prolog programs executed b y Aurora: when a

built-in predicate with some side-e�ect is reac hed on a non-leftmost branc h of the searc h tree, or when

a pruning op erator is reac hed on a branc h whic h could b e pruned b y a cut with a smaller scop e, the

execution m ust b e susp ended. F urthermore the sc heduler ma y decide to susp end the curren t branc h when

less sp eculativ e w ork can b e done somewhere else in the tree.

66

F our separate sc hedulers are curren tly b eing dev elop ed for Aurora. The Argonne sc heduler [6] relies on

data stored in the tree itself to implemen t a lo cal strategy according to whic h liv e no des �attract� w ork ers

without w ork. When sev eral w ork ers are idle they will comp ete to get to a giv en piece of w ork and the

fastest one will win. The Manc hester sc heduler [8] tries to select the nearest w ork er in adv ance, without

mo ving o v er the tree. It uses global data structures to store some of the information on a v ailable w ork and

w ork ers. The w a v efron t sc heduler [5] uses a sp ecial distributed data structure, the wavefr ont , to facilitate

allo cation of w ork to w ork ers. The Bristol sc heduler [3] tries to minim ise sc heduler o v erhead b y extending

the public region eagerly: sequences of no des are made public instead of single no des, and w ork is tak en

from the b ottommost liv e no de of a branc h.

5.3 The T op Lev el View of the In terface

The principal dut y of the sc heduler is to pro vide the engine with w ork. The thread of con trol th us alternates

b et w een the t w o comp onen ts: the engine executes a piece of Prolog co de, then the sc heduler �nds the next

assignmen t, passes con trol bac k to the engine, etc. A p ossible w a y of implemen ting this in teraction is to put

the sc heduler ab ove the engine: the sc heduler c al ls the engine when it �nds a suitable piece of w ork to b e

executed and the engine r eturns when suc h an assignmen t has b een �nished. In fact this sc heme w as the

basis of earlier in terfaces in Aurora [7].

W e use a di�eren t approac h in the curren t v ersion of Aurora. The execution is go v erned b y the engine:

whenev er it �nishes an assignmen t, it calls an appropriate sc heduler function to pro vide a new piece of w ork.

The adv an tage of this sc heme is that the en vironmen t for Prolog execution (e.g. the set of W AM-registers)

is not destro y ed when an assignmen t is terminated and need not b e rebuilt up on returning to w ork. This is

of sp ecial imp ortance for Prolog programs with �ne gran ularit y (i.e. small assignmen t size), where switc hing

b et w een engine and sc heduler co de is v ery frequen t [14].

Figure 5.2 sho ws the top view of the curren t in terface. This is cen tered around the engine doing w ork. All

the other b o xes in the picture represen t sc heduler functions called b y the engine. Note the con v en tion that

the names of all sc heduler functions are pre�xed with ` Sched_' .

The functions sho wn in Figure 5.2 are arranged in three groups:

� �nding w ork (left side of Figure 5.2);

� comm unication with other w ork ers during w ork (lo w er part of Figure 5.2), e.g. when cuts or side e�ect

predicates are to b e executed;

� certain ev en ts during w ork that ma y b e of in terest to the sc heduler (righ t side of Figure 5.2), e.g.

creation and destruction of no des.

The four b o xes on the left of Figure 5.2 represen t the so called functions for �nding work :

Sched_Start_Work is used to acquire w ork for the �rst time, immedia tely after the initialisation of the

w ork er;

Sched_Die_Back is called when the engine bac ktrac ks to a public no de;

Sched_Be_Pruned is in v ok ed when the w ork er's curren t branc h is pruned o� b y another w ork er;

Sched_Suspend is called when the w ork er has to susp end its curren t branc h.

These functions di�er in their initial activities, but normally con tin ue with a common algorithm for �lo oking

for w ork� (see Section 5.5). This algorithm has t w o p ossible outcomes: either w ork is found, or the whole

system is halted. Corresp ondingly eac h of the functions for �nding w ork has t w o exits: the normal one

(sho wn on the righ t side of the function b o xes in Figure 5.2) leads bac k to w ork, while the other exit (left

hand side) leads to the termination of the whole Aurora in v o cation.

The next group of in terface functions pro vided b y the sc heduler is depicted at the b ottom of Figure 5.2.

These functions are called during w ork, when the engine ma y require some assistance from the sc heduler

(mainly in order to comm uni cate with other w ork ers):

67

Sched_Prune � when a cut or commit is executed;

Sched_Synch � when a predicate with side e�ects is encoun tered;

Sched_Check � at ev ery Prolog pro cedure call (to c hec k for in terrupts).

The ab o v e functions ha v e three exits. The normal exit (depicted b y up w ards arro ws in Figure 5.2) leads

bac k to w ork. The other t w o exits corresp ond to premature termination of the curren t assignmen t, when the

curren t branc h has b een pruned or has to susp end (left w ard and do wn w ard arro ws). In b oth cases the engine

will do the housek eeping op erations necessary for the giv en t yp e of assignmen t termination, and pro ceed to

call the sc heduler to �nd the next assignmen t. See Section 5.6 for a more detailed description of the functions

for comm unication with other w ork ers.

The third group of functions sho wn in Figure 5.2 (righ t hand side) corresp onds to some ev en ts during w ork

that ma y b e of in terest to the sc heduler. A common prop ert y of this group is that the in terface do es not

prescrib e an y sp eci�c activit y to b e done b y these functions: the sc heduler is merely giv en an opp ortunit y

to do whatev er is needed for main taini ng its data structures. As an example, Sched_Node_Crea ted (and

the corresp onding Sched_Node_Destroye d) can b e used to k eep trac k of the presence of parallel no des in

the priv ate region�as a prosp ectiv e source of w ork for other w ork ers. Similarl y Sched_Clause_Entere d can

b e utilised for main taining information ab out the presence of pruning op erators in the curren t branc h (see

Section 5.7.2).

There are further groups of sc heduler functions, not sho wn in Figure 5.2. These are used in the initialisation

of the whole system, in handling k eyb oard in terrupts , and in the implemen tati on of certain optimisations

(Section 5.7.1).

The engine side of the in terface consists of sev eral groups of functions that supp ort the sc heduler algorithm:

� pro viding access to certain data structures (no des and alternativ es) main tained b y the engine,

� extending the public region on the curren t branc h of execution,

� p ositioning the engine (i.e. the binding arra y) in the searc h tree, while lo oking for w ork,

� notifying the engine of certain ev en ts, e.g. w ork b eing found.

The data structure asp ects of the engine in terface are presen ted in Section 5.4. Other in terface functions

pro vided b y the engine will b e describ ed in Sections 5.5 and 5.6.

5.4 Common Data Structures

The engine is resp onsible for main taining the no de stack , a principal data area of ma jor imp ortance to the

sc heduler. The engine de�nes the no de data t yp e, but the sc heduler is exp ected to supply a n um b er of �elds

to b e included in this structure for its o wn purp oses.

Among the no de �elds de�ned b y the engine, some are of in terest to the sc heduler. Access functions for

these �elds are pro vided in the in terface:

Node_Level � the distance of the no de from the ro ot of the searc h tree,

Node_Parent � a p oin ter to the paren t no de in the tree,

Node_Alternatives � a p oin ter to the next unexplored alternativ e of the no de.

The sc heduler-sp eci�c �elds of the no de data structure normally include p oin ters describing the top ology of

the tree. F or example, most sc hedulers will ha v e �elds storing a p oin ter to the �rst c hild and the next sibling

of a no de.

An additional common static data structure, the alternative , is in tro duced to allo w the sc hedulers to k eep

static data related to clauses. This data structure is used in the Aurora engine to replace the ` try' , ` retry'

and ` trust' instructions of W AM [9]. Eac h clause of the user program is represen ted b y an alternativ e,

whic h stores a p oin ter to the co de of the clause and a p oin ter to the successor alternativ e, if an y . If a

68

predicate is sub ject to indexing, the compiler ma y create sev eral c hains of alternativ es to cater for di�eren t

v alues in the indexing argumen t p osition. This means that sev eral alternativ es can refer to the same clause.

The sc heduler ma y supply a n um b er of �elds to b e included in the alternativ e structure, to accommo date an y

(static) information to b e asso ciated with clauses. The sc heduler can deriv e this data from the information

supplied b y the engine when alternativ es are created (Sched_Alternative _Crea ted). There are t w o t yp es

of static data supplied b y the engine:

� information ab out sequen tial predicates�this information is normally stored in eac h alternativ e of the

predicate.

� pruning information� data on the n um b er of pruning op erators (cuts, commits and conditional expres-

sions) con tained in the clause or the predicate (see Section 5.7.2).

The only engine �eld in the alternativ e structure that is of in terest to the sc heduler is the one p oin ting to

the successor alternativ e (Alternative_Next). This �eld is used, for example, when the sc heduler starts a

new branc h from a public no de and needs to adv ance the next alternativ e p oin ter of the no de.

5.5 Finding W ork

Figure 5.3 sho ws the engine functions used b y the sc heduler while it is lo oking for w ork. The actual algorithms

of the four functions for �nding w ork will normally di�er, but they all use the same set of engine supp ort

functions.

F unctions Move_Engine_Up and Move_Engine_Down , sho wn on the righ t hand side of Figure 5.3, instruct the

engine to mo v e the binding arra y up or do wn the curren t branc h. Initially , the binding arra y is p ositioned

at or b elo w the y oungest public no de on the branc h. Before returning, the sc heduler has to p osition the

binding arra y ab o v e the new sen try no de.

Di�eren t sc hedulers emplo y di�eren t strategies in mo ving o v er the tree. The Argonne sc heduler mo v es no de-

b y-no de, when approac hing the p oten tial w ork no de. Other sc hedulers lo cate a piece of w ork from a distance

and mo v e the engine to the appropriate place in a few big jumps.

There is no need to mo v e the engine if w ork is tak en from the paren t of the old sen try no de. An additional

en try p oin t to the sc heduler, Sched_Get_Work_ At_P arent (see Section 5.7.1), has b een pro vided for this

sp ecial case.

The left hand side of Figure 5.3 sho ws the engine functions for memory managemen t of the no de stac k. A

w ork er ma y ha v e to remo v e some dead no des from the tree as it mo v es up w ards. This in v olv es deleting these

no des from the sc heduler data structures (normally the sibling c hain) and in v oking the Mark_Node_Reclaimab le

engine function. As a sp ecial case, the old sen try no de will ha v e to b e deleted from the tree at the b eginning

of Sched_Die_Back and Sched_Be_Pruned .

When the sc heduler decides to reserv e a new piece of w ork from a liv e public no de (w ork no de), it has to create

a sen try no de for the new branc h. This in v olv es calling the Allocate_Node function, whic h �rst remo v es

all the no des that ha v e b een mark ed as reclaimable from the top of the w ork er's stac k and then allo cates a

new sen try no de. The related Allocate_Foreig n_Nod e function is used if another w ork er allo cates a no de

on the stac k of the w ork er lo oking for w ork. This is used in the Manc hester sc heduler to implemen t handing

w ork to an idle w ork er.

The new sen try no de serv es as a placeholder for the new assignmen t. The sc heduler inserts the sen try in to

the searc h tree and sim ultaneously reserv es an alternativ e to b e explored b y the new branc h (b y reading and

adv ancing the Node_Alternative s �eld of the w ork no de).

The b ottom part of Figure 5.3 sho ws the p ossible exit paths from the functions for �nding w ork. The actual

w ork found can corresp ond either to a new branc h or to a branc h whic h w as hitherto susp ended and can

b e resumed no w. F unctions Found_New_Work and Found_Resumed_Wo rk are used to notify the engine ab out

the t yp e of the w ork found, and to supply the new sen try no de. The b o x for Found_New_Work in Figure 5.3

sho ws the SENTRY argumen t to highligh t the fact that this argumen t should b e the same as the one returned

in Allocate_ : : : Node .

69

5.6 Comm unication with Other W ork ers

The need for comm unicatio n with other w ork ers arises when a pruning op erator or a built-in predicate with

side e�ects is to b e executed. In addition, a p erio dic c hec k is needed to examine if there are comm unicatio n

requests from other w ork ers.

The Sched_Prune function is in v ok ed when a pruning op erator is encoun tered. A t this momen t the engine

has already executed the priv ate part of the pruning. The sc heduler receiv es a p oin ter to the cut no de

(sho wing the scop e of pruning) and an argumen t indicating the t yp e of the pruning op erator (cut, commit

or ca v alier commit). It has to c hec k if the preconditions for pruning are satis�ed: the curren t branc h should

not b e pruned itself, and, except for the ca v alier commit, it should not b e endangered b y cuts with a smaller

scop e, as discussed in [10]. The latter condition can b e replaced b y a requiremen t for the branc h to b e

leftmost in the subtree ro oted at the c hild of the cut no de, if the sc heduler do es not main tain sp eci�c

pruning information.

If the preconditions of pruning are not satis�ed, Sched_Prune uses one of the abnormal exits (cf. Figure 5.2)

to indicate that the branc h has b een killed or that it has to susp end (w aiting to b ecome leftmost). If the

pruning op eration can go ahead, the sc heduler has to lo cate the w ork ers that are in the pruned subtree and

in terrupt them. There ma y b e branc hes in this subtree whic h ha v e previously b een susp ended. A sp ecial

engine function, Mark_Suspended_B ranch _Rec laima ble , is used for cleaning up suc h branc hes.

The Sched_Synch function is in v ok ed when a call to a built-in predicate with side-e�ects is encoun tered.

Normally suc h calls are executed only when their branc h b ecomes leftmost in the whole tree. There are,

ho w ev er, some sp ecial predicates (e.g. those used to assert solutions in a setof), for whic h the order of

in v o cation is not signi�can t: their execution can go ahead if not endangered b y a cut within a sp eci�c

subtree. The Sched_Synch function receiv es an argumen t enco ding the t yp e of the c hec k needed, and a

p oin ter to the ro ot of the subtree concerned.

The third comm unicatio n function, Sched_Check , is called at ev ery Prolog pro cedure call. F requen t in v o-

cation of this function is necessary so that the sc heduler can answ er requests (e.g. in terrupts) from other

w ork ers without to o m uc h dela y . Note, ho w ev er, that a sc heduler ma y c ho ose to do the c hec ks only after a

certain n um b er of Sched_Check in v o cations (as is the case for the Manc hester and Argonne sc hedulers).

The nature of requests to b e handled b y Sched_Check v aries from sc heduler to sc heduler. There are, ho w ev er,

t w o common sets of circumstances: the w ork er ma y b e requested to kill its assignmen t or to mak e some of

its priv ate no des public (to mak e w ork a v ailable to other w ork ers). The latter activit y needs assistance from

the engine: the function Make_Public extends the public region on the curren t branc h do wn to a sp eci�ed

no de.

5.7 Extensions of the Basic In terface

5.7.1 Simpli�ed Bac ktrac king

When a w ork er bac ktrac ks to a liv e public no de and is able to tak e a new branc h from there, sev eral

administrativ e activities can b e a v oided. The sen try no de can b e re-used, rather than b eing mark ed as

reclaimable and re-allo cated. There is scop e for a related optimisation in the sc heduler: instead of deleting

the old sen try from the sibling c hain and then installing it as the last sibling, the sc heduler can mo v e the

sen try no de to the end of the sibling c hain (or do nothing if the old sen try w as the last c hild). The in terface

supp orts this imp ortan t optimisation b y a function Sched_Get_Work_At _Pare nt , called when the engine

bac ktrac ks to a liv e public no de. If the sc heduler, follo wing the necessary sync hronisation op erations, still

�nds the no de to b e liv e, it can reserv e an alternativ e from that no de. If the sc heduler cannot tak e w ork from

the no de in question, it returns to the engine, whic h will subsequen tly in v ok e Sched_Die_Back to acquire a

new piece of w ork.

The Sched_Get_Work_At _Pare nt function also supp orts the c ontr action op eration of the SRI mo del [17].

This op eration remo v es a dead nonfork no de after the last alternativ e has b een tak en from it. The no de in

question can b e ph ysically remo v ed only if it is on the top of the stac k of the w ork er executing the giv en

branc h.

70

5.7.2 Pruning Information

Information ab out the presence of pruning op erators in a clause ma y b e needed b y the sc heduler to p erform

pruning more e�cien tly or to distinguish b et w een sp eculativ e and non-sp eculativ e w ork. V arious algorithms

related to pruning ha v e b een dev elop ed and discussed in [10]. When designing the in terface, w e tried to

generalise and extend the format of pruning data as describ ed in [10], so that other p ossible approac hes (e.g.

[13]) can b e supp orted as w ell.

If one disregards disjunctions, the information needed ab out pruning is quite simple. A sc heduler ma y

wish to kno w whether a clause con tains cuts or commits

3

. F or more exact pruning algorithms the n um b er

of o ccurrences of eac h pruning op erator ma y b e needed. The fact that a clause m ust fail, ma y also b e of

in terest: when suc h a clause is en tered, the pruning op erators in the curren t con tin uation (i.e. in the previous

resolv en t) b ecome inaccessible. The simple set of pruning data w ould th us consist of three items for eac h

clause: the n um b er of cuts, the n um b er of commits and the Bo olean v alue indicating whether the clause

ends in a failing call (i.e. fail , but in the future, global compile time analysis migh t disco v er this prop ert y

for other calls).

The presence of disjunctions and conditionals mak es the situation more complicated. In [15] w e presen t a

set of pruning data consisting of sev en items, to describ e the pruning prop erties of a general clause (one that

ma y con tain disjunctions and conditionals).

5.8 Implemen tatio n of the In terface in the Aurora Engine

The Aurora em ulator [9] w as pro duced b y mo difying the SICStus em ulator to supp ort the SRI mo del and

b y con v erting it from a stand-alone program to an Aurora w ork er comp onen t connected b y an algorithmic

in terface to a sc heduler comp onen t. The total p erformance degradation resulting from these c hanges has

b een found to b e around 25%. In an earlier pap er [11] w e ga v e an o v erview of the c hanges imp osed b y the

SRI mo del. In this section w e concen trate on the impacts of the in terface on the engine and on c hanges

in tro duced in the new design.

5.8.1 Boundaries

The engine needs to main tain the b oundary b et w een the public and priv ate regions. Within the priv ate

region, it m ust distinguish b et w een lo c al no des, i.e. no des adjacen t to the top of the w ork er's o wn stac k, and

remote no des. This is ac hiev ed b y storing a p oin ter to the resp ectiv e b oundary no des in certain registers.

These registers are initialised when an assignmen t is started (Found : : : Work). They are up dated when the

public region is extended (Make_Public) or con tracted (Sched_Get_Work_A t_Par ent), and when bac ktrac k-

ing in the priv ate region winds bac k to the w ork er's o wn stac k. They are consulted to distinguish di�eren t

cases of bac ktrac king and pruning op erations.

5.8.2 Bac ktrac king

F rom the engine's p oin t of view, the main complication of or-parallel execution is its impact on the bac ktrac k-

ing routine. This routine has to c hec k whether it is ab out to bac ktrac k in to the public region, in whic h case the

sc heduler m ust b e in v ok ed to p erform public bac ktrac king (Sched_Die_Back or Sched_Get_Work_A t_Pa rent).

Priv ate bac ktrac king has to face the complication that the priv ate region ma y extend to other w ork ers' stac ks,

and p ossibly wind bac k to the w ork er's o wn bac k again. As explained earlier, remote no des cannot b e re-

claimed when they are trusted; instead, Mark_Node_Reclaim able is in v ok ed when dying bac k o v er a remote

no de.

Shallo w bac ktrac king is optimised in the priv ate region, but only if the curren t no de is on the top of the

w ork er's o wn stac k.

3

Note that data on ca v alier commits is not included in the pruning information , as this op eration is exp ected to b e used

only for handling exceptional circumstance s.

71

5.8.3 Memory Managemen t

As stated earlier, the stac k memory managemen t relies on the no de stac k. While �nding w ork, eac h w ork er

main tains a p oin ter to the y oungest no de that has to b e k ept for the b ene�t of other w ork ers. Suc h p oin ters

are used and up dated b y the Allocate : : : Node functions. When an assignmen t is started (Found : : : Work)

the top of stac k p oin ters for the other W AM stac ks are initialised from relev an t �elds of the no de ph ysically

preceding the em bry onic no de of the new assignmen t, as these �elds de�ne ho w m uc h of the other stac ks has

to b e k ept.

5.8.4 Pruning Op erators

Pruning op erations m ust distinguish b et w een (i) pruning lo cal no des only , (ii) pruning remote no des, and

(iii) pruning public no des. In cases (i) and (ii), the no de can b e pruned righ t a w a y , but the memory o ccupied

b y the pruned no de can only b e reclaimed in case (i). The trail m ust b e tidied in all three cases, as explained

in [11]. In case (iii), the sc heduler is resp onsible for pruning the public no des, but ma y decide to susp end

or ab ort the curren t assignmen t instead, forcing the engine to in v ok e Sched_Suspend or Sched_Be_Pruned ,

resp ectiv ely . Note that Sched_Prune is in v ok ed in all three cases, to giv e the sc heduler an opp ortunit y to

k eep pruning information up to date.

T o supp ort susp ension of cuts and commits, the compiler pro vides extra information ab out what temp orary

v ariables need to b e sa v ed un til the susp ended task is resumed. This extra information also enco des the t yp e

of the pruning op erator.

5.8.5 Premature T ermination

T o susp end the curren t assignmen t when the sc heduler uses the �susp end� exit in Sched_Prune ,

Sched_Synch , or Sched_Check , the engine creates an auxiliary no de whic h stores the curren t state of com-

putation and calls Sched_Suspend . It is up to the sc heduler to decide when the susp ended w ork ma y b e

resumed.

T o ab ort the curren t assignmen t when the sc heduler uses the �b e_pruned� exit in the ab o v e functions,

the engine deinstalls all conditional bindings made b y the curren t assignmen t, marks all remote no des as

reclaimable except the sen try no de, and calls Sched_Be_Pruned .

5.8.6 Mo v emen t

While executing Prolog co de, the binding arra y is k ept in phase with the trail stac k: whenev er a binding

is added to or remo v ed from the trail, the b ound v alue is also stored or erased in the binding arra y . While

�nding w ork, the engine main tains a p oin ter to a no de in the tree corresp onding to the curren t con ten ts of

the binding arra y . When the sc heduler asks the engine to �mo v e� the binding arra y up to a new p osition

(Move_Engine_Up), bindings whic h w ere recorded on the trail path b et w een the curren t and the new p osition

are deinstalled from the binding arra y , and the curren t p osition is up dated. Similarly , Move_Engine_Down

installs a n um b er of trailed binding in the binding arra y and up dates the curren t p osition.

When an assignmen t is started (Found : : : Work), the engine p ositions its binding arra y at the tip no de of the

new or resumed branc h in order to get ready to start executing the Prolog co de.

5.9 Applying the In terface to Andorra-I

The engine-sc heduler in terface has b een originally designed for the Aurora or-parallel Prolog system. Its

primary purp ose has b een to supp ort exc hangeable use of sev eral sc hedulers with a single engine (i.e. the

Aurora engine based on Sicstus). Recen tly the in terface has b een used to link the and-parallel engine of the

Andorra-I system with the Bristol sc heduler dev elop ed in the con text of Aurora.

In con trast with the Sicstus engine, Andorra-I p erforms and-parallel execution: an y goals whic h can b e

reduced without making c hoicep oin ts (so called determinate goals) are executed eagerly in parallel; a team

of w ork ers w ork together to exploit and-parallelism. Ho w ev er, when no determinate goals remain, Andorra-I

72

b eha v es similarly to Prolog: it uses the leftmost goal to mak e a c hoicep oin t. Moreo v er, the bac ktrac king

routine resem bles Prolog, as w ell: when a goal fails, the team bac ktrac ks to the nearest c hoicep oin t, and

starts to explore the next branc h. Th us, despite the and-parallel execution phase, Andorra-I and Aurora

b eha v e in exactly the same w a y in exploring the or-tree. F rom the p oin t of view of the in terface, an Andorra-I

team is exactly the same as an Aurora w ork er.

In the Andorra-I implemen tation the follo wing data structures ha v e b een in tro duced to supp ort the in terface.

First, in a w a y similar to Aurora, Andorra-I requires t w o additional p oin ters for eac h team: one for marking

the b oundary b et w een the public and the priv ate regions of the tree, and another for storing the curren t

binding arra y p osition. Second, a paren t p oin ter has to b e added to eac h no de (Andorra-I originally did not

require the paren t p oin ter b ecause of the �xed no de size). The bac ktrac king routine is mo di�ed so that engine

alw a ys calls the sc heduler (Sched_Die_Back), if it is in the public region. T o simplify the implemen tation,

Andorra-I curren tly do es not allo w a w ork er to w ork on other w ork ers' stac ks. Therefore, when a w ork er

resumes a susp ended branc h whic h b elongs to someone else, the branc h has to b e made public.

The main di�erence b et w een Aurora and Andorra-I arises in the handling of pruning op erators. According to

the in terface, the engine should call the sc heduler whenev er it executes a pruning op erator (Sched_Prune). If

the sc heduler decides that the pruning cannot go ahead, the engine is required to susp end the curren t branc h

and call Sched_Suspend imm ediately . In Andorra-I, ho w ev er, the pruning op erator is executed during the

and-parallel phase, and there migh t b e some other goals b eing executed sim ultaneously b y fello w w ork ers in

the team. When a w ork er needs to susp end b ecause of the pruning op erator, it has to tak e care of its team,

i.e. inform all other w ork ers to stop and then �nd new w ork together. In fact, ev en if there is only one w ork er

in the team, it is not easy to stop the and-parallel execution phase prematurely , without slo wing do wn the

whole execution pro cess. Therefore, w e ha v e decided to let the team carry on the and-parallel phase and

susp end later, if necessary . As a sp ecial case it ma y happ en that the computation fails after Sched_Prune

is called. In this case, the Andorra-I engine marks the susp ended no de as a cut_fail no de. Later on, when

the sc heduler resumes the giv en branc h, the engine will bac ktrac k imm ediately .

Preliminary p erformance results of the Andorra-I system are v ery promising [2], sho wing that Andorra-I is

capable of exploiting or-parallelism with similar e�ciency as in Aurora. The o v erall exp erience of using the

in terface in the Andorra-I implemen tation is v ery p ositiv e: the in terface pro v ed to b e w ell designed and of

appropriate abstraction lev el.

5.10 P erformance Results

No detailed p erformance analysis w ork has b een done for the new Aurora implemen tation y et. Preliminary

measuremen ts ha v e b een p erformed with the Manc hester sc heduler, on the b enc hmark suite in tro duced in

the p erformance analysis of the earlier Aurora v ersion [14]. The b enc hmarks are divided in to three groups

according to gran ularit y: course gran ularit y (top section in the tables), medium gran ularit y (middle section),

and �ne gran ularit y (b ottom section).

T able 5.1 sho ws the running times for that b enc hmark suite on the �rst generation of Aurora (using the

old in terface and an engine based on Sicstus Prolog 0.3). T able 5.2 sho ws the running times for the same

b enc hmarks in the second generation of Aurora. There is an o v erall impro v emen t of up to 60% in terms of

absolute sp eed, mostly due to the new, m uc h faster engine. F or some of the �ne gran ularit y b enc hmarks the

relativ e sp eedups ha v e deteriorated; this is b ecause the increase in engine sp eed implies a relativ e increase

in sc heduler o v erheads. F or b enc hmarks with coarse gran ularit y , and esp ecially for the ones with frequen t

susp ension and resumption (e.g. tina), the relativ e sp eedups ha v e impro v ed, sho wing the adv an tages of the

new in terface.

5.11 Conclusions and F uture W ork

W e ha v e describ ed the engine-sc heduler in terface used in the second generation of the Aurora or-parallel

Prolog system. W e ha v e de�ned a simple set of functions to co v er the t w o basic areas of engine-sc heduler

in teraction: �nding w ork and comm unicati on b et w een w ork ers. W e ha v e iden ti�ed those ev en ts during

Prolog execution that ma y b e of p oten tial in terest to sc hedulers, e.g. creation of no des, en tering clauses, etc.

W e ha v e also dev elop ed a general c haracterisation of pruning prop erties of Prolog clauses that can b e used

b oth for sc heduling sp eculativ e w ork and for impro ving the implemen tatio n of pruning op erators.

73

Aurora

Goals Workers

* rep etitions 1 4 8 11 Sicstus 0.3

8-queens1 10.11 2.54 (3.98) 1.29 (7.84) 0.97 (10.4) 8.19 (1.23)

8-queens2 29.37 7.32 (4.01) 3.73 (7.87) 2.76 (10.6) 23.60 (1.24)

tina 21.30 5.57 (3.83) 3.02 (7.06) 2.37 (8.98) 17.29 (1.23)

salt-m ustard 11.71 3.03 (3.87) 1.63 (7.18) 1.27 (9.24) 9.50 (1.23)

A VERA GE (3.92) (7.49) (9.80) (1.23)

parse2 *20 9.24 2.92 (3.17) 2.08 (4.44) 1.96 (4.72) 7.54 (1.23)

parse4 *5 8.54 2.50 (3.42) 1.67 (5.11) 1.40 (6.10) 6.91 (1.24)

parse5 6.02 1.74 (3.46) 1.17 (5.15) 0.98 (6.14) 4.89 (1.23)

db4 *10 3.12 0.87 (3.60) 0.53 (5.87) 0.45 (6.96) 2.69 (1.16)

db5 *10 3.80 1.04 (3.66) 0.64 (5.93) 0.55 (6.92) 3.28 (1.16)

house *20 8.13 2.26 (3.60) 1.40 (5.81) 1.19 (6.84) 6.51 (1.25)

A VERA GE (3.48) (5.38) (6.28) (1.21)

parse1 *20 2.49 0.90 (2.77) 0.81 (3.08) 0.87 (2.87) 2.02 (1.23)

parse3 *20 2.13 0.84 (2.54) 0.80 (2.66) 0.83 (2.57) 1.72 (1.24)

farmer *100 4.83 2.34 (2.06) 2.41 (2.00) 2.49 (1.94) 3.80 (1.27)

A VERA GE (2.46) (2.58) (2.46) (1.25)

T able 5.1: R un times, first genera tion of A ur ora

The in terface describ ed in this pap er is fundamen tally revised with resp ect to earlier v ersions. The new

in terface is designed to help a v oid sc heduling o v erheads, to mak e the set of basic concepts simpler and more

uniform, to giv e scop e for p oten tial optimisations including b etter memory managemen t, impro v ed treatmen t

of pruning op erations, and a v oidance of sp eculativ e w ork.

The main purp ose of the in terface is to enable di�eren t engines and sc hedulers to b e used in terc hangeably .

T o date, four separate sc hedulers ha v e b een written and connected to t w o di�eren t engines b y means of

the in terface. P erhaps more imp ortan tly , the ev olution of the in terface has help ed clarify man y issues in

implem en ting or-parallelism in Prolog, suc h as con traction and handling of pruning information.

The in terface has con tributed to the o v erall impro v em en t of Aurora p erformance. W e also b eliev e that the

new in terface has pla y ed a signi�can t part in the go o d p erformance results of the Bristol sc heduler. The

Bristol sc heduler has b een designed with the new in terface in mind, and, in spite of applying a v ery simple

sc heduling strategy , its p erformance is comparable (and sometimes b etter than) that of the earlier sc hedulers

[3].

The main outstanding issue whic h has not b een treated in the in terface is garbage collection. P atric k

W eemeeu w [18] has addressed the problem of garbage collection of the public parts of the tree. Since suc h

activities in v olv e sync hronisation b et w een w ork ers and p ossibly relo cation of sc heduler data, it is lik ely that

the in terface will ha v e to b e extended to supp ort garbage collection.

The in terface has recen tly b een utilised in a pro ject based on the Muse approac h to or-parallel Prolog [1].

An or-parallel v ersion of BIM_Prolog [4] is curren tly b eing pro duced b y mo difying the BIM engine and

connecting it via the in terface to the Muse sc heduler.

W e are con vinced that the applicabilit y of the in terface extends b ey ond or-parallel Prolog systems. The

Andorra exp erience is p o w erful evidence of this fact, but it m ust b e stressed that in this case, the in terface

w as used to add or-parallelism to an already and-parallel system. Generalising the in terface to co v er issues

of and-or-parallel sc heduling could b e an in teresting researc h direction to b e pursued in the future.

5.12 Ac kno wledgemen ts

The w ork on engine-sc heduler in terfaces w as initiated b y Da vid W arren. Earlier v ersions of the in terface

w ere dev elop ed b y Ross Ov erb eek and Alan Calderw o o d. The design of the new in terface b ene�ted from

74

Aurora

Goals Workers

* rep etitions 1 4 8 11 Sicstus 0.6

8-queens1 8.01 2.03 (3.95) 1.03 (7.75) 0.76 (10.6) 6.77 (1.18)

8-queens2 20.63 5.25 (3.93) 2.64 (7.81) 1.93 (10.7) 16.45 (1.25)

tina 18.40 4.65 (3.96) 2.39 (7.69) 1.79 (10.3) 13.78 (1.34)

salt-m ustard 10.89 2.82 (3.86) 1.48 (7.36) 1.11 (9.86) 8.85 (1.23)

A VERA GE (3.92) (7.65) (10.4) (1.25)

parse2 *20 7.16 2.40 (2.99) 1.71 (4.18) 1.64 (4.37) 5.87 (1.22)

parse4 *5 6.67 1.85 (3.60) 1.40 (4.76) 1.19 (5.60) 5.40 (1.24)

parse5 4.71 1.42 (3.33) 0.96 (4.89) 0.81 (5.81) 3.82 (1.23)

db4 *10 2.94 0.81 (3.63) 0.46 (6.39) 0.38 (7.82) 2.24 (1.31)

db5 *10 3.56 0.97 (3.67) 0.57 (6.25) 0.47 (7.64) 2.73 (1.30)

house *20 5.07 1.47 (3.46) 0.93 (5.48) 0.79 (6.42) 4.22 (1.20)

A VERA GE (3.45) (5.32) (6.28) (1.25)

parse1 *20 1.89 0.76 (2.47) 0.73 (2.61) 0.78 (2.42) 1.57 (1.20)

parse3 *20 1.62 0.72 (2.24) 0.68 (2.37) 0.72 (2.25) 1.34 (1.21)

farmer *100 3.61 1.92 (1.88) 2.13 (1.69) 2.19 (1.65) 3.06 (1.18)

A VERA GE (2.20) (2.22) (2.11) (1.20)

T able 5.2: R un times, second genera tion of A ur ora

sev eral discussions with T on y Beaumon t, P er Brand, Bogumiª Hausman and Ewing Lusk.

The authors are indebted to F eliks Klu¹niak, Ewing Lusk, and the anon ymous referees for careful reading

and v aluable commen ts on drafts of this pap er.

This w ork w as supp orted b y ESPRIT pro jects 2471 (�PEPMA�) and 2025 (�EDS�).

References

[1] Kha yri A. M. Ali and Roland Karlsson. The Muse approac h to or-parallel Prolog. International Journal

of Par al lel Pr o gr amming , 19(2):129�162, April 1990.

[2] An thon y Beaumon t, S. Muth u Raman, Vítor San tos Costa, Péter Szeredi, Da vid H. D. W arren, and

Rong Y ang. Andorra-I: An implemen tation of the Basic Andorra Mo del. T ec hnical Rep ort TR-90-21,

Univ ersit y of Bristol, Computer Science Departmen t, Septem b er 1990. Presen ted at the W orkshop on

P arallel Implemen tatio n of Languages for Sym b olic Computation, July 1990, Univ ersit y of Oregon.

[3] An thon y Beaumon t, S. Muth u Raman, and Péter Szeredi. Flexible sc heduling or-parallelism in Aurora:

the Bristol sc heduler. In P ARLE 91, Confer enc e on Par al lel A r chite ctur es and L anguages Eur op e .

Springer-V erlag, June 1991.

[4] BIM. BIM_Prolog release 2.4. 3078 Ev erb erg, Belgium, Marc h 1989.

[5] P er Brand. W a v efron t sc heduling. In ternal Rep ort, Gigalips Pro ject, 1988.

[6] Ralph Butler, T erry Disz, Ewing Lusk, Rob ert Olson, Ross Ov erb eek, and Ric k Stev ens. Sc heduling

OR-parallelism: an Argonne p ersp ectiv e. In Pr o c e e dings of the Fifth International Confer enc e on L o gic

Pr o gr amming , pages 1590�1605. MIT Press, August 1988.

[7] Alan Calderw o o d. Aurora�description of sc heduler in terfaces. In ternal Rep ort, Gigalips Pro ject,

Jan uary 1988.

[8] Alan Calderw o o d and Péter Szeredi. Sc heduling or-parallelism in Aurora�the Manc hester sc heduler.

In Pr o c e e dings of the Sixth International Confer enc e on L o gic Pr o gr amming , pages 419�435. MIT Press,

June 1989.

75

[9] Mats Carlsson and Péter Szeredi. The Aurora abstract mac hine and its em ulator. SICS Researc h Rep ort

R90005, Sw edish Institute of Computer Science, 1990.

[10] Bogumiª Hausman. Pruning and Sp e culative Work in OR-Par al lel PR OLOG . PhD thesis, The Ro y al

Institute of T ec hnology , Sto c kholm, 1990.

[11] Ewing Lusk, Da vid H. D. W arren, Seif Haridi, et al. The Aurora or-parallel Prolog system. New

Gener ation Computing , 7(2,3):243�271 , 1990.

[12] Vítor San tos Costa, Da vid H. D. W arren, and Rong Y ang. Andorra-I: A parallel Prolog system that

transparen tly exploits b oth and- and or-parallelism. In Pr o c e e dings of the Thir d A CM SIGPLAN Sym-

p osium on Principles and Pr actic e of Par al lel Pr o gr amming . A CM Press, April 1991.

[13] Raed Sindaha. Sc heduling sp eculativ e w ork in the Aurora or-parallel Prolog system. In ternal Rep ort,

Gigalips Pro ject, Marc h 1990.

[14] Péter Szeredi. P erformance analysis of the Aurora or-parallel Prolog system. In Pr o c e e dings of the

North A meric an Confer enc e on L o gic Pr o gr amming , pages 713�732. MIT Press, Octob er 1989.

[15] Péter Szeredi and Mats Carlsson. The engine-sc heduler in terface in the Aurora or-parallel Prolog system.

T ec hnical Rep ort TR-90-09, Univ ersit y of Bristol, Computer Science Departmen t, April 1990.

[16] Péter Szeredi, Mats Carlsson, and Rong Y ang. In terfacing engines and sc hedulers in or-parallel Prolog

systems. In P ARLE91: Confer enc e on Par al lel A r chite ctur es and L anguages Eur op e , pages 439�453.

Springer V erlag, Lecture Notes in Computer Science, V ol 506, June 1991.

[17] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

[18] P atric k W eemeeu w. Memory compaction for shared memory m ultipro cessors, design and sp eci�cation.

In Pr o c e e dings of the North A meric an Confer enc e on L o gic Pr o gr amming . MIT Press, Octob er 1990.

76

Sched_Die_Back

Sched_Be_Pruned

Sched_Suspend

Work

Sched_Start_Work

Sched_Prune

Sched_Synch

Finding work Events of interest
to the scheduler

Communication with other workers

Sched_Node_Created

S._Clause_Entered

Halt

Start

Sched_Check

Sched_Node_Reused

S._Node_Destroyed

Figure 5.2: The top level view of the interf a ce

77

Sched_Start_Work

Sched_Die_Back

Sched_Suspend

Sched_Be_Pruned

Look
for
work

Allocate_Foreign_Node

Move_Engine_Up

Found_Resumed_WorkFound_New_Work(SENTRY)

Normal exit Halt

(SENTRY)

Move_Engine_Down

Mark_Node_Reclaimable

Allocate_Node(SENTRY)

Figure 5.3: Engine functions in looking f or w ork

78

P art I I

Language extensions

79

Chapter 6

Using Dynami c Predicates in an

Or-P arallel Prolog System

1

Péter Szeredi

SZKI In telligen t Soft w are Ltd. (IQSOFT)

H-1011 Budap est, Isk ola u. 10, Hungary

szeredi@iq sof t.h u

and

Departmen t of Computer Science

Univ ersit y of Bristol, Bristol, U.K.

Abstract

Aurora is a protot yp e or-parallel implemen tatio n of Prolog for shared memory m ultipro cessors. It

supp orts the full Prolog language, th us b eing able to execute existing Prolog programs without an y

c hange. F or some programs, ho w ev er, t ypically those relying on dynamic database handling, full

compatibili t y with Prolog ma y cause unnecessary sequencing dela ys. Aurora therefore supp orts a

n um b er of extensions to Prolog, including async hronous v ersions of all side-e�ect predicates.

Programs often rely on dynamic predicates b ecause of bad programmi ng st yle. There are, ho w ev er,

applications where dynamic predicates are the most natural w a y of expressing a solution. In this

pap er w e lo ok at a simple, y et in teresting suc h application: a program for pla ying the game of

mastermind. This is a t ypical example of a searc h using a con tin ually c hanging kno wledge base.

W e �rst lo ok at sequen tial searc h strategies for pla ying the game of mastermind. W e then pro ceed

to discuss the problems arising when these strategies are executed in parallel, with async hronous

database handling. W e presen t sev eral v ersions of the mastermind program, discussing v arious

sync hronisation tec hniques and outlining prop osals for higher lev el sync hronisation primitiv es to

b e incorp orated in to Aurora. W e discuss p erformance results for the presen ted programs using an

exp erimen tal implem en tation of the sync hronisation primitiv es.

Keyw ords: Logic Programmi ng, Programming Metho dology , P arallel Execution, Sync hronisa-

tion.

6.1 In tro duction

Aurora is a protot yp e or-parallel implemen tation of the full Prolog language for shared memory m ultipro-

cessors, curren tly running on Sequen t, Encore and BBN mac hines. It has b een dev elop ed in the framew ork

1

This pap er has app eared in the pro ceedings of ILPS'91 [14]

80

of the Gigalips pro ject [7], a collab orativ e e�ort b et w een groups at the Argonne National Lab oratory in Illi-

nois, the Univ ersit y of Bristol, and the Sw edish Institute of Computer Science (SICS) in Sto c kholm. SZKI

In telligen t Soft w are (IQSOFT) in Budap est has recen tly joined the Gigalips Pro ject.

Aurora uses the SRI mo del of execution [15]. According to this mo del the system consists of sev eral workers

(pro cesses) exploring the searc h tree of a Prolog program in parallel. Eac h no de of the tree corresp onds to

a Prolog choic ep oint with a branc h asso ciated with eac h alternativ e clause.

Aurora is based on SICStus Prolog, an e�cien t, p ortable, Edin burgh st yle Prolog implemen tation. A new

v ersion of Aurora has b een �nished recen tly , whic h is fairly robust and fully compatible with the underlying

SICStus Prolog.

A n um b er of applications ha v e b een used to ev aluate the e�ciency of parallel execution in Aurora [7 , 6].

One of the ma jor outstanding problems in this resp ect is the p o or e�ciency of programs relying on dynamic

predicates.

W e w ould lik e to emphasise that w e do not w an t to adv o cate unnecessary usage of dynamic predicates.

W e b eliev e, ho w ev er, that there are problems where usage of dynamic predicates is justi�ed. F or example

there are searc h problems where the standard depth-�rst searc h of Prolog is inadequate: in suc h cases

dynamic predicates can b e used for pro viding the more sophisticated con trol of the searc h. Simila rly , dynamic

predicates ma y b e the most natural w a y to implemen t searc h problems whic h use a con tin ually c hanging

kno wledge base. A simple example of suc h searc h problem is the one encoun tered in a straigh tforw ard

algorithm for pla ying the game of mastermind, whic h is the sub ject of a case study presen ted in this pap er.

W e also b eliev e that the usage of non-declarativ e features in logic programming languages should b e reduced

in the future. This can b e ac hiev ed, for example, b y in tro ducing higher order language extensions to

encapsulate frequen tly used algorithms that curren tly can only b e programmed in a non-declarativ e w a y . The

bagof and setof predicates of curren t Prologs are t ypical examples of suc h higher order functions. Recen tly

w e ha v e dev elop ed a prop osal for a maxof predicate that encapsulates sev eral optim um searc h tec hniques,

including branc h-and-b ound and alpha-b eta pruning [12]. W e plan to dev elop parallel implemen tations for

suc h higher order predicates within Aurora itself, in a w a y similar to ho w setof is implemen ted in most of

the curren t Prolog systems. W e need appropriate sync hronisation tec hniques and to ols for this task, th us

pro viding further motiv ation for the w ork presen ted in the sequel.

W e �rst describ e the async hronous dynamic database handling predicates as pro vided in the presen t v ersion

of Aurora (Section 6.2). W e then pro ceed to the case study of v arious implemen tatio ns of the mastermind

program. W e start with a discussion of basic searc h strategies for mastermind and presen ting a (sequen-

tial) Prolog program (Section 6.3) . W e then examine ho w async hronous built-in predicates can b e used to

generalise the mastermind searc h algorithm in a w a y appropriate for parallel execution. W e �rst deal with

the basic sync hronisation problems (Section 6.4) and then pro ceed to discuss sev eral alternativ e implemen-

tations of the mastermind program, suitable for parallel execution (Sections 6.5, 6.6 and 6.7). W e presen t

p erformance results for these program-v arian ts in Section 6.8. W e end with a discussion of related w ork and

reiterating the conclusions of the pap er. An expanded form of this pap er has app eared as [13].

6.2 Extensions to Prolog in Aurora

Aurora supp orts or-parallel execution of the full Prolog language. T o preserv e compatibilit y with Prolog,

restrictions in exploiting parallelism ha v e to b e in tro duced in the case of certain non-pure language primitiv es.

The most notable examples of suc h primitiv es are the built-in predicates with side e�ects.

T o preserv e Prolog seman tics, the side-e�ect predicates ha v e to b e executed in exactly the same left-to-righ t

order as in sequen tial Prolog. In the Aurora implemen tatio n this is ac hiev ed b y susp ending the execution of

non-leftmost branc hes that are to in v ok e a side-e�ect predicate. Suc h branc hes are resumed only when they

b ecome leftmost.

F requen t susp ension leads to serious o v erheads and degradation of parallel p erformance. On the other hand,

side-e�ect predicates are often used in a con text where there is no real need to preserv e the strict left-to-righ t

order. The presen t implemen tatio n of Aurora therefore pro vides t w o additional v arian ts for eac h side-e�ect

predicate Pr e d . These are written as

asynch Pr e d e.g. asynch assert(foo) and

cavalier Pr e d e.g. cavalier write(bar) .

81

Here asynch and cavalier are pre�x op erators. The asynch Pr e d call will b e executed immediately only

if it is not in the scop e of a cut op erator, to prev en t the o ccurrence of undesired side e�ects (as discussed

b y Hausman in [3]). If the asynch call is in the scop e of a cut, then the curren t branc h will b e susp ended

un til the danger of b eing cut ceases to exist. The ca v alier form of the side e�ect predicate will b e executed

unconditionally . A t ypical usage of this form is to displa y tracing information on ho w the parallel execution

pro ceeds.

Both the async hronous and the ca v alier predicates are executed atomically . This means that if t w o comp eting

branc hes reac h a side-e�ect predicate a�ecting the same resource

2

sim ultaneously , then these predicates will

b e executed in some arbitrary order, one after the other.

Aurora also pro vides a commit op erator, denoted b y a v ertical bar (|). This is the symmetrical v ersion

of the cut op erator, whic h prunes branc hes b oth to its left and to its righ t. The commi t is comparable to

async hronous side e�ect predicates, as it is not allo w ed to pro ceed in the scop e of a (smaller) cut [3]. Note

that Aurora do es not pro vide a completely ca v alier commit op erator, as this is not a meaningful op eration.

6.3 The Game of Mastermind

The game of mastermind is a w ell kno wn game for t w o pla y ers. One of the pla y ers c ho oses a secret co de

(normally four p egs of v arious colours). The other pla y er mak es a sequence of guesses un til the secret co de

is found out. F or eac h guess, the �rst pla y er displa ys a score, consisting of t w o t yp es of sp ecial scoring p egs:

a �bull� is sho wn for eac h exact matc h and a �co w� is giv en for eac h inexact matc h.

There is a natural strategy for pla ying the game of mastermind, whic h, in the con text of logic programmi ng,

w as �rst describ ed b y v an Emden [2]. The strategy is based on the observ ation that, at eac h stage of the

game, the scores receiv ed so far restrict the set of p ossible secret co des. Only those secret co des are feasible

whic h are c onsistent with all the guess-score pairs pla y ed so far, i.e. whic h w ould giv e iden tical scores for

these guesses. The v ery simple but e�ectiv e strategy describ ed b y v an Emden is the follo wing: determine

the next guess as an arbitrary one of the feasible secret co des.

The problem of �nding feasible secret co des in v olv es a fairly large searc h space, hence its suitabilit y for Prolog

and for exploiting or-parallelism. There are t w o basic strategies for exploring this searc h space, whic h w e

will call the m ulti-searc h and the single-searc h approac h.

According to the �rst approac h (used in v an Emden's original pap er), one can view the pro cess of pla ying

the game as consisting of sev eral searc hes, one for eac h turn of the game. Eac h suc h searc h is based on

the history of previous guesses and corresp onding scores, and attempts to �nd a new guess consisten t with

this history . As so on as an appropriate guess is found, the searc h is abandoned, the corresp onding score

is obtained from the opp onen t, and the next turn is started with the extended history (unless the game is

�nished).

An imp ortan t prop ert y of this algorithm for pla ying mastermind is that eac h guess has to b e tried only once

during the whole game

3

. This leads to an alternativ e, single-searc h strategy , in whic h the whole game is

implem en ted as a single scan through the searc h space of all p ossible guesses. Ev ery guess is then c hec k ed

for consistency with the curren t history , whic h is up dated in eac h turn of the game. There is only a single

pruning op eration in this case, when the game is �nished. This strategy w as used in the v arian t of mastermind

presen ted b y Sterling and Shapiro [11].

There is no signi�can t di�erence b et w een the e�ciency of the t w o searc h strategies in a sequen tial Prolog

system. In fact the m ulti-searc h strategy can b e made to �sim ulate� the other strategy: if one in tro duces an

arbitrary ordering on the set of all guesses, then eac h constituen t searc h can start en umerating the guesses

from the �rst y et un tried one. If, ho w ev er, the mastermind searc h is to b e p erformed in or-parallel, then

the dra wbac ks of the m ulti-searc h approac h b ecome apparen t. Since the searc h space has to b e pruned in

eac h turn, all the e�ort sp en t on exploring the searc h space to the righ t of the leftmost consisten t guess is

w asted. It is p ossible to relax the algorithm, and accept an y consisten t guess (rather than the leftmost one)

for the next turn. In this case, ho w ev er, there is no straigh tforw ard w a y of excluding the guesses considered

so far, and so the whole searc h space has to b e en umerated in eac h turn.

W e will implemen t the single-searc h strategy for pla ying mastermind using the dynamic database of Prolog

2

e.g. the same dynamic predicate, or the same output stream

3

This is b ecause an y guess whic h has b een considered earlier, has either b een found inconsisten t with a sub-history , or has

b een pla y ed in a turn and a non-�nal score has b een receiv ed.

82

to store the curren t history . W e will use this program as a v ehicle for the exploration of the problems in v olv ed

in parallel execution of Prolog programs relying on dynamic predicates. W e w ould lik e to emphasise that

our principal goal is to presen t general problems and tec hniques rather than to o�er impro v emen ts to the

mastermind program itself

4

.

mastermi nd(Co de) :-

init_histo ry,

generate_g ues s(C od e),

current_hi sto ry(Hi sto ry), consistent _hi st ory (C ode , History),

ask(Code, Score), extend_his tor y(Cod e, Score),

final_scor e(S cor e) , !.

% Return the current history.

current_ his to ry(H): -

history(H) .

% Add the Code-Scor e pair to the front of the current history.

extend_h ist or y(C ode , Score):-

retract(hi sto ry(H)), assert(his to ry([Co de -Sc or e|H])).

% Set up an empty history.

init_his tor y: -

retractall (hi sto ry (_)), assert(hi sto ry([])).

% consisten t_ his tor y(Gue ss , History)

% Guess is consistent with each code-score pair in the History list.

% generate_ gu ess (Gu es s)

% Guess is a guess.

% ask(Guess , Score)

% Score is the score for Guess.

% final_sco re (Sc ore)

% Score is final, i.e. the secret code has been found out.

Figure 6.1: The Pr olog pr ogram f or the game of mastermind

Figure 6.1 sho ws a v ersion of the mastermind program based on the single searc h approac h. It is similar to

the one presen ted b y Sterling and Shapiro, but the whole history list is stored in a single clause, rather then

ha ving a separate clause for eac h guess-score pair. This mak es our initial discussion of parallel execution

simpler�w e will consider a m ulti-clause represen tation in Section 6.6.

The program is based on a generate and test lo op. W e start with initialising our data structure: asserting

an empt y list as the curren t history (init_history). W e then pro ceed to en umerate all p ossible secret

co des (generate_guess), and c hec k their consistency against the curren t history as retriev ed from the

database (current_history

5

). If a co de is found to b e consisten t, w e pro ceed to mak e a turn, i.e. ask for

the corresp onding score and extend the history accordingly (extend_history). W e no w c hec k if the score

receiv ed is �nal, in whic h case the remaining c hoices are pruned and the game is �nished. Otherwise w e

bac ktrac k to generate_guess and con tin ue c hec king the remaining co des.

Figure 6.1 also sho ws a brief description of the predicates implem en ting the lo w er la y er of the mastermind

program. This lo w er la y er, whic h is common to all examples of this pap er, is presen ted in full in [13].

6.4 Sync hronisati on Primitiv es in Aurora

The mastermind program of Figure 6.1 is inheren tly sequen tial. When run on the Aurora or-parallel Prolog

system, all the predicates that access or mo dify the dynamic database are executed in strict left-to-righ t

order. This means that only the call to generate_guess will b e expanded in parallel. As so on as execution

4

As v an Hen tenryc k [5] p oin ted out, constrain t based tec hniques yield v ery go o d results in impro ving the e�ciency of the

mastermin d algorithm.

5

The current_h ist ory predicate is in tro duced here for the sak e of future, more complex, v ersions of the program.

83

reac hes the call of history in current_history , the branc h has to susp end and w ait un til it b ecomes

leftmost.

As discussed in Section 6.2, Aurora pro vides an async hronous v ersion for eac h dynamic database handling

predicate. It is fairly ob vious, ho w ev er, that replacing all dynamic database predicates b y their async hronous

coun terparts do es not pro duce the desired e�ect. What w e need in the �rst place is the atomicit y of

more complex op erations, suc h as replacing a clause in a dynamic predicate (e.g. in extend_history). In

algorithmi c languages suc h complex atomic op erations are normally constructed with the help of lo cks . One

w ould th us b e tempted to adv o cate the in tro duction of lo c king primitiv es in to Aurora. It ma y b e in teresting

to note, ho w ev er, that the presence of the atomic retract op eration in Aurora can b e used to pro vide an

exp erimen tal implem en tation of lo c ks (Figure 6.2).

init_loc k(L oc kNa me) :-

asynch retractal l(loc k_ dat a(Loc kN ame)),

asynch assert(lo ck _da ta (Lo ck Nam e)).

lock(Loc kNa me):-

repeat, asynch retract(loc k_ dat a(Loc kNa me)), !.

unlock(L ock Na me) :-

asynch assert(lo ck _da ta (Lo ck Nam e)).

Figure 6.2: Basic opera tions on locks

Lo c ks are implem en ted here using a dynamic predicate lock_data . Creating a lo c k (init_lock) means

asserting a clause lock_data(LockN ame) , where LockName is an arbitrary ground term. The presence of

suc h a clause in the database corresp onds to the lo c k b eing free. Grabbing the lo c k (lock) is done b y

retracting the appropriate clause. The rep eat-lo op ensures that the retract op eration is re-tried if the lo c k

is b eing curren tly held, th us forming a busy-w aiting lo op. F reeing the lo c k is done b y asserting the clause

again (unlock).

One can use suc h lo c king primitiv es to ensure atomicit y and exclusivit y of dynamic predicate op erations

(current_history and extend_history in our case). W e b eliev e, ho w ev er, that these primitiv es are still

to o lo w-lev el and unsafe in the con text of an or-parallel Prolog. Our main concern is that eac h lo c king

op eration should b e paired with a corresp onding unlo c k op eration. The con trol structure of Prolog is m uc h

ric her than that of the traditional algorithmic languages: the execution of a predicate can abruptly end

b ecause of failure or b ecause of its b eing pruned. F or the lo c king sc heme to b e safe, the programmer th us

has to cater for the p ossibilit y of b oth failure and pruning, in all regions of co de where lo c ks are held. A

further problem can b e caused b y the fact that, in a system lik e Aurora, side-e�ect predicates can cause

branc hes to susp end. The in teraction of lo c king and susp ension can lead to undesired b eha viour, including

deadlo c ks.

In order to o v ercome the problems of the lo c king sc heme, w e prop ose a higher lev el sync hronisation primitiv e,

v ery similar to the notion of monitor , as adv o cated b y Bo yle et al. [1] in the con text of the C language.

The essence of our prop osal is that the user should explicitly mark the critical sections of co de (i.e. those

requiring exclusiv e access to some resource), b y encapsulating suc h sections in a call

asynch_section(Key, Goal).

The �rst argumen t of the asynch_section predicate iden ti�es the t yp e of the critical section, while the

second argumen t is a goal, or a sequence of goals, actually constituting the critical section. The meaning

of this construct is to execute Goal in suc h a w a y that no other asynch_section(Key , : : :) goal (with the

same Key) will b e run during the execution of Goal . Since w e w an t to k eep the notion of critical section as

simple as p ossible, w e assume that Goal is determinate

6

.

The Key argumen t of asynch_section allo ws sev eral indep enden t critical sections to b e established within

the same program. It is v ery similar to the name of a lo c k, in fact an exp erimen tal implemen tati on of

asynch_section can b e easily built using lo c ks, as sho wn in Figure 6.3.

6

Note that it is fairly easy to mo dify the implemen t atio n of the asynch_sect ion predicate in Figure 6.3 to cater for nonde-

terministic goals.

84

asynch_s ect io n(K ey, Goal):-

lock(Key), asynch_cal l(Goa l) , !, unlock(Key) .

asynch_s ect io n(K ey, _):-

unlock(Key), fail.

asynch_c all ((Goa l, Goals)):-

!, asynch Goal, asynch_cal l(Goa ls).

asynch_c all (G oal):-

asynch Goal.

init_asy nch _s ect ion (K ey) :-

init_lock(Key).

Figure 6.3: An experiment al implement a tion of asynch_section

Only non-sync hronised side-e�ect predicates are allo w ed in critical sections. As seen in Figure 6.3, the

subgoals textually presen t in the second argumen t of asynch_section are automatically executed in asyn-

c hronous mo de. If a side-e�ect predicate is called indirectly within asynch_section , then it has to b e

explicitly pre�xed with asynch or cavalier . This restriction enables us to a v oid susp ension within critical

sections: if the implem en tation ensures (p ossibly via susp ension) that the whole asynch_section call is

em bark ed up on only when not endangered b y cuts, then an y non-sync hronised side-e�ect predicate within

the asynch_section call will b e able to pro ceed without susp ension.

The exp erimen tal implemen tation tak es care of unlo c king (i.e. exiting the critical section) at b oth the success

and the failure exit of Goal . W e in tend to build a lo w er lev el implemen tatio n of asynch_section whic h will

handle the case of the critical section b eing sub ject to pruning as w ell. Suc h a lo w er lev el implemen tatio n

will also b e able to replace busy w aiting b y susp ension, using appropriate sc heduling tec hniques.

6.5 The P arallel Mastermind Program

Let us no w turn to pro ducing a parallel v ersion of the mastermind algorithm of Figure 6.1. As a �rst

attempt one could suggest enclosing the predicates that access or mo dify the history dynamic predicate in

asynch_section calls. This mo di�cation, ho w ev er, is not su�cien t, as it do es not cater for the in teraction of

the sim ultaneous extensions. F or example, it ma y happ en that t w o guesses, b oth consisten t with the curren t

history , are c hec k ed sim ultaneously and then added to the history . No w the second of these extensions ma y

not b e consisten t with the whole curren t history , as it has not b een c hec k ed against the most recen t extension.

This is con trary to the basic assumption of our mastermind algorithm, i.e. that only suc h guesses are made

that are consisten t with the history of the game so far.

A simple solution w ould b e to mak e the async hronous section bigger so that it co v ers all op erations from

accessing the curren t history up to the p ossible up date of history . This w ould mean, ho w ev er, that only the

generate_guess call w ould b e explored in parallel, and all the remaining calls, b eing in a critical section,

w ould b e sequen tialised. W e are therefore lo oking for a solution where signi�can t parts of the computation

are done outside the critical section.

mastermi nd(Co de) :-

init_async h_s ect io n(m m) , init_his tor y,

generate_g ues s(C od e),

current_hi sto ry(Hi sto ry), consistent _hi st ory (C ode , History),

asynch_sec tio n(m m, (

history(New His to ry) , append(Unc hec ked , History, NewHistor y),

consiste nt_ his to ry(Co de, Unchecked), ask(Code, Score),

asserta(his tor y([Co de -Sc or e|N ew His tor y])),

retract(hi sto ry (Ne wH ist or y))

)),

final_scor e(S cor e) , |.

Figure 6.4: The mastermind predica te with pr oper consistency check

85

Our �rst attempt to ac hiev e this goal is sho wn in Figure 6.4. The critical section no w con tains the follo wing:

reading the curren t state of history again (NewHistory), using append to calculate the (p ossibly empt y)

di�erence b et w een this NewHistory and the p ortion of history already c hec k ed for consistency , and c hec king

the di�erence for consistency . If the co de in question is found to b e consisten t with the unc hec k ed part of

the history then the score is ask ed for and the history is extended. Note that the cut in the mastermind

predicate has b een replaced b y a commit (|), so that w e do not insist on �nding the leftmost solution (as

w e actually kno w that the solution is unique).

The rep eated consistency c hec k can b e mo v ed out of the critical section at the exp ense of making the whole

algorithm sligh tly more complex. Figure 6.5 sho ws the �nal v ersion of the mastermind program using the

single clause data represen tation. A new, recursiv e pro cedure

ask_if_consistent(C ode, CheckedHistory, Score)

is in tro duced with the o v erall task of c hec king Code against the curren t history , under the assumption that

it has already b een c hec k ed against CheckedHistory .

mastermi nd(Co de) :-

init_async h_s ect io n(m m) , init_his tor y,

generate_g ues s(C od e),

current_hi sto ry(Hi sto ry), consistent _hi st ory (C ode , History),

ask_if_con sis ten t(Cod e, History, Score), final_scor e(S cor e) , |.

% Assume Code has already been found consistent with Checked.

% If Code is not consisten t with the current history then fail,

% otherwise ask for the Score and extend the history.

ask_if_c ons is ten t(C od e, Checked, Score):-

asynch_sec tio n(m m, (

history(Che cke d) , % Has the whole history been checked?

ask(Code , Score),

asserta(his tor y([Co de -Sc or e|C he cke d])),

retract(his tor y(Che ck ed))

)), !.

ask_if_c ons is ten t(C od e, Checked, Score):-

current_hi sto ry(Ne wHi st ory),

append(UnC hec ked , Checked, NewHistor y),

consistent _hi sto ry (Co de , UnChecke d),

ask_if_con sis ten t(Cod e, NewHistor y, Score).

current_ his to ry(H): -

asynch history(H), !.

init_his tor y: -

retractall (hi sto ry (_)), assert(hi sto ry([])).

Figure 6.5: P arallel mastermind with single cla use represent a tion

The �rst clause of ask_if_consistent succeeds only if there w ere no c hanges in the curren t history since

it has b een last read and c hec k ed. If this is the case, the opp onen t is ask ed for the score and the history

extended. The whole b o dy of this clause is a critical section, so that no further c hanges can tak e place un til

the giv en guess is pro cessed completely .

The second clause of ask_if_consiste nt reads the curren t history , calculates the di�erence, c hec ks it, and

recursiv ely calls itself. These activities do not ha v e to b e included in a critical section.

Both v ersions of the mastermind program in tro duced in this section (Figures 6.4 and 6.5) prop erly implemen t

the mastermind algorithm and at the same time allo w the exploration of the searc h tree to b e p erformed in

parallel. Note also that b oth programs con tain critical sections that can fail. F or example, in the �rst clause

of ask_if_consistent in Figure 6.5, the critical section fails when the curren t history has b een mo di�ed

since the last c hec k. If w e had to program this algorithm using lo c ks, w e w ould ha v e to use a m uc h more

complex con trol structure.

86

6.6 Using Multiple Clause Data Represen tation

The sync hronisation sc heme used in the previous section in terferes with the logic of our algorithm, as it

requires an extra lev el of recursion

7

to pro cess the history . This section presen ts an alternativ e solution,

whic h a v oids this b y storing the history as a sequence of clauses and using a single lo op for pro cessing the

clauses. The clauses are of the form history(N, Guess-Score) and express the fact that the guess Guess

w as put forw ard and the score Score receiv ed in the N th turn.

mastermi nd(Co de) :-

init_async h_s ect io n(m m) , init_his tor y,

generate_g ues s(C od e),

ask_if_con sis ten t(1, Code, Score), final_sco re (Sc or e), |.

% Assume Code has already been found consistent with all turns

% before Turn. Fail if turn Turn exists and Code is not

% consisten t with it. If Turn does not exist, make it.

ask_if_c ons is ten t(T ur n, Code, Score):-

asynch history(T ur n, GuessScore), !,

consistent _gu ess (C ode , GuessScore),

Next is Turn+1, ask_if_con si ste nt (Ne xt, Code, Score).

ask_if_c ons is ten t(T ur n, Code, Score):-

asynch_sec tio n(m m, (

\+ asynch history(T ur n,_),

ask(Code , Score), asserta(his to ry(Tur n, Code-Scor e))

)), !.

ask_if_c ons is ten t(T ur n, Code, Score):-

ask_if_con sis ten t(Tur n, Code, Score).

init_his tor y: - retractal l(his to ry(_, _)).

% consisten t_ gue ss(Gu ess , CodeScore)

% Guess is consistent with the CodeScore pair.

Figure 6.6: P arallel mastermind (mul tiple cla use represent a tion)

The program is sho wn in Figure 6.6. The �rst argumen t of the predicate ask_if_consistent (Turn) is

no w a n um b er, the serial n um b er of the next turn to b e c hec k ed for consistency . The �rst clause of this

predicate is applicable when suc h a turn has already b een made, i.e. there is a corresp onding history

clause. In this case the co de is c hec k ed for consistency against the guess-score pair stored in the history

(consistent_guess (Cod e, GuessScore)). When all turns made so far ha v e b een found consisten t, the �rst

clause of ask_if_consiste nt fails and the second clause is executed. The task of the second clause is to

mak e the next turn, b y asking the opp onen t for the score and extending the history . The whole of this clause

is a critical section, whic h actually con tains a rep eated c hec k whether Turn is still non-existen t (\+ asynch

history(Turn,_)). If the history has b een extended b y another w ork er in the mean time, the second clause

fails and the third clause causes the predicate to b e called again, so that the recen t extension is c hec k ed for

consistency as w ell. W e could ha v e a v oided this rep etition b y transp osing the �rst t w o clauses. This w ould

mean, ho w ev er, loss of e�ciency as the m uc h less frequen tly succeeding clause (whic h also con tains a critical

section) w ould b e tried �rst.

6.7 Predicates for Handling Shared Data

Our last v ersion of mastermind w as based on incremen tal construction of the history predicate. If w e view

this dynamic predicate as the represen tation of the history list, w e could consider the pro cess of adding

clauses to it analogous to the extension of a shared op en-ended list. With this view in mind, w e prop ose a

set of primitiv es for incremen tal building of general Prolog terms in the shared database. The shared terms

are referred to b y some sp ecial data ob jects, called references. The basic op erations on these ob jects include

7

in the ask_if_cons is ten t predicate�the lo w er lev el of recursion is in the predicate consistent _hi sto ry whic h scans the

history list.

87

the follo wing:

create_ref(Ref) creates a new reference to a shared data ob ject in Ref .

expand_ref(Ref, Term, Goal) asso ciates Term with reference Ref , ha ving previously executed Goal , if

this is p ossible. If Ref has already b een asso ciated with a v alue, or Goal fails, expand_ref fails as w ell.

The whole op eration is atomic.

access_ref(Ref, Term) returns the Term asso ciated with Ref , if there is one; otherwise it fails.

mastermi nd(Co de) :-

create_ref (Hi sto ry), generate_g ue ss(Cod e) ,

ask_if_con sis ten t(His to ry, Code, Score), final_scor e(S cor e) , |.

% Check Code for consisten cy with History.

% If found consistent , make the next turn and return Score.

ask_if_c ons is ten t(H is tor y, Code, Score):-

access_ref (Hi sto ry , [GuessSc ore |R est His to ry]), !,

consistent _gu ess (C ode , GuessScore),

ask_if_con sis ten t(Res tH ist or y, Code, Score).

ask_if_c ons is ten t(H is tor y, Code, Score):-

expand_ref (Hi sto ry , [Code-Sc ore |N ewH ist or y],

(ask(Code, Score), create_re f(New His to ry))

), !.

ask_if_c ons is ten t(H is tor y, Code, Score):-

ask_if_con sis ten t(His to ry, Code, Score).

Figure 6.7: The mastermind pr ogram using references

Figure 6.7 sho ws the mastermind algorithm based on the ab o v e predicates. The structure of the program

closely resem bles our previous v ersion. The �rst argumen t of ask_if_consisten t is no w a reference to the

y et unc hec k ed part of the history list. If this reference is instan tiated (access_ref), then the appropriate

consistency c hec k is made, and the recursion con tin ues with the tail of the list. If the unc hec k ed part is

empt y , an attempt is made to extend the history list, using the atomic expand_ref predicate. If this fails,

due to the history ha ving b een extended in the mean tim e b y another w ork er, the third clause pro vides for

the rep etition of the whole predicate.

Figure 6.8 sho ws an exp erimen tal implemen tatio n of the reference-handling primitiv es. The references are

represen ted b y facts of form ref(Ref, Term) . Suc h a fact is added to the database when Ref b ecomes

asso ciated with Term . In this implemen tatio n references are just n um b ers. Consecutiv e reference n um b ers

are generated using a coun ter last_ref (cf. create_ref). Expanding a reference is a critical section, whic h

�rst c hec ks if the reference is still unexpanded, then calls the goal argumen t of expand_ref , and �nally

creates the new reference b y asserting it. Accessing a reference simply translates to c hec king whether the

giv en reference is presen t in the database. Note that, due to lac k of space, the co de for initialisation of

reference-handling op erations is not sho wn here.

create_r ef(Re f): -

asynch_sec tio n(l as t_r ef , (

retract(las t_r ef (La st)), Ref is Last+1, assert(la st_ ref (R ef))

)).

expand_r ef(Re f, Term, Goal):-

asynch_sec tio n(r ef , (

\+ asynch ref(Ref, _), Goal, asserta(re f(R ef , Term))

)).

access_r ef(Re f, Term):-

asynch ref(Ref, Term).

Figure 6.8: An experiment al implement a tion of reference-handling primitives

88

W e en visage a lo w er lev el implemen tation of these primitiv es, in whic h the references will b e actual p oin ters

to shared Prolog terms. Accessing a reference in suc h an implemen tation will b e a constan t time op eration.

6.8 Exp erimen tal P erformance Results

T able 6.1 sho ws preliminary p erformance results (on a Sequen t Symmetry with 12 pro cessors) for the four

v ersions of the mastermind program presen ted in this pap er: the Prolog v ersion (Figure 6.1), the one using a

single clause for storing the history (Figure 6.5), the one with the m ultiple clause represen tation (Figure 6.6)

and the one using references (Figure 6.7). The exp erimen tal implemen tation of sync hronisation predicates

(lo c king, asynch_section and reference handling) w as used as sho wn in Figures 6.2, 6.3 and 6.8.

The �rst column in the table giv es the a v erage execution time for the one-w ork er case while the remaining

nine columns sho w the sp eedups relativ e to the �rst column. Eac h of the programs w as run with three secret

co des tak en from di�eren t parts of the searc h tree, and measuremen ts for eac h secret co de w ere rep eated

three times. The table sho ws a v erage run times and sp eedups.

W ork ers

V ersion 1 2 3 4 5 6 7 8 9 10

(Time) (Sp eedup)

Prolog 2.18s 0.83 0.83 0.82 0.83 0.83 0.83 0.83 0.83 0.83

single-clause 3.05s 1.69 3.17 3.97 4.13 5.81 6.23 6.46 6.94 7.01

m ulti-clause 5.56s 2.02 3.63 4.27 4.72 7.24 7.25 8.42 8.51 8.39

reference 5.73s 2.01 3.45 4.30 4.78 6.91 7.12 7.38 8.31 8.32

T able 6.1: Execution times and speedups f or the mastermind pr ogram

There is a signi�can t increase of the single w ork er execution time for the parallel v ersions of mastermind

with resp ect to the Prolog v ersion (see the �rst column of the table). This is clearly due to the o v erheads

asso ciated with the exp erimen tal implemen tatio n of sync hronisation predicates. On the other hand, the

Prolog v ersion sho ws a constan t slo w-do wn of 17�18% when run with m ultiple w ork ers, due to the o v erheads

of susp ension (necessitated b y the usage of sync hronous database predicates). The other three async hronous

v arian ts sho w fairly go o d, sometimes sup erlinear sp eedups

8

. These program v arian ts, run with 10 w ork ers,

are 3�5 times faster, in terms of absolute sp eed, then the Prolog v ersion run with a single w ork er. W e b eliev e

that these results are v ery promising.

6.9 Related W ork

W ork on using side-e�ect predicates and pruning op erators in the con text of Aurora w as started b y Hausman,

Ciepielewski and Calderw o o d [4]. Hausman's thesis [3] con tains a detailed discussion of the implemen tatio n

issues of side-e�ect predicates. Sehr [10] presen ts an alternativ e approac h to the implemen tatio n of dynamic

database predicates, based on incremen tal up dating of the searc h tree when c hanges are made in the database.

Neither of these pap ers deals with the issues of explicit sync hronisation and atomicit y of more complex side-

e�ect op erations.

Reynolds and Kefalas [8] addresses the problems of or-parallel execution of searc h problems in Prolog within

their Bra v e system. They in tro duce a sp ecial database for storing partial results or lemmas , with a restricted

set of up date op erators. While this approac h is certainly useful for some applications, it is not capable of

handling more complex programs, e.g. the parallel v ersions of mastermind describ ed here. On the other

hand, it ma y b e of in terest to implem en t the lemma- handli ng primitiv es of Bra v e using the sync hronisation

tec hniques presen ted in this pap er.

Sarasw at [9] dev elops a family of concurren t constrain t programming languages, and deals with the issues of

sync hronisation and atomicit y with resp ect to and-parallel execution. W e b eliev e that some of the tec hniques

in tro duced in the con text of (and-parallel) concurren t logic programming can b e utilised in or-parallel systems

8

The sup erlinearit y is due to the decrease in the n um b er of Prolog reduction steps required to �nd a solution, b ecause of

the concurren t exploration of the searc h space.

89

as w ell. In fact, the predicates for creating and accessing shared data (Section 6.7) w ere inspired b y the Ask

and T ell constrain ts as describ ed b y Sarasw at

9

.

6.10 Conclusions and F urther W ork

W e ha v e presen ted a case study of v arious programs for pla ying the game of mastermind in the con text of the

Aurora or-parallel Prolog system. W e ha v e discussed the main problems asso ciated with parallel execution

of programs using dynamic database handling predicates. W e ha v e sho wn ho w async hronous database

handling predicates can b e used to generalise the mastermind searc h algorithm, to mak e parallel execution

more e�cien t. W e ha v e discussed sync hronisation tec hniques in general and presen ted prop osals for t w o t yp es

of higher lev el sync hronisation primitiv es to b e incorp orated in to Aurora: the asynch_section predicate for

marking critical sections of database up dates, and the set of predicates for incremen tal construction of shared

data, based on the notion of reference. W e ha v e sho wn promising p erformance results using an exp erimen tal

implem en tation of the prop osed predicates.

W ork on parallel execution of Prolog programs relying on dynamic predicates can b e pursued further in

sev eral directions. First, a broad sp ectrum of existing Prolog applications should b e examined and �p orted�

to Aurora. By the term �p orting� here w e mean an appropriate transformation of the program that eliminates

unnecessary sequen tialisation. W e b eliev e that the sync hronisation primitiv es in tro duced in this pap er, as

opp osed to the ra w atomic async hronous op erations of Aurora, can serv e as useful to ols in this pro cess.

As a second direction of further w ork w e should men tion the problems of in teraction b et w een sync hronisation

predicates and pruning op erators. Some progress in this area, extending the w ork presen ted in this pap er,

has b een rep orted in [12].

As already men tioned, our longer term goals include dev eloping higher order predicates that encapsulate

some of the algorithms curren tly requiring dynamic predicates, and at the same time allo w e�cien t parallel

execution. The sync hronisation tec hniques and to ols presen ted in this pap er ha v e already b een used in

the implemen tati on of suc h a higher order predicate (the maxof predicate, [12]). W e b eliev e that suc h

sync hronisation to ols are indisp ensable in further exp erimen ts aiming at the dev elopmen t of new higher

order predicates of this kind.

6.11 Ac kno wledgemen ts

The author w ould lik e to thank his colleagues in the Gigalips pro ject at Argonne National Lab oratory , the

Univ ersit y of Bristol, the Sw edish Institute of Computer Science and IQSOFT. Sp ecial thanks are due to

Da vid H. D. W arren for con tinous encouragemen t and help in this w ork, as w ell as to Mats Carlsson and

F eliks Klu¹niak for detailed commen ts on earlier drafts of this pap er.

This w ork w as supp orted b y the ESPRIT pro ject 2025 �EDS�, the Hungarian National Committee for

T ec hnical Dev elopmen t under pro ject G1-11-034, and the Hungarian-U.S. Science and T ec hnology Join t

F und in co op eration with the Hungarian National Commi ttee for T ec hnical Dev elopmen t and the U.S.

Departmen t of Energy under pro ject J.F. No. 031/90.

References

[1] James Bo yle, Ralph Butler, T errence Disz, Barnett Glic kfeld, Ewing Lusk, Ross Ov erb eek, James

P atterson, and Ric k Stev ens. Portable Pr o gr ams for Par al lel Pr o c essors . Holt, Rinehart, and Winston,

1987.

[2] Maarten H. v an Emden. Relational programmi ng illustrated b y a program for the game of mastermind.

T ec hnical Rep ort CS-78-48, Departmen t of Computer Science, Univ ersit y of W aterlo o, On tario, Canada,

1978.

[3] Bogumiª Hausman. Pruning and Sp e culative Work in OR-Par al lel PR OLOG . PhD thesis, The Ro y al

Institute of T ec hnology , Sto c kholm, 1990.

9

I am indebted to Vija y Sarasw at for enligh teni ng discussions on this topic.

90

[4] Bogumiª Hausman, Andrzej Ciepielewski, and Alan Calderw o o d. Cut and side-e�ects in or-parallel

Prolog. In International Confer enc e on Fifth Gener ation Computer Systems 1988 . ICOT, 1988.

[5] P ascal v an Hen tenryc k. Constr aint Satisfation in L o gic pr o gr amming . The MIT Press, 1989.

[6] F eliks Klu¹niak. Dev eloping applications for Aurora. T ec hnical Rep ort TR-90-17, Univ ersit y of Bristol,

Computer Science Departmen t, August 1990.

[7] Ewing Lusk, Da vid H. D. W arren, Seif Haridi, et al. The Aurora or-parallel Prolog system. New

Gener ation Computing , 7(2,3):243�271 , 1990.

[8] T. J. Reynold and P . Kefalas. OR-parallel Prolog and searc h problems in AI applications. In L o gic

Pr o gr amming: Pr o c e e dings of the Seventh International Confer enc e , pages 340�354. MIT Press, 1990.

[9] Vija y A. Sarasw at. Concurr ent Constr aint Pr o gr amming L anguages . PhD thesis, Carnegie-Mellon

Univ ersit y , Jan uary 1989.

[10] Da vid C. Sehr. Or-parallel execution of Prolog programs with side-e�ects. Master's thesis, Univ ersit y

of Illinois at Urbana-Champaign, 1988.

[11] Leon Sterling and Eh ud Shapiro. The A rt of Pr olo g . The MIT Press, 1986.

[12] Péter Szeredi. Design and implem en tation of Prolog language extensions for or-parallel systems. T ec h-

nical Rep ort, SZKI IQSOFT and Univ ersit y of Bristol, Decem b er 1990.

[13] Péter Szeredi. Using dynamic predicates in Aurora � a case study . T ec hnical Rep ort TR-90-23, Univ ersit y

of Bristol, No v em b er 1990.

[14] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vija y Sarasw at and

Kazunori Ueda, editors, L o gic Pr o gr amming: Pr o c e e dings of the 1991 International L o gic Pr o gr amming

Symp osium , pages 355�371. The MIT Press, Octob er 1991.

[15] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

91

Chapter 7

Exploiting Or-parallelism in

Optim i sati on Problems

1

Péter Szeredi

2

IQSOFT�SZKI In telligen t Soft w are Ltd.,

Isk ola u. 10, H-1011 Budap est, Hungary ,

szeredi@iq sof t.h u

Abstract

Sev eral successful m ultipro cessor implemen tatio ns of Prolog ha v e b een dev elop ed in recen t y ears,

with the aim of exploiting v arious forms of parallelism within the Prolog language. Or-parallel

implem en tations, suc h as Aurora or Muse w ere among the �rst to supp ort the full Prolog language,

th us b eing able to execute existing Prolog programs without an y c hange. There are, ho w ev er,

sev eral application areas where the simple built-in con trol of Prolog execution hinders e�cien t

exploitation of or-parallelism.

In this pap er w e discuss the area of optimisation problems, a t ypical application area of this kind.

The e�ciency of an optim um searc h can b e dramatically impro v ed b y replacing the exhaustiv e

depth-�rst searc h of Prolog b y more sophisticated con trol, e.g. the branc h-and-b ound algorithm

or the minim ax algorithm with alpha-b eta pruning. W e dev elop a generalised optim um searc h

algorithm, co v ering b oth the branc h-and-b ound and the minim ax approac h, whic h can b e executed

e�cien tly on an or-parallel Prolog system. W e de�ne appropriate language extensions for Prolog�

in the form of new higher order predicates�to pro vide a user in terface for the general optim um

searc h, describ e our exp erimen tal implemen tatio n within the Aurora system, and presen t example

application sc hemes.

Keyw ords: Logic Programming, Programming Metho dology , P arallel Execution, Optim um Searc h.

7.1 In tro duction

Dev elopmen t of parallel Prolog systems for m ultipro cessor arc hitectures has b een one of the new researc h

directions of the recen t y ears. Implemen tation tec hniques ha v e b een dev elop ed for v arious parallel execution

mo dels and for v arious t yp es of parallelism. Or-parallel execution mo dels w ere among the �rst to b e imple-

men ted. Sev eral suc h systems ha v e b een completed recen tly , suc h as PEPSys [6], Aurora [8], R OPM [9] and

Muse [2].

1

This pap er has app eared in the pro ceedings of JICSLP'92 [16]

2

P art of the w ork rep orted here has b een carried out while the author w as at the Departmen t of Computer Science, Univ ersit y

of Bristol, U.K.

92

Our presen t w ork is based on Aurora, a protot yp e or-parallel implemen tation of Prolog for shared memory

m ultipro cessors. Aurora pro vides supp ort for the full Prolog language, con tains graphics tracing facilities,

and giv es a c hoice of sev eral sc heduling algorithms [4 , 5 , 3].

One of the ma jor outstanding problems in the con text of parallel execution of Prolog is the question of

non-declarativ e language primitiv es. These primitiv es, e.g. the built in predicates for mo di�cation of the

in ternal data base, are quite often used in large applications. As these predicates in v olv e side e�ects, they

are normally executed in strict left-to-righ t order. The basic reason for this is the need to preserv e the

sequen tial seman tics, i.e. compatibilit y with the sequen tial Prolog. Suc h restrictions on the execution order,

ho w ev er, in v olv e signi�can t o v erheads and consequen t degradation of parallel p erformance.

There are t w o main directions for the in v estigation of this problem. First, one can lo ok at using the

unrestricted, �ca v alier� v ersions of the side e�ect predicates. This op ens up a whole range of new problems:

from the question of sync hronisation of p ossibly in terfering side e�ects, to the ultimate issue of ensuring that

the parallel execution pro duces the required answ ers. Since one is using the non-logical features of Prolog

here, it is natural that the problems encoun tered are similar to those of imp erativ e parallel languages. W e

ha v e explored some of these issues in [15].

Another approac h, that can b e tak en, is to in v estigate wh y these non-logical features are used in the �rst

place. One can try to iden tify t ypical subproblems whic h normally require dynamic data base handling in

Prolog. Ha ving done this, one can then de�ne appropriate higher order language extensions to encapsulate

the giv en subproblem and th us a v oid the need for explicit use of suc h non-logical predicates. A t ypical

example already presen t in the standard Prolog is the 'setof ' predicate: this built-in predicate collects all

solutions of a subgoal, a task whic h otherwise could only b e done using dynamic data base handling.

In this pap er w e attempt to pursue the second path of action for the application area of optim um searc h

problems. E�cien t optim um searc h tec hniques, suc h as the branc h-and-b ound algorithm and the minima x

algorithm with alpha-b eta pruning, require sophisticated comm unication b et w een branc hes of the searc h

tree. Rather than to rely on dynamic data base handling to solv e this problem, w e prop ose the in tro duction

of appropriate higher order predicates. W e dev elop a general optim um searc h algorithm to b e used in the

implem en tation of these higher order predicates, whic h co v ers b oth the branc h-and-b ound and the minima x

algorithm, and whic h can b e executed e�cien tly on an or-parallel Prolog system suc h as Aurora.

The structure of the pap er is the follo wing. Section 7.2 in tro duces the abstr act domain , i.e. the abstract

searc h tree with appropriate annotations, suitable for describing the general optim um searc h tec hnique.

Section 7.3 presen ts our p ar al lel algorithm for optim um searc h, within this abstract framew ork. Section 7.4

describ es appropriate language extensions for Prolog, in the form of new built-in predicates, for em b edding

the algorithm within a parallel Prolog system. Section 7.5 outlines our exp erimen tal Aurora implementation

of the language extensions using the parallel algorithm. In Section 7.6 w e describ e t w o applic ation schemes

based on the language extensions, preliminary p erformanc e data for whic h is giv en in Section 7.7. Section 7.8

discusses related w ork, while Section 7.9 summarises the conclusions.

7.2 The Abstract Domain

The abstract represen tation of the optim um searc h space is a tree with certain annotations. Leaf no des ha v e

either a n umeric v alue asso ciated with them, or are mark ed as failure no des. The ro ot no de and certain other

non-leaf no des are called optimum no des . These no des are annotated with either a min or a max sym b ol,

indicating that the minima l (maxima l) v alue of the giv en subtree should b e calculated. Some non-leaf no des

can b e annotated with constrain ts of form < r elational-op > Limit , where Limit is a n um b er, and < r elational-

op > is one of the comparison op erators < , � , > or � . Constrain ts express some domain related kno wledge

ab out v alues asso ciated with no des, as explained b elo w. Figure 7.1 sho ws an example of an annotated tree.

W e will use the term value no de for the non-failure leaf no des and the optim um no des together. W e de�ne

a v alue function, whic h assigns a v alue to eac h v alue no de. F or a leaf no de, the v alue is the one giv en as the

annotation. F or a max (min) no de, the v alue is the maxim um (minim um) of the v alues of all the v alue no des

directly b elo w the giv en no de. If there are no v alue no des b elo w an optim um no de (i.e. all no des b elo w are

failure no des), then the v alue of a max no de can b e assumed to b e �1 and that of a min no de to b e + 1 .

T o simplify the initial discussion w e will assume that eac h optim um (and also eac h constrain t no de) has at

least one v alue no de b elo w it, and so there is no need for in�nite v alues. W e will discuss the general case at

the end of Section 7.3.

93

max

fail

min

20 30

< 15

40 50

min

10

> 20

5

25 35

Figure 7.1: An example annot a ted tree

A no de annotated with a constrain t < r elational-op > Limit expresses the v alidit y of the follo wing fact:

F or eac h of the v alue no des directly b elo w the constrain t no de their v alue V satis�es the follo wing

relation: V < r elational-op > Limit .

The example tree in Figure 7.1 con tains t w o constrain ts. T o c hec k that e.g. the upp er one (< 15) is v alid,

one has to examine the v alue no des directly b elo w (the min no de and the leaf no de with v alue 10) b oth of

whic h do ha v e a v alue smaller than 15 .

The goal of the optim um searc h is to �nd the v alue of the ro ot no de. In our example the t w o min no des

b oth ha v e a v alue 5 , and the v alue of the ro ot no de is 30 .

The notion of searc h tree presen ted here is more general than that required b y the branc h-and-b ound and

minim ax algorithms. The branc h-and-b ound algorithm uses a searc h tree with only a single optim um no de

(the ro ot) and sev eral constrain t no des b elo w. The minima x algorithm applies to trees where there are

sev eral la y ers of alternating optim um no des but there are no constrain t no des.

W e ha v e to in tro duce a further t yp e of annotation in the searc h tree to co v er some asp ects of sc heduling:

eac h no de can ha v e a n umeric priorit y assigned to it. This priorit y v alue will b e used to con trol a b est-�rst

t yp e searc h, i.e. no des with higher priorities will b e searc hed �rst (see the examples in Section 7.6).

7.3 The P arallel Algorithm

In our mo del sev eral pro cessing agen ts (w ork ers) explore the searc h tree in parallel, in a w a y analogous to the

SRI mo del [17]. The w ork ers tra v erse the tree according to some exhaustiv e searc h strategy (e.g. depth-�rst

or b est-�rst) and main tain a �b est-so-far� v alue in eac h optim um no de.

W e in tro duce the notion of neutr al interval , generalising the alpha and b eta v alues used in the alpha-b eta

pruning algorithm. A neutral in terv al, c haracterised b y a constrain t of form < r elational-op > Limit can b e

asso ciated with a particular no de if the follo wing condition is satis�ed:

The v alue of the ro ot no de will not b e a�ected if w e replace the v alue of a (v alue) no de directly

b elo w the giv en no de, whic h falls in to the neutral in terv al, b y another v alue falling in to the

neutral in terv al.

As the w ork ers tra v erse the tree they assign neutral in terv als to constrain t and optim um no des. When a

constrain t no de is pro cessed, the complemen t of the constrain t in terv al is assigned to the no de as a neutral

in terv al. This neutral in terv al m ust b e v alid, according to the ab o v e de�nition, as there can b e no v alue

no des directly b elo w the giv en constrain t no de, that ha v e a v alue falling in to the neutral in terv al

3

. F or

example, when the constrain t < 15 of the tree in Figure 7.1 is reac hed, the neutral in terv al � 15 is assigned

to the giv en constrain t no de.

In a similar w a y , a neutral in terv al � B (� B) can b e asso ciated with eac h max (min) no de, whic h has

a b est-so-far v alue B . F or example, when the c hild of the ro ot with the v alue 20 is reac hed in our sample

3

Note that b ecause of the inheritance of neutral in terv als this seemingly trivial fact can b e utilised for pruning subtrees

b elo w the constrain t no de (see later).

94

tree, the ro ot's b est-so far v alue b ecomes 20 , and so a neutral in terv al � 20 can b e asso ciated with the ro ot.

This can b e in terpreted as the statemen t of the follo wing fact: �v alues � 20 are indi�eren t, i.e. need not b e

distinguished from eac h other�

4

.

An imp ortan t prop ert y of neutral in terv als is that they are inherited b y descendan t no des, i.e. if a neutral

in terv al is asso ciated with a no de, then it can b e asso ciated with an y descendan t of the no de as w ell. This

can b e easily pro v en using the con tin uit y prop ert y of in terv als, as outlined b elo w.

The only non-trivial case of inheritance is the one when a neutral in terv al is asso ciated with the paren t P of

an optim um no de N . T o pro v e that the same neutral in terv al can b e asso ciated with no de N , let us consider

the e�ect of c hanging the v alue of a no de directly b elo w N within the giv en neutral in terv al (sa y the v alue

is c hanged from V

1

to V

2

, where b oth V

1

and V

2

are within the neutral in terv al). A simple examination of

cases sho ws that if the old v alue of N or the new v alue of N is outside the closed in terv al b ounded b y V

1

and V

2

, then the v alue of N (and consequen tly the v alue of the ro ot) could not ha v e c hanged. This means

that if the v alue of N c hanges, it c hanges within the closed in terv al b ounded b y V

1

and V

2

, that is within

the giv en neutral in terv al. Using the premise that this neutral in terv al is asso ciated with no de P , w e can

conclude that the v alue of the ro ot is unc hanged in this case as w ell. This �nishes the pro of that the giv en

neutral in terv al is inherited b y the c hild no de N .

There are basically t w o t yp es of neutral in terv als, ones con taining + 1 and the ones con taining �1 . Tw o

in terv als of the same t yp e can alw a ys b e replaced b y the bigger one. This, together with the inheritance

prop ert y , means that the w ork er can k eep t w o actual neutral in terv als as part of the searc h status, when the

tree is b eing tra v ersed (whic h is analogous to the alpha and b eta v alues of the minim ax searc h).

Neutral in terv als can b e used to prune the searc h tree. When a w ork er reac hes a no de the constrain t of whic h

is subsumed b y a curren tly v alid neutral in terv al, then the tree b elo w the constrain t no de do es not ha v e

to b e explored, and a single solution with an arbitrary v alue within the neutral in terv al can b e assumed

5

.

Optim um no des act as sp ecial constrain t no des in this resp ect: a max (min) no de with a b est-so-far v alue

B is equiv alen t to a constrain t � B (� B).

max

fail

min

20 30

< 15

40 50

min

10

> 20

5

25 35

W1

W2

Î 15

Figure 7.2: First snapshot of explora tion of the sample tree

Figure 7.2 sho ws a snapshot of the exploration of the tree in Figure 7.1 b y t w o w ork ers. W ork er w1 has

reac hed the leftmost failure no de, while w ork er w2 descended on the second branc h do wn to the second

constrain t. Pro cessing of the upp er constrain t resulted in a neutral in terv al � 15 b eing created (sho wn as

a rectangular b o x in the �gure). When the lo w er constrain t of >20 is reac hed, the w ork er notices that the

constrain t is subsumed b y the inherited neutral in terv al and so the subtree b elo w is pruned (as sho wn b y

the dotted line).

A second snapshot is sho wn in Figure 7.3. W ork er w1 has no w reac hed the third c hild of the ro ot, with the

v alue 20 . As outlined earlier, this results in a neutral in terv al � 20 b eing asso ciated with the ro ot. This

neutral in terv al is no w propagated do wn w ards, and its in teraction with the constrain t < 15 results in the

whole subtree ro oted at that constrain t b eing pruned, i.e a solution with an arbitrary v alue < 15 is assumed

(sa y 0). This example sho ws wh y it is necessary to assume an arbitrary solution, instead of discarding the

whole subtree. The latter approac h w ould result in an incorrect solution 40 b eing assigned to the min no de,

and consequen tly to the ro ot no de as w ell.

4

F or v alue no des directly b elo w the ro ot a stronger statemen t is v alid: �v alues � 20 can b e discarded�. F or the sak e of

inheritanc e, ho w ev er, the ab o v e w eak er form is required.

5

This is the p oin t where w e use our simplifying assumption (the existence of a v alue no de b elo w eac h constrain t no de).

95

max

fail

min

20 30

< 15

40 50

min

10

> 20

5

25 35

W1

W2

Í 20

Figure 7.3: Second snapshot of explora tion of the sample tree

The propagation of neutral in terv als, as exempli�ed b y Figure 7.3, is one of the crucial features of our

algorithm. In general, propagation is required when a w ork er is up dating the b est-so-far v alue (and so the

neutral in terv al) of an optim um no de, while other w ork ers are exploring branc hes b elo w this no de. The new

neutral in terv al should no w b e brough t to the atten tion of all w ork ers b elo w the giv en no de. There are t w o

basic approac hes for handling this situation:

� The w ork ers b elo w are noti�ed ab out the new neutral in terv al, i.e. the information on c hanges is

propagated do wn w ards.

� The do wn w ards propagation is a v oided at the exp ense of eac h w ork er scanning the tree up w ards ev ery

time it w an ts to mak e use of the neutral in terv al (e.g. for pruning).

Reynolds and Kefalas [10] ha v e used the second approac h in their prop osed extension of the Bra v e system.

A serious dra wbac k of this approac h is, ho w ev er, that it slo ws do wn the exploration, ev en if only a single

w ork er happ ens to b e w orking on a subtree. Therefore the �rst approac h seems to b e preferable, i.e. the

w ork er up dating a b est-so-far v alue in an optim um no de should notify all the w ork ers b elo w the giv en no de

ab out the new neutral in terv al.

So far w e ha v e assumed that eac h optim um and constrain t no de has at least one v alue no de b elo w it. Let

us no w expand the domain of discussion to include trees where this condition is not enforced. If w e extend

the range of v alues that can b e asso ciated with no des to include the in�nite v alues �1 and + 1 , then eac h

failure no de can b e view ed as a prop er v alue no de, with the actual v alue b eing �1 if the optim um no de

imm ediately ab o v e is a max no de, and + 1 if the optim um no de immediately ab o v e is a min no de.

The notion of constrain t can ha v e t w o in terpretations in this extended framew ork. One can consider str ong

constrain ts, whic h actually guaran tee the presence of a (�nite) v alue no de b elo w; and we ak constrain ts whic h

ma y still hold if there is no prop er v alue no de in the subtree b elo w. The implicit constrain ts generated b y

optim um no des are ob viously of the strong t yp e. On the other hand, not all constrain ts can b e assumed to

b e strong, as e.g. the constrain ts used in the branc h and b ound algorithm are normally of the w eak t yp e.

A w eak constrain t can b e utilised (for pruning or for pro ducing a neutral in terv al) only in one of the t w o

kinds of optim um searc hes. F or example, a w eak constrain t < B o ccurring in a minim um searc h expresses

the fact that the con tribution of the curren t subtree to the minim um searc h will either b e a v alue < B ,

or + 1 . This means that suc h a constrain t can not b e used to prune the subtree, as it can not guaran tee

that all v alues will b e part of a single neutral in terv al. On the other hand a w eak constrain t of form > B

o ccurring in a minim um searc h will b e equiv alen t to a strong constrain t, and th us can safely b e used for

pruning, as the �failure� v alue + 1 is actually part of the constrain t in terv al > B .

In our example this means that the �rst pruning step, sho wn in Figure 7.2, whic h is based on the constrain t

> 20 in a minim um searc h, can b e carried out ev en if the constrain t is w eak, i.e. if all v alue no des b elo w the

constrain t are replaced b y failure no des. On the other hand, the second pruning step (Figure 7.3) can not

b e carried out if the the constrain t is w eak.

96

7.4 Language Extensions

W e prop ose new higher lev el predicates to b e in tro duced to encapsulate the algorithm describ ed in the

previous section. The optim um searc h is generalised to allo w arbitrary Prolog terms, and an arbitrary

ordering relation L essEq instead of n um b ers and n umerical comparison. The optim um searc h returns a pair

of terms V alue-Info , where the V alue is used for ordering and Info can con tain some additional information.

T o simplify the user in terface, our exp erimen tal implem en tation assumes all (user-supplied) constrain ts to

b e w eak.

The prop osed new built-in predicates are the follo wing:

maxof (+L essEq , ?V alue-Info , +Go al , ?Max)

minof (+L essEq , ?V alue-Info , +Go al , ?Min)

Max (Min) is a V alue-Info suc h that Go al is pro v able, and V alue is the largest (smallest), according to

the binary relation L essEq , among these V alue-Info pairs. L essEq can b e an arbitrary binary predicate,

either user-de�ned or built-in, that de�nes a complete ordering relation. If Go al is not pro v able, maxof

and minof fails (this failure replaces the in�nite v alues of our abstract algorithm of the previous

section). The follo wing example is an illustration for the use of maxof :

biggest_country (Cont inent , Country, Area) :-

maxof(=<, A-C,

country(Continent, C, A),

Area-Country).

bestof (+Dir , +L essEq , ?T emplate , +Go al , ?Best)

Dir can b e either max or min . bestof(max, : : :) is equiv alen t to maxof(: : :) and bestof(min, : : :) is

equiv alen t to minof(: : :) . This predicate is just a notational to ol for writing minim ax -t yp e algorithms.

constraint (?T erm1 , +L essEq , ?T erm2)

T erm1 is kno wn to b e less or equal to T erm2 according to the binary relation L essEq . This means

that all solutions of the curren t branc h will satisfy the giv en condition. One of T erm1 and T erm2 is

normally a V alue of a maxof , minof or bestof , in whic h case the constrain t can b e used for pruning.

An example:

country(europe, Country, Area) :-

constraint(Area, =<, 600000),

european_country(Count ry, Area).

priority (+Priority)

Priority should b e an in teger. This call declares that the curren t branc h of execution is of priorit y Pri-

ority . Sev eral calls of the priority predicate can b e issued on a branc h, and the list of these priorities

(earlier ones �rst), ordered lexicographically , will b e used when comparing branc hes. Examples for the

use of the priority primitiv e will b e giv en in Section 7.6.

7.5 Implemen tatio n

W e ha v e designed an exp erimen tal implemen tatio n of the language primitiv es describ ed in the previous

section, within the curren t Aurora system itself. This uses a simpli�ed v ersion of the prop osed algorithm,

as it do es not implemen t the propagation of neutral in terv als. The implemen tation applies the b est-�rst

searc h strategy b y default, but depth-�rst con trol is also a v ailable. This section giv es a brief description of

the exp erimen tal implemen tatio n.

In tro duction of new con trol features is normally done via in terpretation. W e ha v e decided to a v oid the

extra complexit y and o v erheads of in terpretation b y in tro ducing a meta-predicate called task , to b e used

to encapsulate the new con trol primitiv es within the application program. A call of task has the follo wing

form:

task(Go al , NewContext - OldContext)

97

Here Go al is normally a conjunction, whic h b egins with calls of the con trol predicates priority and

constraint . The in v o cation of task should alw a ys b e the last subgoal in the surrounding bestof . If

the Go al in task con tains an em b edded call to bestof , this should b e the last subgoal in the conjunction,

to mak e the minim ax algorithm applicable.

The second argumen t of task is required for passing the con trol information on surrounding tasks and

optim um searc hes. Similarly , the bestof (and maxof / minof) predicates acquire an additional last argumen t

of the same structure. W e use the form NewContext - OldContext to indicate that the role of this argumen t

is similar to a di�erence list. The OldContext v ariable links the giv en call with the surrounding bestof

or task in v o cation (i.e. it is the same v ariable as the NewContext v ariable in the extra argumen t of the

surrounding con trol call). Similarly the NewContext v ariable is normally passed to the Go al argumen t, for

use in em b edded task or bestof in v o cations.

Let us sho w an example from the previous section in this mo di�ed form:

country(europe, Country, Area, Ctxt) :-

task(

(constraint(Are a, =<, 600000),

european_country(Co untry , Area)),

_ - Ctxt).

Here w e assume, that european_countr y do es not con tain an y further in v o cations of task or bestof , hence

NewContext is a v oid v ariable.

The execution of an application in this exp erimen tal implemen tati on is carried out as follo ws. If there are no

calls of task em b edded in a bestof , then the optim um searc h is p erformed in a fairly straigh tforw ard w a y:

a b est-so-far v alue is main tained in the Prolog database whic h is up dated eac h time a solution is reac hed.

When an in v o cation of task is reac hed within the bestof predicate, �rst the constrain ts are pro cessed: if a

constrain t indicates that the subtree in question will not mo dify the b est-so-far v alue (i.e. the constrain t is

subsumed b y the curren tly applicable neutral in terv al), then the task call fails immediately . Otherwise the

goal of the task, paired with information on the constrain t, priorit y and con text, is asserted in to the Prolog

database and the execution fails as w ell. When all the subtasks ha v e b een created and the exploration of the

bestof subtree �nishes, a b est-�rst sc heduling algorithm is en tered: the subtask with the highest priorit y

is selected and its goal is started. Suc h a subtask ma y giv e rise to further bestof and/or task calls, whic h

are pro cessed in a similar w a y .

F or the sak e of suc h nested task structure the b est-�rst sc heduling is implem en ted b y building a cop y of the

searc h tree in the Prolog database, but with the branc hes ordered according to the user supplied priorities

(in descending order). This tree is then used for sc heduling (�nding the highest priorit y task), as w ell as for

pruning.

Pruning ma y b e required when a leaf no de of the optim um searc h is reac hed and the b est-so-far v alue is

up dated. F ollo wing this up date the in ternal tree is scanned and ev ery task, whic h has b ecome unnecessary

according to its constrain t, is deleted.

A more detailed description of the implemen tation can b e found in [14].

7.6 Applicati ons

Tw o larger test programs w ere dev elop ed to help in ev aluating the implemen tation: a program for pla ying the

game of k alah, using alpha-b eta pruning, whic h is based on a v ersion presen ted b y Sterling and Shapiro [13];

and a program for the tra v eling salesman problem based on the branc h-and-b ound tec hnique, as describ ed in

[1]. This section presen ts the general program sc hemes used in these programs, namely the branc h-and-b ound

and alpha-b eta pruning sc hemes. F or the sak e of readabilit y w e omit the additional con text argumen ts in

this presen tation, but w e do include the in v o cation of the task predicate.

7.6.1 The Branc h-and-Bound Algorithm

W e describ e a general program sc heme for the branc h-and-b ound algorithm. W e assume that the no des

of the searc h tree are represen ted b y (arbitrary) Prolog terms. W e exp ect the follo wing predicates to b e

98

supplied b y the lo w er la y er of the application:

child_of(Par ent , Child) No de Child is a c hild of no de Par ent .

leaf_value(L e af , V alue) No de L e af is a leaf no de, with V alue b eing the v alue asso ciated with it.

node_bound(No de , Bound) All leaf no des b elo w the (non-leaf) no de No de are kno wn to ha v e a v alue greater

or equal to Bound .

% Leaf is the leaf below node with the minimal Value

branch_and_boun d(Nod e, Leaf, Value):-

minof(=<, V-L, leaf_below(Node , L, V), Value-Leaf).

% Node has a Leaf descendant with value Value

leaf_below(Node , Node, Value):-

leaf_value(Node, Value).

leaf_below(Node , Leaf, Value):-

child_of(Node, Child),

node_bound(Child , Bound),

Priority is -Bound,

task((

constraint(Bound , =<, Value),

priority(Priorit y),

leaf_below(Child, Leaf, Value)))

.

Figure 7.4: The general scheme f or the branch-and-bound algorithm

Figure 7.4 sho ws the top la y er of the branc h-and-b ound sc heme based on the ab o v e predicates. The program

uses a single minof call in v oking the predicate leaf_below(Node, Leaf, Value) . The latter predicate

simply en umerates all the Leaf no des and corresp onding Value s b elo w Node . The logic of this predicate

is v ery simple: either w e are at a leaf no de (�rst clause), in whic h case w e retriev e its v alue, or w e pic k

up an y c hild of the no de and recursiv ely en umerate all the descendan ts of that c hild (second clause). This

logic is complemen ted with the calls pro viding the appropriate con trol (sho wn with a deep er inden tation):

calculating a lo w er b ound for the relev an t subtree (node_bound), calculating the Priority as the negated

v alue of Bound (so that the subtrees where the b ound is lo w er ha v e higher priorit y), notifying the system

ab out the b ound (constraint) and the priorit y for the b est-�rst searc h (priority). The last three calls in

the clause are encapsulated within the auxiliary predicate task (sho wn with the deep est inden tation).

This general sc heme of Figure 7.4 can b e concretised to supp ort a sp eci�c application b y designing an

appropriate no de data structure, and pro viding the de�nition of the lo w er lev el predicates (child_of etc.).

This has b een done for the tra v eling salesman problem, the preliminary p erformance results for whic h are

presen ted in Section 7.7.

7.6.2 The Alpha-Beta Pruning Algorithm

W e no w pro ceed to describ e a similar sc heme for the minim ax algorithm with alpha-b eta pruning (Figure 7.5).

Again w e allo w the no des of the game tree to b e represen ted b y arbitrary Prolog terms. The top ology of

the tree and the v alues asso ciated with no des are exp ected to b e supplied through predicates of the same

form as for the branc h-and-b ound algorithm (child_of(Par ent , Child) and leaf_value(L e af , V alue)).

W e require t w o additional auxiliary predicates:

node_priority(N o de , Prio) Prio is the priorit y of no de No de .

absolute_min_ma x(Min , Max) Min and Max are the absolute minim um and maxim um v alues for the whole

of the game tree

6

.

99

% Node of type Type (min or max) has the value Value,

% produced by Child.

alpha_beta(Node , Type, Child, Value):-

bestof(Type, =<, V-C,

child_value(Node, Type, V, C), Value-Child).

% Node of type Type has a Child with Value.

child_value(Nod e, Type, Value, Child):-

opposite(Type, OppType),

absolute_min_max(Min, Max),

task((

constraint(Min, =<, Value),

constraint(Value, =<, Max),

child_of(Node, Child),

node_value(Child, OppType, Value)))

.

% Node of type Type has Value.

node_value(Node , _, Value):-

leaf_value(Node, Value).

node_value(Node , Type, Value):-

node_priority(Nod e, Priority),

task((

priority(Priority),

bestof(Type, =<, V-null,

child_value(Node, Type, V, _), Value-null)))

.

opposite(max,mi n).

opposite(min,ma x).

Figure 7.5: The minimax algorithm with alpha-bet a pr uning

This sc heme can b e in v ok ed b y the alpha_beta(Node, max, Child, Value) call. Here Node represen ts a

no de of the game tree, and max indicates that this is a maxim um no de. The call will return the Child with

the maxim al Value , from among all c hildren of Node .

The alpha_beta predicate is de�ned in terms of a bestof searc h o v er all Child-Value pairs en umerated b y

the child_value predicate. This predicate, in its turn, issues appropriate constrain t directiv es, en umerates

the c hildren (child_of), and in v ok es node_value for ev ery c hild. The node_value predicate has t w o clauses,

the �rst is applicable in the case of leaf no des, while the second in v ok es the opp osite bestof o v er child_value

recursiv ely , after ha ving informed the system ab out the priorit y applicable to the giv en subtree.

Note that the algorithm presen ted in Figure 7.5 calculates the optim um with resp ect to the complete game

tree. It is fairly easy , ho w ev er, to incorp orate an appropriate depth limit, as usually done in game pla ying

algorithms, b y a simple mo di�cation of this sc heme.

7.7 P erformance Results

T able 7.1 giv es some early p erformance �gures for the applications discussed in Section 7.6, using the

exp erimen tal implem en tation describ ed in Section 7.5.

The tests ha v e b een run on a Sequen t

T M

Symmetry S27 m ultipro cessor with 12 pro cessors, and the Manc h-

ester sc heduler [5] has b een used. Time (in seconds) is giv en for the one-w ork er case, and sp eedups are sho wn

for 2-10 w ork ers.

6

Note that the sc heme is still usable if no suc h absolute b ounds are a v ailable�on e just has to delete those parts of the

program, whic h deal with the constrain ts based on the absolute b ounds.

100

W ork ers

V ersion 1 2 4 6 8 10

(Time) (Sp eedup)

T ra v eling salesman

9 no des 32.2 1.68 2.66 3.24 3.71 4.07

11 no des 152.86 1.64 2.67 3.48 3.93 4.37

The game of k alah

b oard 1 13.71 1.39 1.83 2.35 2.96 3.32

b oard 2 57.33 1.71 2.88 3.75 4.72 5.65

b oard 3 31.20 1.70 3.08 4.04 5.18 5.67

b oard 4 65.66 1.55 2.47 3.66 4.73 5.00

T able 7.1: R un times and speedups f or v arious optimisa tion pr oblems

The t w o tra v eling salesman sample runs in v olv e complete graphs with 9 and 11 no des, and 36 and 55 edges,

resp ectiv ely . A v arian t of the game of k alah is used as the second test program. F our di�eren t b oard states

are tested with a limited depth of searc h (4 steps). Because of the searc h tree b eing so shallo w, the depth-�rst

strategy is used, rather than the b est-�rst one.

Considering the protot yping nature of our exp erimen tal implemen tatio n w e view the results as quite promis-

ing. W e plan to carry out a detailed p erformance ev aluation in the near future to iden tify the o v erheads

in v olv ed in v arious parts of the algorithm.

7.8 Related W ork

An imp ortan t issue is the relation of our w ork to the mainstream of researc h in constrain t logic programming

(CLP). In curren t CLP framew orks (as e.g. in the one describ ed b y v an Hen tenryc k in [7]) the constrain ts

arising in optim um searc h algorithms are handled b y sp ecial built-in predicates. The reason b ehind this is

that the generation of constrain ts is implicit in an optim um searc h, as the applicable constrain t dep ends on

the b est-so-far v alue. W e b eliev e that b y replacing suc h sp ecial predicates with the bestof construct, our

extended algorithm can b e smo othly in tegrated in to a general CLP system.

Another asp ect of comparison ma y b e the t yp e of parallelism. Curren t CLP systems address the issues of

and-parallel execution of conjunctiv e goals as e.g. in the CLP framew ork describ ed b y Sarasw at [12]. Our

approac h complemen ts this b y discussing issues of exploiting or-parallelism. Com bination of the t w o t yp es

of parallelism can lead to m uc h impro v ed p erformance as sho wn b y existing and-or-parallel systems, suc h as

Andorra [11].

The problems of or-parallel execution of optim um searc h problems ha v e b een addressed b y Reynolds and

Kefalas [10] in the framew ork of their meta-Bra v e system. They in tro duce a sp ecial database for storing

partial results or lemmas , with a restricted set of up date op erators. They describ e programs implemen ting

the minim ax and branc h-and-b ound algorithms within this framew ork. They do not, ho w ev er, address the

problem of pro viding a uniform approac h for b oth optimisation algorithms. Another serious dra wbac k of

their sc heme is that pruning requires activ e participation of the pro cessing agen t to b e pruned: e.g. in the

minim ax algorithm eac h pro cessing agen t has to c hec k all its ancestor no des, whether they mak e further

pro cessing of the giv en branc h unnecessary .

7.9 Conclusions

The design and the implemen tation of the bestof predicate has sev eral implications. First, w e ha v e dev elop ed

a new higher order extension to Prolog, with an underlying algorithm general enough to encapsulate t w o

imp ortan t searc h con trol tec hniques: the branc h-and-b ound and alpha-b eta pruning algorithms. The bestof

predicate mak es it p ossible to describ e programs requiring suc h con trol tec hniques, in terms of sp ecial con trol

primitiv es suc h as constrain ts and priorit y annotations. On the other hand w e gained imp ortan t exp erience

b y implemen ting the new predicates on the top of Aurora system. W e b eliev e that this exp erience can b e

101

utilised later, in a more e�cien t, lo w er lev el implemen tation as w ell.

W e view the dev elopmen t of the bestof predicate as a �rst step to w ards a more general goal: iden tifying

those application areas and sp ecial algorithms where the simple con trol of Prolog is hindering e�cien t parallel

execution, and designing appropriate higher order predicates that encapsulate these algorithms. W e b eliev e

that the gains of this w ork will b e t w ofold: reducing the need for non-declarativ e language comp onen ts as

w ell as dev eloping e�cien t parallel implemen tatio ns of suc h higher order primitiv es.

Ac kno wledgemen ts

The author w ould lik e to thank his colleagues in the Gigalips pro ject at Argonne National Lab oratory , the

Univ ersit y of Bristol, the Sw edish Institute of Computer Science and IQSOFT. Sp ecial thanks go to Da vid

H. D. W arren for con tin uous encouragemen t and help in this w ork. Thanks are also due to the anon ymous

referees, for v aluable commen ts and suggestions for impro v emen t.

This w ork w as supp orted b y the ESPRIT pro ject 2025 �EDS�, and the Hungarian-U.S. Science and T ec h-

nology Join t F und in co op eration with the Hungarian National Committee for T ec hnical Dev elopmen t and

the U.S. Departmen t of Energy under pro ject J.F. No. 031/90.

References

[1] Alfred V. Aho, John E. Hop croft, and Je�rey D. Ullman. Data Structur es and A lgorithms . Addison-

W esley , 1983.

[2] Kha yri A. M. Ali and Roland Karlsson. The Muse or-parallel Prolog mo del and its p erformance. In

Pr o c e e dings of the North A meric an Confer enc e on L o gic Pr o gr amming . The MIT Press, Octob er 1990.

[3] An thon y Beaumon t, S Muth u Raman, Péter Szeredi, and Da vid H D W arren. Flexible Sc heduling of

Or-P arallelism in Aurora: The Bristol Sc heduler. In P ARLE91: Confer enc e on Par al lel A r chite ctur es

and L anguages Eur op e , pages 403�420. Springer V erlag, June 1991. Lecture Notes in Computer Science,

V ol 506.

[4] Ralph Butler, T erry Disz, Ewing Lusk, Rob ert Olson, Ross Ov erb eek, and Ric k Stev ens. Sc heduling

OR-parallelism: an Argonne p ersp ectiv e. In L o gic Pr o gr amming: Pr o c e e dings of the Fifth International

Confer enc e , pages 1590�1605. The MIT Press, August 1988.

[5] Alan Calderw o o d and Péter Szeredi. Sc heduling or-parallelism in Aurora � the Manc hester sc heduler. In

L o gic Pr o gr amming: Pr o c e e dings of the Sixth International Confer enc e , pages 419�435. The MIT Press,

June 1989.

[6] J. Chassin de Kergommeaux and P . Rob ert. An abstract mac hine to implem en t e�cien tly OR-AND

parallel Prolog. Journal of L o gic Pr o gr amming , 7, 1990.

[7] P ascal v an Hen tenryc k. Constr aint Satisfation in L o gic pr o gr amming . The MIT Press, 1989.

[8] Ewing Lusk, Da vid H. D. W arren, Seif Haridi, et al. The Aurora or-parallel Prolog system. New

Gener ation Computing , 7(2,3):243�271 , 1990.

[9] B. Ramkum ar and L.V. Kalé. Compiled execution of the reduce-OR pro cess mo del on m ultipro cessors.

In Pr o c e e dings of the North A meric an Confer enc e on L o gic Pr o gr amming , pages 331�331. The MIT

Press, Octob er 1989.

[10] T. J. Reynold and P . Kefalas. OR-parallel Prolog and searc h problems in AI applications. In L o gic

Pr o gr amming: Pr o c e e dings of the Seventh International Confer enc e , pages 340�354. The MIT Press,

1990.

[11] V. San tos Costa, D. H. D. W arren, and R. Y ang. The Andorra-I Engine: A parallel implem en tation of

the Basic Andorra mo del. In L o gic Pr o gr amming: Pr o c e e dings of the Eighth International Confer enc e .

The MIT Press, 1991.

[12] Vija y A. Sarasw at. Concurr ent Constr aint Pr o gr amming L anguages . PhD thesis, Carnegie-Mellon

Univ ersit y , Jan uary 1989.

102

[13] Leon Sterling and Eh ud Shapiro. The A rt of Pr olo g . The MIT Press, 1986.

[14] Péter Szeredi. Design and implem en tation of Prolog language extensions for or-parallel systems. T ec h-

nical Rep ort, IQSOFT and Univ ersit y of Bristol, Decem b er 1990.

[15] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vija y Sarasw at and

Kazunori Ueda, editors, L o gic Pr o gr amming: Pr o c e e dings of the 1991 International L o gic Pr o gr amming

Symp osium , pages 355�371. The MIT Press, Octob er 1991.

[16] Péter Szeredi. Exploiting or-parallelism in optimisation problems. In Krzysztof R. Apt, editor, L o gic

Pr o gr amming: Pr o c e e dings of the 1992 Joint International Confer enc e and Symp osium , pages 703�716.

The MIT Press, No v em b er 1992.

[17] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

103

P art I I I

Applications

104

Chapter 8

Applications of the Aurora P arallel

Prolog System to Computati onal

Molecular Biology

1

Ewing Lusk

Argonne National Lab oratory

Argonne, IL 60439

U. S. A.

lusk@mcs.a nl .go v

Sh y am Mudam bi

ECR C Gm bH

D-81925, Munic h, Arab ellastr. 17

German y

mudambi@e crc .de

Ross Ov erb eek

Argonne National Lab oratory

Argonne, IL 60439

U. S. A.

overbeek@ mcs .a nl. gov

Péter Szeredi

IQSOFT Ltd.

H-1142 Budap est T eleki B. u. 15-17

Hungary

szeredi@iq sof t.h u

Abstract

W e describ e an in v estigation in to the use of the Aurora parallel Prolog system in t w o applications

within the area of computational molecular biology . The computational requiremen ts w ere large,

due to the nature of the applications, and w ere carried out on a scalable parallel computer, the

BBN �Butter�y� TC-2000. Results include b oth a demonstration that logic programmi ng can

b e e�ectiv e in the con text of demanding applications on large-scale parallel mac hines, and some

insigh ts in to parallel programmi ng in Prolog.

8.1 In tro duction

Aurora[8] is an OR-parallel implem en tation of full Prolog. The system is nearing maturit y , and w e are

b eginning to use it for application w ork. The purp ose of this pap er is to presen t the results of our exp eriences

using it for computational molecular biology , an area in whic h logic programming o�ers a particularly

appropriate tec hnology .

1

This pap er has app eared in the pro ceedings of ILPS'93 [9]

105

The problems encoun tered in this area can b e large in terms of data size and computationally in tensiv e.

Therefore one needs b oth an extremely robust programming en vironmen t and fast mac hines. Aurora can

no w pro vide the former. The fast mac hine used here is the BBN TC-2000, whic h pro vides fast individual

pro cessor sp eeds, a large shared memory , and a scalable arc hitecture (whic h means that access to memory

is non-uniform).

W e b egin with a brief discussion of wh y molecular biology is a particularly promising application area for

logic programming . W e then summarize some recen t enhancemen ts to Aurora as it has ev olv ed from an

exp erimen tal, researc h implem en tation to a complete, pro duction-orien ted system. W e describ e in some

detail t w o di�eren t problems in molecular biology , and describ e the approac hes tak en in adapting eac h of

them for a parallel logic programming solution. In eac h case w e presen t results that are quite encouraging in

that they sho w substan tial sp eedups on up to 42 pro cessors, the maxim um n um b er a v ailable on our mac hine.

Giv en the sizes of the problems that are of real in terest to biologists, the sp eedups are su�cien t to con v ert

a batc h-orien ted researc h metho dology in to an in teractiv e one.

8.2 Logic Programming and Biology

Man y large-scale scien ti�c applications running on parallel sup ercomputers are fundamen tally n umeric, are

written in F ortran, and run b est on mac hines optimized for op erating on v ectors of �oating-p oin t n um b ers.

One notable exception is the relativ ely new science of genetic sequence analysis. New tec hnologies for

extracting sequence information from biological material ha v e shifted the scien ti�c b ottlenec k from data

collection to data analysis. Biologists need to ols that will help them in terpret the data that is b eing pro vided

b y the lab oratories. Logic programming , and Prolog in particular, is an ideal to ol for aiding analysis of

biological sequence data for sev eral reasons.

� Prolog has built-in pattern expression, recognition, and manipulation capabilities unmatc hed in con-

v en tional languages.

� Prolog has built-in capabilities for bac ktrac king searc h, critical in adv anced pattern matc hing of the

sort w e describ e here.

� Prolog pro vides a con v enien t language for constructing in teractiv e user in terfaces, necessary for building

customized analysis to ols for the w orking biologist.

� (The Aurora h yp othesis) Prolog pro vides a con v enien t mec hanism for expressing parallelism.

Prolog has not traditionally pro vided sup ercomputer p erformance on scalable high-p erformance computers.

The main p oin t of this pap er is that this gap is curren tly b eing closed.

8.3 Recen t Enhancemen ts to Aurora

Aurora has b een ev olving from a v ehicle for researc h on sc heduling algorithms in to a solid en vironmen t for

pro duction w ork. It supp orts the ful l Prolog language, including all the normal in trinsics of SICStus Prolog,

a full-featured system. Certain enhancemen ts for adv anced sync hronization mec hanisms, mo di�cations to

the top-lev el in terpreter, and parallel I/O, ha v e b een describ ed in [5]. Here w e men tion t w o recen tly-added

features that w ere used in the presen t w ork.

8.3.1 Aurora on NUMA Mac hines

Aurora w as dev elop ed on the Sequen t Symmetry , whic h has a true shared-memory arc hitecture. Suc h

arc hitectures pro vide a con v enien t programming mo del, but are inheren tly non-scalable. F or that reason,

the Symmetry is limited b y its bus bandwidth to ab out 30 pro cessors, and previously-published Aurora results

w ere similarly limited. Recen t w ork b y Sh y am Mudam bi, con tin uing that rep orted in [10], has resulted in a

p ort of Aurora to the BBN TC-2000, a curren t scalable arc hitecture with Motorola 88000 pro cessors. The

results here w ere carried out on the mac hine at Argonne National Lab oratory , where 42 pro cessors at a time

can b e sc heduled. W e are curren tly planning to explore the p erformance of this v ersion of the system on

larger TC-2000's.

106

Aurora, with its shared-memory design, could b e p orted to the BBN in a straigh tforw ard w a y since the BBN

do es pro vide a shared-memory programming mo del. Ho w ev er, the memory-access times when data is not

asso ciated with the requesting pro cessor are so m uc h w orse than when data accesses are lo cal, it is critical

to ensure a high degree of lo calit y . This has b een done in the Butter�y v ersion of Aurora b y a com bination

of duplicating read-only global data and allo cating W AM stac k space lo cally . Details can b e found in [10].

The three-lev el memory hierarc h y of the BBN also a�ects the in terface to foreign subroutines, critical in the

applications describ ed here. In particular, it w as necessary to c hange the original design of the C in terface,

whic h put dynamically- li nk ed co de in shared memory . Since on the Butter�y shared memory is not cac hed,

w e mo di�ed the design so that b oth co de and data are allo cated in non-shared memory and can therefore

b e cac hed.

8.3.2 Visualization of P arallel Logic

Figure 8.1: In v estigating grain size with upshot

One can often predict the b eha vior of ordinary programs b y understanding the algorithms emplo y ed, but

the b eha vior of parallel programs is notoriously di�cult to predict. Ev en more than sequen tial programs,

parallel programs are sub ject to �p erformance bugs�, in whic h the program computes the correct answ er,

but more slo wly than an ticipated. With this in mind, a n um b er of to ols ha v e b een added to Aurora in order

to obtain a visual represen tation of the b eha vior of the parallel program. The �rst of these w as wamtrace ,

whic h pro vided an animation of Aurora's execution. More recen tly , a n um b er of other visualization systems

ha v e b een in tegrated in to Aurora. All of these to ols pro vide p ost-mortem analysis of log �les created during

the run. Tw o of the to ols ha v e b een used in tuning the applications presen ted here. They are upshot , whic h

allo ws detailed analysis of ev en ts on a relativ ely small n um b er of pro cesses [6], and gsx , whic h is b etter

suited to pro viding summary information on runs in v olving large n um b ers of pro cesses. Other Aurora to ols

are visandor and must . An example snapshot of an upshot session is sho wn in Figure 8.1. Here w e see a

bac kground windo w sho wing the details of individual pro cessor activities, and, sup erimp osed, sub windo ws

pro viding a primitiv e animation of pro cess states and histograms of state durations.

Output from gsx for one of the applications will b e sho wn in Figure 8.3.

8.4 Use of P attern Matc hing in Genetic Sequence Analysis

When trying to extract meaning from genetic sequences, one inevitably ends up lo oking for patterns. W e

ha v e implem en ted t w o pattern matc hing programs�one for DNA sequences and one for protein sequences.

107

Although these could certainly b e uni�ed, it is true that the t yp es of patterns one searc hes for in DNA are

quite distinct from those used for proteins. F or a general in tro duction to genetic sequences, see [7].

8.4.1 Searc hing DNA for Pseudo-knots

DNA sequences are represen ted as strings comp osed from the c haracters {A,C,G,T}, eac h one of whic h repre-

sen ts a n ucleotide. F or example, an in teresting piece of DNA migh t w ell b e represen ted b y TCAGCCTATTCG... .

The t yp es of patterns that are often sough t in v olv e the notion of c omplementary substrings , whic h are de�ned

as follo ws:

1. The c haracter complemen t of A is T, of C is G, of G is C, and of T is A.

2. The complemen t of a string a

1

a

2

a

3

: : : a

n

is c

n

: : : c

3

c

2

c

1

, where c

i

is the c haracter complemen t of a

i

.

T o searc h for t w o 8-c haracter substrings that are complemen tary and separated b y from 3 to 8 c haracters,

w e w ould use a pattern of the form

p1=8...8 3...8 ~p1

whic h migh t b e though t of as sa ying �Find a string of length 8 (from 8 to 8) and call it p

1

, then skip from

3 to 8 c haracters, and then v erify that the string that follo ws is the complemen t of p

1

.�

The signi�cance of complemen tary substrings lies in the fact that complemen tary c haracters form b onds

with eac h other, consecutiv e sets of whic h form biologically signi�can t ph ysical structures.

One particularly in teresting t yp e of pattern is called a pseudo-knot , whic h has the form

1. a string (call it p

1

),

2. a �ller,

3. a second substring (call it p

2

),

4. a �ller,

5. the complemen t of p

1

,

6. a �ller, and

7. the complemen t of p

2

.

These patterns corresp ond to stretc hes of the DNA sequence that lo ok lik e the diagram in Figure 8.2.

p1

p2

Figure 8.2: A pseudo-knot

Suc h patterns are often equally in teresting when the complemen ts of p

1

and p

2

are only appro ximate (i.e.,

most of the c haracters are complemen ts, but there ma y b e some that are not). W e ha v e implemen ted a

language (based on the w ork of Da vid Searls [11]) for expressing suc h patterns and for rapidly scanning

DNA strings for matc hes. F or a searc h to b e w ell-sp eci�ed, one has to express limits on the sizes of all

substrings and �llers, as w ell as a lev el of tolerance when lo oking for complemen ts. F or example,

p1=9...9 2...9 p2=9...9 0...4 ~p1[1,0,0] 12...19 ~p2[1,0,0]

108

w ould represen t a pattern in whic h p

1

and p

2

are 9 c haracters long, one c haracter of eac h complemen t can

misma tc h (but there can b e no insertions or deletions), and the three �llers are 2-9, 0-4, and 12-19 c haracters

long, resp ectiv ely .

8.4.2 Searc hing Protein Sequences

Protein sequences are strings o v er a 20-c haracter alphab et, eac h c haracter of whic h represen ts an amino acid.

Amos Bairo c h[1] has created a remark able set of patterns that iden tify functionally signi�can t sections of

protein sequences. These patterns are comp osed of a sequence of pattern units, where a pattern unit can b e

1. an y c haracter in a sp eci�ed set, ([list of char acters])

2. an y c haracter not in a sp eci�ed set, ({ list of char acters })

3. a �ller of length from a sp eci�ed range. (x)

P attern units can also ha v e rep etition coun ts (in paren theses). F or example,

[LIVMFYWC]-[LIVM](3) -[DE] (2)-x -[LIV M]-x (2)-[GC]-x -[ST A]

means an y of L,I,V,M,F,Y,W, C follo w ed b y three o ccurrences of an y one of L,I,V,M, follo w ed b y t w o o ccur-

rences of an y one of D,E, follo w ed b y an y one c haracter, etc.

This particular pattern iden ti�es a �Purine/p yrimidine phosphorib osyl transferases signature�. Giv en this

somewhat more constrained matc hing problem, one can easily construct programs to searc h for suc h patterns.

The most common problem is of the form �giv en a set of protein sequences and ab out 600 suc h patterns,

�nd all o ccurrences of all patterns�.

8.5 Ev aluation of Exp erimen ts

8.5.1 The DNA Pseudo-knot Computation

A non-parallel program w as already written (in Prolog) to attac k the pseudo-knot problem. It ran on Sun

w orkstations and had part of the searc hing algorithm written in C to sp eed up the lo w-lev el string tra v ersal.

The main con tribution of Aurora in this application w as to pro vide a Prolog in terface (desirable since the

user in terface w as already written in Prolog) to a high-p erformance parallel mac hine so that larger problems

could b e done.

The parallelization strategy w as straigh tforw ard. A sp eci�c query asks for a restricted set of pseudo knots

to b e extracted from the database of DNA fragmen ts. Almost all of the parallelism comes from pro cessing

the sequence fragmen ts in parallel. Aurora detects and sc hedules this parallelism automatically .

The fact that w e w ere p orting a sequen tial program with C subroutines required us to tak e some care in

handling the in terface b et w een Prolog and C. The structure of the mixed Prolog-C program is the follo wing.

The Prolog comp onen t parses a user query and through sev eral in terface routines passes the information on

the pattern to b e searc hed to the C-co de. The Prolog side then in v ok es the actual searc h routine in C. The

results of the searc h are transferred bac k to the Prolog comp onen t through appropriate in terface routines

again.

Sev eral suc h searc hes are to b e run in parallel indep enden tly of eac h other. F or eac h searc h a separate

memory area is needed in C. Since the original application w asn't programmed with parallel execution in

mind, static C v ariables w ere used for storing the information to b e comm unicated from one C subroutine to

another. Conceptually w e need the static C memory area to b e replicated for eac h of the parallel pro cesses.

In an earlier, similar application, w e transformed the C program b y replacing eac h static v ariable b y an arra y

of v ariables. Eac h of the parallel searc hes used one particular index p osition for storing its data. Indices

w ere allo cated and freed b y the Prolog co de at the b eginning and at the end of the comp osite C computation

tasks.

F or the presen t application w e c hose a simpler route. Using sequen tial declarations w e ensured that no

parallel execution to ok place during a single comp osite searc h task, i.e. it w as alw a ys executed b y a single

109

pro cess (w ork er). Consequen tly , all w e had to ensure w as that eac h pro cess had a lo cal piece of memory

allo cated for the C routines.

This goal w as ac hiev ed in di�eren t w a ys on the t w o m ultipro cessor platforms w e w ork ed with. The Sequen t

Symmetry v ersion of Aurora, lik e Quin tus and SICStus, normally uses dynamic linking in the implemen tatio n

of the foreign-language in terface. Due to limitati ons in the Symmetry op erating system, the dynamic linking

pro cess ignores the shared annotation on C v ariables, making them either all shared or all lo cal. Because

of this limitation Aurora loads the foreign co de in to shared memory on the Sequen t, making all C v ariables

shared b y all the pro cesses. Lo cal allo cation of v ariables can b e th us ac hiev ed only b y statically linking the

C co de with the em ulator. This is what w e did for the pseudo-knot application. The initial fork that creates

m ultiple Aurora w ork ers th us pro vided the required separate copies of the global v ariables.

On the BBN TC-2000, the situation w as a little more complicated. In the �rst place, shared memory is not

cac hed, so it w as imp ortan t to place the C co de (and the Prolog W AM co de as w ell) in to the priv ate memory

of eac h pro cessor. This w as done, ev en with dynamic linking, b y mo difying Aurora so that after co de w as

loaded, it w as copied in to eac h pro cess's priv ate memory . This pro vided b oth lo cal copies of v ariables and

cac habilit y of all v ariables.

W e ran a series of queries on the BBN Butter�y TC-2000, eac h of them designed to iden tify a collection of

pseudo-knots (suc h as in Figure 8.2) of di�eren t sizes in a database of 457 DNA sequences, v arying in length

from 22 to 32329 c haracters. The follo wing queries all ask for collections of pseudo-knots of v arying sizes.

Goals P atterns

ps1_2 p1=11...11 2...9 p2=11...11 0...4 p1[2,0,0] 14...21 p2[2,0,0]

ps2_1 p1=9...9 2...9 p2=9...9 0...4 p1[1,0,0] 12...19 p2[1,0,0]

ps2_2 p1=9...9 2...9 p2=9...9 0...4 p1[1,0,0] 12...19 p2

ps3 p1=7...7 2...9 p2=7...7 0...4 p1 10...17 p2

ps5 p1=11...11 2...20 p2=11...11 2...20 p1[2,0,0] 14...23 p2[2,0,0]

T able 8.1: Pseudo-knot Queries

Goals W ork ers

1 16 32 36 42

ps1_2 2973.43 196.37(15.1) 104.46(28.5) 90.06(33.0) 79.43(37.4)

ps2_1 2775.75 185.10(15.0) 96.75(28.7) 86.76(32.0) 74.49(37.3)

ps2_2 2774.66 182.69(15.2) 96.66(28.7) 88.78(31.3) 73.45(37.8)

ps3 1771.56 120.62(14.7) 64.45(27.5) 59.51(29.8) 50.03(35.4)

ps5 16601.91 1047.12(15.9) 528.32(31.4) 472.28(35.2) 403.28(41.2)

� 26897.31 1733.68(15.5) 892.23(30.1) 799.56(33.6) 681.61(39.5)

T able 8.2: Results of pseudo-knot query .

The sp eci�c pseudo-knot queries used in our tests are sho wn in T able 8.1. The times in seconds for these

queries, run with v arying n um b ers of pro cesses on the TC-2000, are sho wn in T able 8.2. The �gures in

paren theses are sp eedups. Eac h v alue is the b est of three runs.

The gsx summary of the one ps3 query with 32 w ork ers is sho wn in Figure 8.3. The v arious shades of gra y

(colors on a screen) indicate states of the Aurora parallel abstract mac hine. This particular picture indicates

that the 32-w ork er mac hine w as in the �w ork� state almost 90% of the time.

In these runs w e used upshot to help us optimize the program. It sho w ed us that the grain size of the parallel

tasks v aried enormously due to the v ariation in the size of the sequence fragmen ts. If a large task is started

late in the run, all other pro cesses can b ecome idle w aiting for it to �nish. W e addressed this problem b y

pre-sorting the sequence fragmen ts in decreasing order of length. This allo ws go o d load balancing from the

b eginning of the run to the end.

T able 8.3 sho ws the sp eed impro v emen ts obtained b y pre-sorting sequence-fragmen ts for selected queries.

110

File: "ps3_32_new.gsx" Processors: 32

work bckt sleep search other srch-p

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 10 20 30 40 50 60 70 sec

File: "ps3_32_new.gsx" Processors: 32 [39544804.89]

Figure 8.3: E�ciency of pseudo-knot query on TC-2000

They are small but de�nitely signi�can t.

Goals W ork ers

executed 16 32 36 42

ps1_2 2.6% 6.7% 12.0% 8.0%

ps2_1 3.1% 5.0% 6.7% 9.2%

ps2_2 3.2% 5.7% 8.3% 11.7%

ps3 3.3% 1.2% 0.1% 3.4%

T able 8.3: P ercen tage impro v emen ts due to sorting

8.5.2 The Protein Motif Searc h Problem

This problem in v olv es �nding all o ccurrences of some �protein motif � patterns in a set of proteins. The test

data con tains ab out 600 motifs and 1,000 proteins, v arying in length from a few c haracters to o v er 3700.

The algorithm for this task w as designed with consideration for parallel execution; therefore w e describ e it

in more detail.

The searc h algorithm is based on frequency analysis. The set of proteins to b e searc hed is pre-pro cessed to

determine the frequency of o ccurrence of eac h of the c haracters represen ting the amino acids. Subsequen tly

a probabilit y is assigned to eac h c haracter, in v ersely prop ortional to the frequency of o ccurrence in the

proteins.

The protein motif patterns are originally giv en in the form describ ed in Section 8.4.2. This form is then

transformed to a Prolog clause, suc h as

111

prosite_pattern('PS 0010 3',[a ny("L IVMF YWC") ,any("LIVM ",3) ,

any("DE",2),arb,a ny("L IVM") ,arb(2),

any("GC"),arb,any ("STA ")]).

F or eac h pattern a �most c haracteristic� c haracter p osition is selected, i.e. the p osition with the smallest

probabilit y of matc hing. As the pattern matc hing algorithm will start at this most c haracteristic p osition,

the pattern is split to three parts: the c haracters b efore, at, and after the giv en p osition, with the �b efore�

part rev ersed. The split form is represen ted b y one or more Prolog clauses, one for eac h c hoice for the

c haracteristic p osition. The ASCI I co de of the c haracter in this p osition is placed as the �rst argumen t of

the clause, for the purp ose of fast indexing.

The ab o v e example pattern has the any("GC") p osition as the most c haracteristic, and th us the follo wing

represen tation is pro duced (note that 67 is ascii C and 71 is ascii G):

/*prosite_dpat(Code , BeforeReversed, After, Name).*/

prosite_dpat(67,[ar b(2) ,any("LIVM "),a rb,an y("DE ",2),

any("LIVM",3),any ("LIV MFYWC ")],

[arb,any("STA")], 'PS0 0103').

prosite_dpat(71,[ar b(2) ,any("LIVM "),a rb,an y("DE ",2),

any("LIVM",3),any ("LIV MFYWC ")],

[arb,any("STA")], 'PS0 0103').

The searc h algorithm has three lev els of ma jor c hoice-p oin ts: selection of a protein, selection of a pattern

and the selection of a p osition within the protein where the matc hing is attempted. The in tro duction of the

c haracteristic p osition helps in reducing the searc h space b y e�cien t selection of patterns that can b e matc hed

against a giv en p osition in a giv en protein. This implies a natural order of searc h sho wn in Figure 8.4.

Select Proteins: select a protein, sa y P ,

Select P osition s: select a p osition within this protein, sa y N , with a c haracter C ,

Select P atterns: select a pattern M whic h has C as the most c haracteristic elemen t,

Chec k: c hec k if pattern M matc hes protein P b efore and after p osition N .

Figure 8.4: The searc h space of the protein motif problem

W e ha v e implemen ted the protein motif searc h program based on the ab o v e algorithm and data represen ta-

tion. With the test case con taining 1000 proteins and 600 patterns, in principle there is abundan t parallelism

in exploring the searc h space. Ov er 11000 matc hes are found in the database, so collecting the solutions also

requires some caution.

Let us �rst examine ho w easy it is to exploit the parallelism found in the problem. T able 8.4 sho ws the

execution times in seconds (and the sp eedups in paren theses) for the searc h program run in a failure driv en

lo op. This means that the the searc h space is fully explored, but solutions are not collected. The �rst line

of the table is for the original database of proteins. Although the results are v ery go o d for smaller n um b ers

of w ork ers, the sp eedup for 42 w ork ers go es b elo w 90% of the ideal linear sp eedup.

No w w e examine the searc h space as sho wn in Figure 8.4, and try to pinp oin t the reasons for the disapp oin ting

sp eedups. First, w e can deduce that the coarse grain parallelism of the Proteins lev el is not enough to allo w

for uniform utilization of all w ork ers throughout the computation. Second, the �ner lev el parallelism at the

lev el of P ositions is not exploited su�cien tly to comp ensate for the unev en structure of w ork on the protein

lev el.

The �rst de�ciency of our program can b e easily explained b y reasons similar to those already describ ed for

the pseudo-knot computation: the di�eren t size proteins represen t di�eren t amoun ts of w ork. Consequen tly ,

if a larger protein is pro cessed to w ards the end of the computation, the system ma y run out of other proteins

to pro cess in parallel b efore the longer computation is �nished. The solution of sorting the proteins in

decreasing order of size has b een applied and the results are sho wn in second ro w of T able 8.4. The sp eedups

are almost linear, b eing less than 1% b elo w the ideal sp eedup. Although this c hange is enough on its o wn

112

Program W ork ers

v arian t 1 16 24 36 42

1. 2962.50 186.76(15.9) 127.14(23.3) 89.50(33.1) 79.72(37.2)

2. 2965.79 185.49(16.0) 123.83(24.0) 82.89(35.8) 71.03(41.8)

3. 2952.18 185.39(15.9) 125.10(23.6) 86.31(34.2) 75.67(39.0)

4. 2952.54 184.45(16.0) 123.00(24.0) 82.22(35.9) 70.80(41.7)

1 = original program 2 = sorted data 3 = b ottom-up 4 = b oth

T able 8.4: Exploring the Searc h Space in the Protein Motifs Query

to solv e our problem of p o or sp eedup, the issue of exploiting �ner grain parallelism on the lev el P ositions

is also w orth exploring.

The second lev el of c hoice in our searc h problem is the selection of a p osition within the giv en protein to b e

used as a candidate for matc hing against the most c haracteristic amino acid in eac h pattern. Since proteins

are represen ted b y lists of c haracters standing for amino acids, this c hoice is implemen ted b y a recursiv e

Prolog predicate scanning the list. The follo wing is a simpli�ed form of this predicate

2

, similar to the usual

member/2 .

find_match([C|Right],Le ft) :-

find_a_matching _patt ern(C ,Rig ht,Le ft).

find_match([C|Right],Le ft) :-

find_match(Righ t,[C| Left]).

The or-parallel searc h space created b y this program is sho wn in part (a) of Figure 8.5. When a searc h tree

of this shap e is explored in a parallel system suc h as Aurora, a w ork er en tering the tree will �rst pro cess the

leftmost leaf and will mak e the second c hoice at the top c hoice-p oin t a v ailable to other w ork ers. This c hoice

is either tak en up b y someone else, or the �rst w ork er tak es it after �nishing the leftmost leaf. In an y case it

can b e seen that the gran ularit y of tasks is rather �ne (the w ork at a leaf is often only a few pro cedure calls

long) and the w ork ers will b e getting in eac h other's w a y , causing considerable sync hronization o v erheads.

(a) (b)

Figure 8.5: Alternativ e parallel searc h trees

The exploration of the searc h space is th us done b y descending from top to b ottom, an approac h analogous

to the topmost sc heduling strategy of early parallel Prolog implemen tations [3 , 4]. Later researc h sho w ed

that this t yp e of sc heduling is rather ine�cien t for �ner grain gran ularit y problems [2]. In our problem,

topmost sc heduling is forced on the system b y the shap e of the searc h tree, irresp ectiv ely of the sc heduling

strategy of the underlying system

3

.

T o a v oid top-to-b ottom exploration, one w ould lik e the system to descend �rst on the recursiv e branc h,

th us op ening up lots of c hoice-p oin ts. The left-to-righ t exploration of alternativ es within a c hoice-p oin t is,

2

W e just sho w the searc h asp ects of the program, omitting those parts whic h deal with returning the solution.

3

W e actually used the Bristol sc heduler with b ottommost sc heduling.

113

ho w ev er, an inheren t feature of most or-parallel systems. In fact, rather than to require the system to c hange

the order of exploration, it is m uc h easier to c hange the order of clauses in the program and th us direct the

system to explore the searc h tree in a di�eren t manner. This is analogous to the w a y users of a sequen tial

Prolog system in�uence the searc h b y writing the clauses of a predicate in appropriate order.

In the case of the presen t searc h problem the desired e�ect of b ottom-to-top exploration can b e ac hiev ed b y

transp osing find_match 's t w o clauses. This w a y the searc h tree will ha v e the shap e sho wn in part (b) of

Figure 8.5. The �rst w ork er en tering the tree will run do wn the leftmost branc h op ening up all c hoice-p oin ts,

whic h then will b e pro cessed b y bac ktrac king from b ottom to w ards the top. Sev eral w ork ers ma y co op erate

in this pro cess, th us sharing the w ork through public bac ktrac king rather then the more exp ensiv e means of

�ma jor task switc hing� as describ ed in [2].

The third ro w of T able 8.4 sho ws the e�ect of b ottom-to-top exploration tec hnique applied to the original

database of proteins. The results are somewhat b etter than in the corresp onding �rst ro w, although not as

go o d as the ones ac hiev ed b y tuning the coarse grain parallelism (second ro w). The �nal ro w of the table

sho ws the results obtained with b oth impro v emen ts applied, sho wing a small impro v emen t o v er the second

ro w.

Ha ving explored the issues of parallel searc h space tra v ersal, let us no w turn to the problem of collecting

the solutions. W e ha v e exp erimen ted with sev eral v arian ts of this program; the test results are sho wn in

T able 8.5. The v ery �rst ro w, sho wing the times for the failure driv en lo op, is iden tical to the last ro w of

T able 8.4 and is included to help assess the o v erheads of collecting the solutions. The runs sho wn here w ere

done using the b ottom-to-top v arian t of the program with a sorted database. The last ro w of the table is

our �nal, b est v arian t, sho wing a sp eedup of 40.3 with 42 w ork ers, an e�ciency of 96%.

Goals W ork ers

executed 1 16 24 36 42

fail lo op 2952.54 184.45(16.0) 123.00(24.0) 82.22(35.9) 70.80(41.7)

1 setof 3072.26 232.26(13.2) 180.64(17.0) 150.16(20.5) 148.08(20.7)

2 setof 's 3114.44 198.96(15.7) 136.61(22.8) 97.39(32.0) 86.77(35.9)

2 �ndall's 2971.16 188.30(15.8) 126.38(23.5) 86.26(34.4) 73.81(40.3)

T able 8.5: Results of the Protein Motifs Query

In the �rst v arian t of the program w e used a single setof predicate to collect all the solutions (see the single

setof ro w in T able 8.5). Our visualization and tuning to ols (Figure 8.1) sho w ed us that the lo w e�ciency w e

initially attained w as mainly due to the large n um b er of solutions generated b y the query . Since the parallel

v ersion of the setof op eration collects solutions serially at the end of the query , this led to a long �tail�

at the end of the computation in whic h one w ork er w as collecting all the solutions. In order to parallelize

the collection of solutions w e replaced the single setof b y a nested pair of setof 's, i.e. the solutions for

eac h protein w ere collected separately , and a list of these solution-lists w as returned at the top lev el of the

searc h. The data for this impro v ed v ersion is sho wn in the double setof ro w of T able 8.5. Though this

c hange resulted in a sligh t increase in the sequen tial time, the o v erall parallel times impro v ed a great deal

since more of the solution-gathering activit y could pro ceed in parallel.

In this second v arian t of the program a separate setof predicate is in v ok ed for eac h protein. Since the setof

scans its argumen ts in searc h for free v ariables, this in v olv es scanning the h uge list represen ting the protein.

T o a v oid this o v erhead, the setof calls w ere replaced b y calls to findall , resulting in further impro v emen t

in p erformance, in terms of absolute time and sp eedup as w ell. This �nal result is sho wn in the double

findall ro w of T able 8.5).

8.6 Conclusion

The success of parallel logic programmi ng requires three things: scalable parallel mac hines (bus-based �true�

shared-memory mac hines are b eing eclipsed b y fast unipro cessor w orkstations), a robust parallel logic pro-

gramm ing system, and appropriate applications. Our preliminary exp erimen ts here indicate that the BBN

TC-2000, the Aurora parallel Prolog system, and t w o applications in molecular biology represen t suc h a

114

com bination.

Bey ond the p oten tial con tribution of parallel logic programmi ng to large-scale scien ti�c applications, the

w ork rep orted on here is in teresting b ecause it re�ects a new and di�eren t phase of the Aurora parallel

Prolog pro ject. In earlier pap ers on Aurora, w e (and others) ha v e written ab out Aurora's design goals, its

system arc hitecture, and alternativ e sc heduling algorithms. Eac h of these w as an in teresting and fruitful

researc h topic in its o wn righ t. This pap er rep orts on the use of Aurora. During this w ork there w as no

tink ering with the system (except for the mac hine-dep enden t memory managemen t w ork describ ed in Section

8.5.1) or comparison of alternativ e sc heduling mec hanisms.

The original goal of the Aurora pro ject w as to determine whether Prolog b y itself could b e an e�ectiv e

language for programming parallel mac hines. C and F ortran programmers still m ust concern themselv es

with the explicit expression of a parallel algorithm, despite considerable e�orts to pro duce �automatic�

parallelizing compilers. It w as hop ed that the parallelism implicit in Prolog could b e exploited b y the

compiler and em ulator more e�ectiv ely than is the case with lo w er-lev el languages. Our exp erimen ts here b y

and large con�rm this h yp othesis: in b oth the pseudo-knot and the protein motif problems, go o d sp eedups

w ere obtained with our initial Prolog programs, written as if for a sequen tial Prolog system. On the other

hand, w e also found that p erformance could b e impro v ed b y altering the Prolog co de so as to �exp ose�

more of the parallelism to the system (top-to-b ottom vs. b ottom-to-top scanning), eliminate unnecessary

sequen tial b ottlenec ks (t w o setof s vs. one) and p ermit load-balancing (pre-sorting of sequences). That w e

w ere able to do this �ne-tuning at the Prolog lev el is a measure of success of the researc h in to sc heduling

p olicies: when w e ga v e the curren t Aurora system more freedom, it w as able to exploit it to increase the

amoun t of parallel execution.

Th us Aurora remains a to ol for parallel algorithm researc h, but at the Prolog lev el as opp osed to the C

lev el. A t the same time, its abilit y to con v ert hours of computation in to min utes of computation on scien ti�c

problems of real in terest attests to its readiness for a pro duction en vironmen t.

Ac kno wledgemen ts

Ewing Lusk and Ross Ov erb eek w ere supp orted in part b y the O�ce of Scien ti�c Computing, U.S. Depart-

men t of Energy , under con tract W-31-109-Eng-38. Sh y am Mudam bi's w ork w as done while the author w as

at Kno x College, Galesburg, Illinois. Péter Szeredi and Ewing Lusk w ere b oth partially supp orted b y the

U.S.-Hungarian Science and T ec hnology Join t F und under pro ject No. 031/90.

References

[1] A. Bairo c h. PR OSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 19:2241-

2245(1991).

[2] An thon y Beaumon t, S Muth u Raman, Péter Szeredi, and Da vid H D W arren. Flexible Sc heduling of

Or-P arallelism in Aurora: The Bristol Sc heduler. In P ARLE91: Confer enc e on Par al lel A r chite ctur es

and L anguages Eur op e , pages 403�420. Springer V erlag, June 1991. Lecture Notes in Computer Science,

V ol 506.

[3] Ralph Butler, T erry Disz, Ewing Lusk, Rob ert Olson, Ross Ov erb eek, and Ric k Stev ens. Sc heduling

OR-parallelism: an Argonne p ersp ectiv e. In Pr o c e e dings of the Fifth International Confer enc e on L o gic

Pr o gr amming , pages 1590�1605, MIT Press, August 1988.

[4] Alan Calderw o o d and Péter Szeredi. Sc heduling or-parallelism in Aurora � the Manc hester sc heduler.

In Pr o c e e dings of the Sixth International Confer enc e on L o gic Pr o gr amming , pages 419�435, MIT Press,

June 1989.

[5] Mats Carlsson, Ewing L. Lusk, and Péter Szeredi. Smo othing rough edges in Aurora (Extended Ab-

stract). In Pr o c e e dings of the First COMPULOG-NOE A r e a Me eting on Par al lelism and Implementation

T e chnolo gy . T ec hnical Univ ersit y of Madrid, Ma y 1993.

[6] Virginia Herrarte and Ewing Lusk. Studying parallel program b eha vior with Upshot . T ec hnical Rep ort

ANL�91/15. Argonne National Lab oratory , 1991.

115

[7] W en-Hsiung Li and Dan Graur. F undamen tals of Molecular Ev olution. Sinauer and Asso ciates, 1991.

[8] Ewing Lusk, Ralph Butler, T erence Disz, Rob ert Olson, Ross Ov erb eek, Ric k Stev ens, D.H.D. W arren,

Alan Calderw o o d, Péter Szeredi, Seif Haridi, P er Brand, Mats Carlsson, Andrzej Ciepielewski, and

Bogumiª Hausman. The Aurora or-parallel Prolog system. New Gener ation Computing , 7(2,3):243�271,

1990.

[9] Ewing Lusk, Sh y am Mudam bi, Ross Ov erb eek, and Péter Szeredi. Applications of the Aurora parallel

Prolog system to computational molecular biology . In Dale Miller, editor, Pr o c e e dings of the Interna-

tional L o gic Pr o gr amming Symp osium , pages 353�369. The MIT Press, No v em b er 1993.

[10] Sh y am Mudam bi. P erformance of Aurora on NUMA mac hines. In Koic hi F uruk a w a, editor, L o gic

Pr o gr amming: Pr o c e e dings of the Eighth International Confer enc e on L o gic Pr o gr amming , pages 793�

806, MIT Press, 1991.

[11] Da vid Searls. In v estigating the Linguistics of DNA with De�nite Clause Grammars. In Ewing L.

Lusk and Ross A. Ov erb eek, editors, L o gic Pr o gr amming: Pr o c e e dings of the 1989 North A meric an

Confer enc e , pages 189�208, MIT Press, 1989.

116

Chapter 9

Handling large kno wledge bases in

parallel Prolog

1

Péter Szeredi and Zsuzsa F ark as

IQSOFT In telligen t Soft w are Co. Ltd.

H-1142 Budap est, T eleki Blank a utca 15-17, Hungary

{szeredi, far kas }@ iqs oft .h u

Abstract

The pap er describ es our w ork on using parallel Prolog systems for implem en ting relativ ely large

hierarc hical kno wledge bases, carried out within the CUBIQ Cop ernicus pro ject.

The CUBIQ pro ject is an attempt to in tegrate three strands of computing: exp ert systems, parallel

computing and graphical in teraction and visualisation. F or core exp ert system dev elopmen t the

CUBIQ basic to ol-set has b een dev elop ed; parallel computing is supp orted b y t w o or-parallel Prolog

systems: Aurora and Muse; and the graphical to ols ha v e b een dev elop ed using the ICD-Edit 3-D

diagramm ati cal in teraction to ol and the Tcl/Tk library .

The problem of represen ting and using a large hierarc hical kno wledge base arose within the EMRM

(Electronic Medical Record Managemen t) system, one of the protot yp e applications dev elop ed in

the CUBIQ pro ject. This application uses the SNOMED hierarc hical medical thesaurus.

The pap er describ es our exp erimen ts with sev eral alternativ e represen tation tec hniques used for

implem en ting the SNOMED hierarc h y of the EMRM system. W e also describ e ho w the results of

these exp erimen ts in�uenced the dev elopmen t of the CUBIQ to ol-set itself. W e presen t parallel

p erformance results for t ypical searc hes within the SNOMED tree hierarc h y for b oth Aurora and

Muse.

Keyw ords: Prolog, exp ert systems, parallel execution, Aurora, Muse, SICStus, Prolog Ob jects,

SNOMED

9.1 In tro duction

The CUBIQ Cop ernicus pro ject aims at the in tegration of three strands of computing: exp ert systems,

parallel computing and graphical in teraction and visualisation [4]. The main ob jectiv e of the pro ject is to

pro duce a Prolog-based to ol-set (called the CUBIQ to ol-set), with features to aid exp ert system dev elopmen t

1

This rep ort has b een presen ted at the W orkshop on High P erformanc e Logic Programming Systems [9]

117

and graphical in teraction, whic h also supp orts parallel execution. The implem en tation of CUBIQ uses

SICStus Prolog and its or-parallel extensions Aurora and Muse [5 , 1]. The graphical comp onen ts of the

system are based on the ICD-Edit 3-D diagramma tical in teraction to ol [3] and the Tcl/Tk library . More

details on the graphical asp ects of CUBIQ can b e found in [10].

The partners in the CUBIQ pro ject are IQSOFT (Budap est, Hungary), Univ ersit y of Bristol (UK) and Cit y

Univ ersit y (London, UK).

The CUBIQ pro ject includes the dev elopmen t of t w o protot yp e applications of the to ol-set: the CONSUL T

credit rating exp ert system and the EMRM electronic medical record managemen t system. This pap er deals

with the medical thesaurus comp onen t of the EMRM application.

The medical thesaurus is based on SNOMED (Systematized Nomenclature of Medical Kno wledge), [7]. The

SNOMED thesaurus con tains appro ximately 40,000 medical phrases arranged in to a tree hierarc h y . This

tree structure pla ys a vital role in t w o ma jor functions of the EMRM system:

bro wsing: selecting an appropriate SNOMED phrase using a substring of its (English) name, and

inherit ance in diagnosis: �nding a diagnosis rule applicable to a medical ob ject b y inheritance in the

SNOMED hierarc h y .

The CUBIQ to ol-set in tro duces the notion of frames and frame inheritance to supp ort hierarc hical kno wledge

represen tation. The main implemen tatio n of the SNOMED hierarc h y presen ted in this pap er is built on top

of CUBIQ frames.

The pap er describ es our exp eriences in the design and implemen tation of the SNOMED comp onen t of

EMRM with sp ecial atten tion paid to issues of parallel p erformance. Section 9.2 giv es basic bac kground

information on CUBIQ, EMRM and the parallel Prolog systems used in the pro ject. Section 9.3 outlines

our initial exp erimen ts on implemen ting SNOMED in plain Prolog and an existing library extension (Prolog

Ob jects). Section 9.4 describ es the ev olution of the frame represen tation in CUBIQ, as in�uenced b y the

EMRM application and its p erformance analysis. Section 9.5 describ es our p erformance measuremen ts for

b oth Aurora and Muse. Finally Section 9.6 summarises the conclusions of the pap er and outlines future

w ork.

9.2 Bac kground

9.2.1 The CUBIQ to ol-set

The CUBIQ basic to ol-set is built on top of (SICStus) Prolog. Sev eral language extensions (based on

term_expansion/ 2) are pro vided to supp ort the implemen tation of kno wledge bases. The main extensions

are frames, functional rule notation, uncertain t y handling [6], and memoisatio n. All these extensions are

prop erly in tegrated with eac h other.

This section fo cuses on outlining the main features of CUBIQ frames, for a more detailed description of the

system see [4, 10].

The b ottom la y er of CUBIQ is a frame-extension of Prolog. The frames are ob jects of the w orld to b e

mo deled, arranged in a paren tship hierarc h y . Relations can b e de�ned on one or more frames, and then

these de�nitions are inherited from the more general to the more sp eci�c frames.

CUBIQ uses the concept of the r elation as a primary notion. That is, relations ma y b e de�ned with frames

as argumen ts. F ormally , frames are in tro duced with a declaration of the follo wing form:

:- frame(Frame, Parents, Attribute).

where the Frame atom is a frame iden ti�er, Parents sp eci�es the paren t(s) of Frame , b eing either a frame

iden ti�er or a list of frame iden ti�ers, and the optional Attribute is an arbitrary term, attac hed to Frame

as a (non-inherited) attribute.

Relations attac hed to frames are de�ned b y so-called fr ame clauses con taining frame references of the form

frame::X . An argumen t of this form app earing in a clause head means that the clause applies to all de-

scendan ts X of frame frame . Accordingly , when an argumen t of the form ::frame app ears in a goal, the

118

corresp onding predicate de�nition is sough t among all the ancestors of frame . W e also allo w ancestor::X

as a goal argumen t, in whic h case X is �rst instan tiated to a descendan t of ancestor (and all descendan ts

are en umerated on bac ktrac king), and for eac h suc h instan tiation of X , the inheritance searc h is used to

determine the applicable de�nition.

CUBIQ frame handling is illustrated with a simple example in Figure 9.1.

:- frame(animal,[]) .

:- frame(carnivore, anim al).

:- frame(herbivore, anim al).

:- frame(fox,carniv ore) .

:- frame(rabbit,her bivo re).

size(rabbit::_, 8).

size(fox::_, 30).

eats(carnivore::C, herbivore::H) :-

size(::C,S1), % A carnivore eats a

size(::H,S2), % herbivore if it is

S1 >= 2 * S2. % at least twice as big.

% A sample invocation:

?- eats(animal::X, animal::Y).

X = fox

Y = rabbit

Figure 9.1: A simple example illustra ting CUBIQ frames

By default a multiple, overriding inheritance mec hanism is used for frame relations, but the user can also

supply an alternativ e inheritance mec hanism.

Note that the CUBIQ to ol-set supp orts dynamic frame handling as w ell, but the application problem dis-

cussed in this pap er do es not require this feature. This is imp ortan t b ecause, in order to preserv e sequen tial

Prolog seman tics, most or-parallel systems execute dynamic predicates in a sync hronised w a y , th us accruing

large o v erheads and losing adv an tages of parallel execution.

9.2.2 EMRM: a medical application with a large medical thesaurus

One of the protot yp e applications of the CUBIQ pro ject c hosen for testing the practical usabilit y of its com-

p onen ts is the EMRM (Electronic Medical Record Managemen t) system. The goal of this application is to

giv e kno wledge-based assistance for the ph ysician in the patien t-related administration pro cess. The kno wl-

edge represen tation of EMRM is built on top of the SNOMED hierarc hical medical thesaurus. SNOMED

is a structured nomenclature and classi�cation of the terminology used in h uman and v eterinary medicine,

co v ering all imp ortan t asp ects of medicine. It is supp orted b y the American Medical So ciet y , and it is one

of the main candidates for emerging medical terminology standards.

SNOMED constitutes a large though rather �at hierarc h y: it con tains ab out 40,000 no des (but more than

90% of these are leaf no des, and the maxim al depth is 5). Eac h SNOMED no de has a unique (hexadecimal)

co de and con tains a reference to its paren t SNOMED co de as w ell as a n um b er of attributes. The most

imp ortan t attribute is the textual description of the notion represen ted. No des can ha v e further attributes,

suc h as alternativ e descriptions (aliases), references to other SNOMED no des, etc. In a somewhat simpli�ed

w a y a SNOMED no de can th us b e c haracterised b y the follo wing data:

<SNOMED-code> <parent SNOMED-code> <attributes>

The SNOMED thesaurus is divided in to parts (called mo dules) according to the t yp e of phrase in question.

The biggest SNOMED mo dule is that of the diseases, other mo dules include living organisms, c hemicals,

morphology , top ograph y etc.

119

In the in ternal data structures of EMRM eac h medical phrase is represen ted b y the SNOMED-co de, p ossibly

re�ned using some free text quali�ers. When information from suc h data structures is displa y ed, the textual

description is substituted for the co de. Input of medical data is supp orted b y the SNOMED br owser whic h is

a to ol for na vigating around the SNOMED thesaurus, com bining bro wsing in the hierarc h y with text searc h.

Using the bro wser the user can arriv e at the no de represen ting the medical phrase to b e en tered without

kno wing the exact text asso ciated with the no de.

F urther to the SNOMED bro wser, the other main comp onen t of EMRM where the SNOMED hierarc h y

pla ys a crucial role is the diagnosis supp ort function. Here the information inheritance principle is applied

to supp ort re�nemen t of diagnoses. F or example, in EMRM there is a rule expressing that a generic disease

group is indicated as a p ossible diagnosis b y the family history , if a disease of that t yp e (i.e. a SNOMED-

descendan t of the generic disease) has already app eared in the close family . Figure 9.2 sho ws ho w suc h a

rule can b e expressed using CUBIQ frames. Implemen tatio n of suc h rules again requires e�cien t searc h in

the SNOMED tree hierarc h y .

possible_diagnosis(dise ase:: Disea seGr oup) :-

relative_with_recu rrent _dise ase(disea se::D iseas eGro up, Relative),

close_relative(Rel ative).

relative_with_recur rent _dise ase(d isea se::D iseas eGrou p, R) :-

recurrent_disease_ in_fa mily_ hist ory(D iseas eGrou p::D iseas e, R).

recurrent_disease_i n_fa mily_ histo ry(d iseas e::Di sease , R) :-

history_of_relativ e(R, Disease, recurrent, _).

Figure 9.2: Dia gnosis sear ch using CUBIQ frames

F or our parallel p erformance analysis w e ha v e selected four searc h problems, t w o from the bro wser and t w o

from the diagnosis re�nemen t comp onen t. These are discussed in more detail in Section 9.5.

9.2.3 Or-parallel Prolog systems used in CUBIQ

The main parallel Prolog platform used in the CUBIQ pro ject is Aurora. Aurora [5] is an or-parallel

implem en tation of full Prolog based on the SICStus 0.6 engine. Sev eral sc hedulers w ere dev elop ed for

Aurora, in the presen t pro ject the Bristol sc heduler w as used [2].

In the �nal phase of the pro ject the Muse [1] or-parallel implemen tatio n based on SICStus 3 w as released.

W e included the Muse system in our ev aluation for comparison with Aurora, and also for exp erimen ts with

some new er SICStus features (suc h as Prolog Ob jects) whic h w ere not supp orted b y the Aurora engine.

Aurora uses the binding arra y approac h of the SRI mo del [11] to represen t m ultiple bindings in or-parallel

searc h, while Muse uses the cop ying approac h for solving this problem. Although b oth systems are based on

SICStus, they use di�eren t v ersions: the Aurora engine is older and slo w er than that of Muse. On the other

hand Aurora supp orts a n um b er of extensions, suc h as the commit pruning op erator, non-sync hronising

input-output and database op erations.

In order to pro vide a fair comparison our exp erimen ts use only the common part of the t w o systems. In

the pro cess of program dev elopmen t w e tried to eliminate the use of features for whic h the sp eed of the t w o

systems signi�can tly di�er. F or example, the foreign in terface of SICStus 0.6 is m uc h slo w er than that of

SICStus 3, while atom comp osition and meta-calls turned out to b e slo w er in SICStus 3 than in SICStus 0.6.

9.3 Represen ting the SNOMED hierarc h y in Prolog

Selecting the righ t represen tation for the SNOMED hierarc h y w as a crucial issue in the design of the EMRM

system. A t �rst, considering the size of this thesaurus, it seemed natural to use an external data base for

storing SNOMED. There w ere, ho w ev er, strong argumen ts for represen ting SNOMED within Prolog: its

hierarc hical structure called for a hierarc hical kno wledge represen tation tec hnique whic h can b e easily built

on top of Prolog. The Prolog represen tation also allo w ed us to explore the issues of or-parallel execution of

the SNOMED searc h.

120

In this section w e outline our exp erimen ts with a represen tation in plain Prolog and in Prolog Ob jects.

Our �rst exp erimen t w as to transform the SNOMED thesaurus in to a set of plain PR OLOG clauses, to test

the feasibilit y of suc h a represen tation and to test whether or not SICStus Prolog w as suitable for handling

this large n um b er of atoms and clauses.

As a �rst attempt, the follo wing trivial Prolog represen tation w as c hosen for SNOMED no des:

snomed(<SNOMED-code >, <parent SNOMED-code>, <attributes>).

Here the attributes part is a structure of the form attr(Name,Aliase s,Oth erAtt rs) . An example of the

Prolog represen tation of a SNOMED no de is sho wn in Figure 9.3.

snomed('D0-01150',

'D0-01100/00',

attr('Furuncle of skin and subcutaneous tissue, NOS',

['Boil of skin and subcutaneous tissue, NOS'], [])).

Figure 9.3: An example f or simple represent a tion of SNOMED nodes

W e w ere able to compile and load the ab o v e Prolog represen tation of the whole SNOMED thesaurus in to

SICStus 3, but not in to Aurora, as the load time of large predicates (i.e. ones consisting of a large n um b er

of clauses) in the SICStus 0.6 based engine of Aurora is prohibitiv ely large.

The sp eed of searc h with the ab o v e primitiv e represen tation w as not satisfactory in SICStus 3 either. This

w as partly due to the single-predicate represen tation, but also due to limited indexing: as SICStus has

indexing on the �rst argumen t only , the op eration of �nding c hildren of a paren t SNOMED no de is v ery

exp ensiv e in the ab o v e represen tation.

It b ecame ob vious that the represen tation should b e impro v ed, b y splitting up the large predicate in to a set

of smaller ones, and also catering for fast access to c hildren. Ho w ev er, w e decided not to con tin ue the dev el-

opmen t of the Prolog represen tation for the sp eci�c case of SNOMED thesaurus. Instead, in conformance

with the goals of the CUBIQ pro ject, w e pro ceeded to transform the generic frame represen tation of CUBIQ

in suc h a w a y that (parallel) handling of large hierarc hical structures, suc h the SNOMED thesaurus, b ecame

feasible.

Before em barking on this task, w e ha v e made an additional exp erimen t, regarding the feasibilit y of using an

existing ob ject-orien ted extension of SICStus Prolog, Prolog Ob jects, for represen ting SNOMED.

A straigh tforw ard represen tation, mapping eac h SNOMED no de to an ob ject is sho wn in Figure 9.4.

<SNOMED-code> ::

{

super(<parent SNOMED-code>) &

attributes(<att ribut es>)

}.

Figure 9.4: Represent a tion of SNOMED nodes in Pr olog Objects

It turned out that with this represen tation the memory requiremen ts are prohibitiv ely large when loading

the disease part of the SNOMED thesaurus. This is b ecause eac h ob ject b ecomes a fully-�edged SICStus

mo dule, with signi�can t memory o v erheads.

The new est release of Prolog Ob jects in tro duces the notion of ob ject instance. As most of the no des of

the SNOMED tree are lea v es, this feature can b e used to reduce storage requiremen ts b y using instances to

represen t SNOMED lea v es. While in the earlier represen tation the built-in descendant metho d could b e

directly used to en umerate all the descendan ts, in the new v ersion w e had to de�ne our o wn metho d for this

purp ose, using the descendant metho d inside the tree, and the has_instance built-in for lea v es.

The new represen tation allo w ed us to load the whole of the SNOMED disease mo dule. The run-time of a

searc h in v olving scanning all the diseases w as still prohibitiv ely large. In our understanding, this is due to

121

the complexit y of ob ject represen tation and rather crude implemen tation of certain primitiv es. F or example

the has_instance primitiv e actually en umerates all the instances of the �w orld� and then �lters out the

instances of the giv en ob ject.

W e ha v e exp erimen ted with the parallel b eha viour of SNOMED searc hes in Prolog Ob jects using the Muse

or-parallel implemen tati on. W e ha v e exp erienced a 10% slo wdo wn for m ultiple pro cessors (irresp ectiv e of

their n um b er). This is clearly due to the fact that the SICStus Prolog Ob jects en umeration predicates

w ere not created with parallel execution in mind. The en umeration pro cess of (non-instance) c hildren of

an ob ject is based on a dynamic predicate, while the en umeration of instances of an ob ject reduces to the

current_module built-in of SICStus, whic h, in turn, also relies on a dynamic predicate. The compulsory

sync hronisation of dynamic predicates in Muse practically prohibits parallel execution of the searc h in the

SICStus Prolog Ob jects inheritance tree structure.

9.4 The ev olution of the frame represen tati on in CUBIQ

This section describ es the ev olution of the CUBIQ frame represen tation format directed to w ards supp ort-

ing large frame hierarc hies and their parallel searc h. In this pro cess the follo wing e�ciency factors w ere

considered:

� execution sp eed (sequen tial and parallel),

� program size,

� dev elopmen t sp eed (time of consult, compile and load).

The initial represen tation for frames w as fairly straigh tforw ard, a frame declaration of the form:

:- frame(Frame, Parents, Attribute).

w as transformed in to a clause:

static_frame(Frame, Parents, Attribute).

This directly corresp onds to the initial SNOMED represen tation discussed in Section 9.3: a single predicate

stores the whole frame inheritance structure. This represen tation pro duced acceptable execution sp eeds for

hierarc hies up to a few h undred frames, but for hierarc hies with tens of thousands of frames, the dra wbac ks

b ecame apparen t. F urther to execution sp eed problems, the use of a single large predicate caused h uge

slo wdo wn in compilation and load time for Aurora.

T o remedy these problems, an alternativ e represen tation w as dev elop ed, a v oiding large predicates and pro-

viding faster access to the c hildren of a frame. In this represen tation a frame w as translated to a clause of

the form:

Frame(Parents, Children, Attribute).

Note that the name of the frame w as used as the predicate name, so that eac h frame declaration w as trans-

formed in to a separate predicate

2

. F or example, the frames of the example in Figure 9.1 w ere transformed

in to a set of clauses sho wn in Figure 9.5.

With this represen tation w e got a mark ed impro v emen t in execution sp eed, ho w ev er, for large frame struc-

tures the size of the co de b ecame v ery big. Ob viously , the detrimen tal e�ects w ere due to the large n um b er

of additional predicates generated for frames.

W e ha v e th us explored t w o extreme represen tation sc hemes for frames: all frames stored in a single predicate

and a separate predicate for eac h frame. Both sc hemes pro v ed to b e unacceptable from some asp ects, hence

a compromise b et w een the t w o approac hes had to b e sough t.

2

A minor restriction asso ciated with this solution is that frame names are not allo w ed to app ear as predicate names in the

user program (at least with arit y 3).

122

% Frame(Parents, Children, Attrs).

animal([], [carnivore,herbiv ore], []).

carnivore([animal], [fox], []).

herbivore([animal], [rabbit], []).

fox(carnivore, [], []).

rabbit(herbivore, [], []).

Figure 9.5: Optimised represent a tion of CUBIQ frames of Fig. 9.1

An ob vious compromise is to split the set of frames in to groups, and ha v e eac h group represen ted b y a

single predicate, where eac h clause of the predicate represen ts a frame within the group. In general form,

let us assume there exists a f (F r ame) hash-function, whic h maps a frame name to the corresp onding group

name. The general frame represen tation sc heme based on the grouping implied b y the f function is th us the

follo wing:

f (Frame) (Frame, Parents, Children, Attribute).

The hash function f has to b e fairly c heap to ev aluate and has to map atoms to atoms. As a �rst candidate,

w e selected a v ery simple suc h function, whic h maps an atom in to (an atom comp osed of) its �rst three

c haracters. Note that in the case of the SNOMED disease database, due to the format of SNOMED co des,

t w o of the three initial c haracters of frame names are �xed. This solution th us resulted in partitioning the

SNOMED disease represen tation in to just 16 predicates. Although w e got some slo wdo wn in execution time

with regards to the previous approac h, the space o v erhead with resp ect to the single predicate represen tation

turned out to b e negligible, and the dev elopmen t e�ciency b ecame acceptable.

Although the simple �name slicing� approac h pro v ed to b e v ery go o d for the case of the SNOMED frame

hierarc h y , it is v ery m uc h dep enden t on the actual naming of the frames. Therefore w e subsequen tly tried

a �real� hash function using the term_hash predicate of the SICStus terms library with mo duluses 17 and

257

3

. W e got v ery similar dev elopmen t e�ciency and size, and somewhat faster execution times. Detailed

time and space �gures and the analysis of the results are giv en in the next section.

A further issue arising in parallel execution of frame hierarc h y searc hes is that of the handling of dynamic

frames. It w as clear from the b eginning that it is feasible to separate the represen tation of static and dynamic

frames, so that the former ones can b e compiled and executed in parallel. The to ol-set functions accessing the

frame structure th us ha v e to lo ok at b oth static and dynamic parts. Note, ho w ev er, that in parallel Prolog

systems that aim to preserv e sequen tial seman tics ev en an attempt to access an empt y dynamic predicate

de�nition will cause sync hronisation and th us kill the parallelism. W e ha v e therefore in tro duced a load-time

switc h in to the CUBIQ system, b y whic h the user can assert that no dynamic frames will b e used. With

this switc h set, the system disallo ws dynamic frames and searc hes using the static frame structure only .

9.5 P erformance analysis of SNOMED searc hes

In this section w e presen t and analyse sequen tial and parallel p erformance of SNOMED searc hes for b oth Au-

rora and Muse. All measuremen ts w ere carried out on a Sequen t Symmetry with six 486/50MHz pro cessors,

running Dynix ptx 2.1.1.

W e use the follo wing four b enc hmark problems, listed in increasing size:

� diagn1 : Chec k the presence of the descendan ts of three t ypical disease groups in a giv en family history .

� diagn2 : Chec k the presence of all diseases in a giv en family history .

� browse1 : Bro wse the whole tree hierarc h y of the disease mo dule lo oking for a no de whose name or

aliases con tain a giv en substring.

3

W e ha v e mo v ed the hashing algorithm (co ded in C) of this SICStus 3 library predicate to Aurora with practically no c hange,

in order to b e able to use it in Aurora as w ell.

123

� browse2 : Bro wse the whole disease hierarc h y with a complex searc h term requiring the c hec king of

three substring matc hes, their results b eing com bined using and and or b o olean op erators.

All these searc hes are concerned with the disease SNOMED mo dule, con taining appro ximately 18,500

SNOMED terms, represen ted b y the same n um b er of clauses. Ab out 45,000 di�eren t Prolog atoms ap-

p ear in the represen tation of the disease mo dule. The or-parallelism comes from the p ossibilit y of exploring

alternativ e branc hes of the SNOMED tree in parallel.

The diagnosis and bro wse b enc hmark groups are of a sligh tly di�eren t nature. The former are dominated b y

the tree searc h prop er, with v ery little w ork to b e done for most of the tree no des. F urthermore, the diagn1

searc h problem is v ery small, as it is concerned with only a part of the disease tree (diagn2 scans the whole

disease tree).

The bro wse searc hes also scan the whole disease tree and do some non-trivial string (atom) pro cessing

tests for eac h no de. The basic test for c hec king whether an atom con tains another one (ignoring case) is

implem en ted in C, as a new built-in, in b oth Aurora and Muse

4

. In browse1 this basic test is run for the

no de name and its aliases, while in browse2 a small b o olean expression ev aluator is in v ok ed with the �atom

con tains� test at the b ottom. The bro wse searc hes are th us of coarser gran ularit y than the diagnosis ones.

9.5.1 Sequen tial p erformance

In this section w e discuss basic sequen tial p erformance of SNOMED disease hierarc h y searc hes, using v arious

frame represen tations in b oth Aurora and Muse.

Note that when comparing sequen tial b eha viour of Aurora and Muse, most of the time w e are actually

comparing their engines (SICStus 0.6 and SICStus 3)

5

. As w e ha v e no access to SICStus 0.6 at the momen t,

w e decided to use the single pro cessor v ersions of the parallel systems for sequen tial comparison.

Avrg Muse Aurora

F rame represen tation pred Comp. Load Size diagn1 exec.

size time (sec) (Mb) time (sec)

1. single predicate 18500 331 593 5.2 502 868

2. many predicates 1 401 37 11.4 0.93 0.74

many* (simpl. meta-calls) 0.44

3. grouping b y pr e�x of 3 c hars 1150 393 40 5.2 1.75 1.16

pr e�x 3* (no meta-calls) 1.07 0.93

4. grouping b y hash mo d 17 1100 391 46 5.4 0.51 0.91

5. grouping b y hash mo d 257 72 401 21 5.4 0.51 0.94

T able 9.1: Comp arison of the frame represent a tion schemes

T able 9.1 giv es an o v erview of sequen tial p erformance data, with its ro ws corresp onding to v arious frame

represen tation sc hemes. W ords prin ted in italics in the ro w headings are used to iden tify the sc heme in

the sequel. The �rst column of the table sho ws the a v erage size of the predicates (in terms of clauses)

represen ting the frame hierarc h y . The next four columns of the table giv e time and space measuremen ts for

the Muse implemen tati on:

� the time (in seconds) needed to fcompile the represen tation of the whole disease hierarc h y in to quic k

load (.ql) format,

� the time to load the .ql �le,

� the memory used for loading (as displa y ed b y the load built-in),

� the (w all-clo c k) time needed to run the diagn1 b enc hmark on a single pro cessor v ersion of Muse.

4

W e a v oided the use of the foreign in terface, b ecause of signi�can t sp eed di�erence of its implemen ta tion in the t w o systems.

5

The only ma jor exception to this is in the o v erheads of the m ultiple binding sc heme: in Aurora the binding arra ys tec hnique

of the SRI mo del has ab out 25% time o v erhead, while the Muse cop ying approac h has ab out 5% o v erhead on single pro cessor

execution.

124

The last column sho ws the single pro cessor w all-clo c k execution time of Aurora on the diagn1 b enc hmark.

As sho wn in ro w 1, the single predicate represen tation is c haracterised b y v ery high load time as w ell as

unacceptably high execution time. W e therefore excluded this v arian t from our parallel exp erimen ts.

Ro w 2 sho ws the many predicates v arian t, where eac h frame is stored as a separate predicate. This represen-

tation has go o d execution time c haracteristics, but high storage requiremen ts. It is in teresting to note that

Aurora is faster than Muse in this case. F urther analysis sho ws that searc h in this represen tation inheren tly

relies on meta-calls, and these in the Muse engine are ab out a magnitude slo w er than in the Aurora engine.

This is b ecause the Muse implem en tation of meta-calls uses additional Prolog co de to cater for mo dularit y

and goal expansion, features that are not presen t in Aurora. T o mak e the comparison more fair, w e added

to our ev aluation a Muse v arian t, called many* , whic h, instead of the call/1 predicate, uses an in ternal

system predicate (prolog:call_module /2), to a v oid the o v erheads.

Ro ws 3, 4 and 5 refer to represen tations using v arious hash functions to partition the frame represen tation in to

groups: pre�x of 3 c haracters, and hashing with mo duluses 17 and 257. They ha v e v ery similar dev elopmen t

�gures, except that the load time for the hash 257 represen tation is ab out half the other t w o. The a v erage

predicate size seems to ha v e a big in�uence on the load time: for the single v arian t, with h uge predicate

size, w e get a v ery high load time, while for hash 257 v arian t, with a lo w a v erage predicate size, w e get the

fastest load time.

Regarding execution times, it is in teresting to note that v arian t pr e�x 3 is again faster on Aurora than

on Muse. Searc hing the frame hierarc h y in the pr e�x 3 represen tation relies on b oth meta-calls and the

atom_chars/2 built-in predicate. It turns out that comp osition of atoms from their c haracters can b e

sev eral times slo w er in the Muse engine than in Aurora, b ecause of the di�eren t atom table structure

6

. T o

separate the issue of meta-calls and atom comp osition w e in tro duced a v arian t of the searc h co de for this

represen tation, called pr e�x 3* , whic h a v oids meta-calls b y the usual tec hnique of a switc h predicate

7

.

Summi ng up, v arian ts many and hash 17 are the t w o fastest for b oth Aurora and Muse in the sequen tial

execution of the diagn1 b enc hmark. W e noted the same tendency for the other b enc hmarks in our suite. In

the next section w e giv e timings for all b enc hmarks for selected represen tation v arian ts.

W e no w brie�y discuss the issue of dev elopmen t e�ciency of Aurora. As regards storage requiremen ts,

Aurora �gures v ary only a few p ercen t with resp ect to those sho wn for Muse in T able 9.1. Ho w ev er, Aurora

compilation and load times are sev eral magnitudes bigger than those for Muse, due to SICStus 0.6 scaling

up v ery badly in this resp ect. F or v arian ts 1 and 2 sev eral hours are needed to compile and load the disease

database. F or v arian ts 3-5, compilation and load b oth tak e 700 to 1500 seconds eac h. This de�ciency of the

Aurora engine is in part o�set b y its abilit y to pro duce sa v ed states, whic h is absen t in Muse

8

.

9.5.2 P arallel p erformance

In this section w e discuss the parallel p erformance of v arious SNOMED searc h problems on b oth Aurora

and Muse for 1 to 6 pro cessors. The four b enc hmarks describ ed earlier are used in the analysis. In the case

of diagn1 , w e use a sequence of ten in v o cations of the b enc hmark, to increase measuremen t accuracy . W e

also include the arithmetic mean of the four b enc hmarks in the tables

9

.

Eac h b enc hmark has b een measured 15 times for eac h n um b er of pro cessors and the smallest w all-clo c k times

w ere tak en in to accoun t. En tries in the tables sho w the (w all-clo c k) execution time in seconds follo w ed b y

the sp eedup �gure with resp ect to the 1 pro cessor case (in italics).

T able 9.2 sho ws the Aurora and Muse execution time of the b enc hmarks using the many represen tation, for

6

The Muse (SICStus 3) atom table is a tree structure that allo ws fast comparison of atoms, at the exp ense of slo w er atom

constructio n. In Aurora (SICStus 0.6) atoms are stored in a simple hash table, resulting in fast constructio n of atoms (at least

of those whic h are en tered in the table early enough). Note that in the presence of man y atoms, hash con�icts can slo w do wn

this algorithm as w ell.

7

Note that this tec hnique cannot b e applied to v arian t 2, b ecause of the h uge n um b er of predicates to b e in v ok ed via a

meta-call.

8

Restoring a sa v ed state in Aurora, with the disease database loaded, tak es ab out 35 seconds, whic h is comparable to the

load time of the .ql �les in Muse.

9

W e are a w are of the fact that taking the arithmetic mean of execution times assigns a bigger w eigh t to b enc hmarks running

longer. Ho w ev er, ha ving m ultiplexe d diagn1 10 times, the b enc hmark s are roughly of the same size, and so taking an arithmetic

mean do es not distort the �gures to o m uc h. W e ha v e compared the harmonic mean of sp eedups (whic h puts an equal w eigh t on

eac h b enc hmark) with the sp eedups calculated from the arithmetic mean of execution times, and found that these are within

0.5% of eac h other. The adv an tage of using the arithmetic mean of times, rather than the harmonic mean of sp eedups, is that

this w a y w e get an o v erall time �gure, with whic h w e can compare the t w o systems, Aurora and Muse.

125

Goals

Pro cessors

1 2 4 6

Aurora (many)

diagn1*10 7.41 3.77 (1.97) 2.04 (3.63) 1.57 (4.73)

diagn2 4.36 2.19 (1.99) 1.13 (3.85) 0.81 (5.41)

browse1 6.71 3.40 (1.97) 1.73 (3.89) 1.18 (5.67)

browse2 10.07 5.07 (1.99) 2.58 (3.91) 1.75 (5.74)

arith. mean 7.13 3.61 (1.98) 1.87 (3.82) 1.33 (5.38)

Muse (many*)

diagn1*10 4.42 2.27 (1.95) 1.24 (3.56) 0.89 (4.97)

diagn2 2.38 1.19 (2.00) 0.63 (3.78) 0.43 (5.53)

browse1 4.32 2.20 (1.96) 1.13 (3.82) 0.79 (5.47)

browse2 6.84 3.46 (1.98) 1.80 (3.80) 1.23 (5.56)

arith. mean 4.49 2.28 (1.97) 1.20 (3.74) 0.83 (5.38)

T able 9.2: P arallel perf ormance of the ``many'' represent a tion

1, 2, 4 and 6 pro cessors. In the case of Muse the many* v arian t w as used, to a v oid excessiv e o v erheads of

meta-calls. In this represen tation Muse is ab out 60% faster than Aurora, on a v erage. With 6 pro cessors,

Aurora sp eedups are somewhat lo w er on the diagnosis b enc hmarks while Muse has lo w er e�ciency on the

bro wse searc hes. Giv en the large amoun t of data to b e searc hed, the o v erall sp eedup of ab out 5.4 for 6

pro cessors is v ery go o d. Also, the 6 pro cessor execution time of the largest searc hes is b elo w 2 seconds,

whic h is acceptable for in teractiv e use.

Goals

Pro cessors

1 2 4 6

Aurora

diagn1*10 9.26 4.73 (1.96) 2.54 (3.65) 1.96 (4.74)

diagn2 4.79 2.44 (1.97) 1.23 (3.88) 0.88 (5.43)

browse1 7.02 3.55 (1.98) 1.81 (3.88) 1.23 (5.72)

browse2 10.32 5.22 (1.98) 2.64 (3.92) 1.79 (5.75)

arith. mean 7.85 3.98 (1.97) 2.05 (3.82) 1.47 (5.36)

Muse

diagn1*10 10.75 5.63 (1.91) 3.08 (3.49) 2.84 (3.79)

diagn2 5.40 2.79 (1.94) 1.49 (3.62) 1.30 (4.15)

browse1 6.92 3.58 (1.93) 1.93 (3.59) 1.39 (4.98)

browse2 9.52 4.93 (1.93) 2.60 (3.66) 1.83 (5.20)

arith. mean 8.15 4.23 (1.92) 2.27 (3.58) 1.84 (4.43)

T able 9.3: P arallel perf ormance of the ``prefix 3*'' represent a tion

T able 9.3 sho ws the p erformance �gures for the pr e�x 3* represen tation. On a single pro cessor Aurora is

ab out 10% slo w er on a v erage for this v arian t than for the many represen tation. In con trast, the a v erage

Muse execution time almost doubles. As discussed earlier, this is due to the di�erence in the implemen tatio n

of the atom construction function in the underlying Prolog engines.

The m ulti-pro cessor p erformance of Muse is m uc h w orse than that of Aurora: the gap in the a v erage sp eedup

increases with the n um b er of pro cessors. This highligh ts a further problem with atom construction: in b oth

Aurora and Muse this op eration is guarded b y a single global lo c k, as adding a new atom to the table is

126

required to b e an atomic op eration. As the Muse atom construction op eration is more exp ensiv e, it causes

more con ten tion for lo c ks, and hence less e�cien t exploitation of parallelism. This is more apparen t for the

diagnosis b enc hmarks, whic h are dominated b y the tree searc h.

In principle, lo c king at atom construction could b e a v oided, when this do es not result in the creation of a

new atom. This is actually the case in the frame represen tation discussed, as the atoms constructed are all

names of existing predicates. Unsync hronised atom searc h, on the other hand mak es creation of new atoms

a more complex op eration, and also care has to b e tak en to a v oid problems of in terference b et w een atom

searc h and the creation of new atoms (e.g. new atom creation ma y cause the system to extend the atom

table at the same time when atom searc hes are done b y other pro cessors).

W e plan to exp erimen t with mo difying the or-parallel systems discussed to a v oid lo c king at atom construc-

tion, as this ma y seriously impro v e parallel e�ciency of programs in tensiv ely using atom-handling op erations.

Goals

Pro cessors

1 2 4 6

Aurora

diagn1*10 9.14 4.65 (1.97) 2.48 (3.68) 1.91 (4.79)

diagn2 4.75 2.40 (1.98) 1.23 (3.88) 0.86 (5.50)

browse1 6.92 3.51 (1.97) 1.78 (3.89) 1.22 (5.69)

browse2 10.02 5.09 (1.97) 2.58 (3.88) 1.76 (5.69)

arith. mean 7.71 3.91 (1.97) 2.02 (3.82) 1.44 (5.36)

Muse

diagn1*10 5.06 2.60 (1.95) 1.42 (3.56) 1.03 (4.91)

diagn2 2.71 1.36 (1.99) 0.70 (3.87) 0.50 (5.42)

browse1 4.54 2.31 (1.97) 1.19 (3.82) 0.82 (5.54)

browse2 7.14 3.62 (1.97) 1.89 (3.78) 1.29 (5.53)

arith. mean 4.86 2.47 (1.97) 1.30 (3.74) 0.91 (5.34)

T able 9.4: P arallel perf ormance of the ``hash 17'' represent a tion

T able 9.4 sho ws the parallel p erformance �gures for the hash 17 represen tation. This v arian t is on a v erage

8% slo w er than the one using the many represen tation. The sp eedups are roughly equal to those for the

many v arian t.

W e ha v e made parallel p erformance measuremen ts for the hash 257 represen tation as w ell. W e got data v ery

similar to those in T able 9.4 with a v ery sligh t (1-3 %) o v erall reduction in b oth absolute sp eed and sp eedups

ac hiev ed. The sligh t slo w-do wn seems to b e connected to the size of the predicates in v olv ed: in the hash 17

v ersion eac h frame attribute access in v olv es a call of a 17-clause predicate and (on a v erage) a 1100-clause

one, while in the hash 257 v arian t the predicates in v ok ed ha v e 257 and 72 clauses on a v erage. W e plan to

further explore the reasons b ehind this b eha viour in the future.

Pro cessors

V arian ts

man y man y* pre�x 3 pre�x 3* hash 17 hash 257

1 0.96 1.59 0.75 0.96 1.59 1.62

2 0.95 1.58 0.74 0.94 1.58 1.61

3 0.95 1.57 0.73 0.93 1.56 1.59

4 0.94 1.56 0.71 0.90 1.55 1.57

5 0.96 1.56 0.72 0.85 1.55 1.58

6 0.97 1.59 0.72 0.80 1.58 1.59

T able 9.5: Muse/A ur ora speed ra tios f or different represent a tions

127

As a �nal comparison of the t w o or-parallel systems examined, T able 9.5 sho ws the sp eed ratio of Muse and

Aurora for the arithmetic mean of the four b enc hmarks, measured using six di�eren t frame represen tation

tec hniques for 1 to 6 pro cessors. It is quite in teresting to see ho w little the �gures in a single column v ary:

except for the pr e�x 3* v arian t (whic h has a high con ten tion for the atom table lo c k in Muse), the relativ e

sp eed of Aurora and Muse c hanges less than 5% when the n um b er of pro cessors c hanges. This means that

on the SNOMED b enc hmark suite Aurora and Muse ac hiev e v ery similar sp eedups, although their single

pro cessor sp eed v aries, dep ending on the represen tation c hosen.

Columns with �gures b elo w 1 highligh t features that b ecame slo w er in Muse with resp ect to Aurora: the

many represen tation uses meta-calls, pr e�x 3 uses meta-calls and atom construction, while pr e�x 3* uses

only atom construction predicates. In terestingly , v arian t pr e�x 3 do es not sho w as m uc h slo w-do wn for Muse

as the pr e�x 3* v ersion, as the o v erhead of meta-calls results in longer execution time and th us reduces the

congestion for lo c ks.

9.5.3 Summary

According to p erformance results discussed ab o v e, the many frame-represen tation has the fastest execution

time, b oth for single and m ultiple pro cessor execution, for Aurora as w ell as for Muse. Note, ho w ev er, that

to ac hiev e this sp eed in Muse the many* v arian t, with �do ctored� meta-calls, had to b e used.

A signi�can t dra wbac k of the many represen tation is its large storage requiremen t, whic h is o v er double the

one for other v arian ts. As the sp eed of the hash 17 represen tation is only 8% slo w er for b oth systems, w e

ha v e decided to use a hash-based frame-represen tation tec hnique in the �nal v ersion of the CUBIQ to ol-set.

W e allo w the mo dulus to b e selected at the start-up of the to ol-set, to allo w �ne tuning of applications.

9.6 Conclusions

Within the CUBIQ exp ert system to ol-set w e ha v e implemen ted a frame-extension of Prolog. W e ha v e

explored sev eral tec hniques for frame represen tation, examining their abilit y to supp ort parallel searc h in

large frame hierarc hies.

W e ha v e ev aluated these tec hniques b y implemen ting the SNOMED medical thesaurus using CUBIQ frames,

and analysed the p erformance of searc hes within the SNOMED frame hierarc h y using v arious represen tations.

W e ha v e also examined the feasibilit y of implemen ting the SNOMED hierarc h y in SICStus Prolog Ob jects.

F or our parallel exp erimen ts w e ha v e used t w o or-parallel Prolog systems, Aurora and Muse, b oth based on

(di�eren t v ersions of) SICStus Prolog.

W e ha v e sho wn that the 18,000 no de SNOMED disease hierarc h y can b e e�cien tly represen ted in Prolog,

using the general frame-extension of the CUBIQ to ol-set. W e ha v e dev elop ed an implem en tation for CUBIQ

frames, based on the term_hash SICStus predicate, with go o d time and space c haracteristics. W e ha v e

sho wn that, for b oth Aurora and Muse, ab out 90% parallel e�ciency can b e ac hiev ed for six pro cessors in

complex searc hes of the SNOMED hierarc h y .

Our exp erimen ts with v arious frame represen tations highligh ted a n um b er of in teresting features in the Prolog

implem en tations used. W e ha v e found some Prolog elemen ts, suc h as meta-calls and the atom construction

function, the implemen tation of whic h is m uc h slo w er in the new est SICStus engine than in the older one.

W e ha v e sho wn that the sync hronisation done at atom construction hinders parallel execution of programs

that use this function v ery often. W e ha v e also p oin ted to some implem en tation details that mak e parallel

execution of ob ject hierarc h y searc hes in SICStus Prolog Ob jects infeasible.

W e ha v e compared the parallel b eha viour of Muse and Aurora on SNOMED searc hes using di�eren t frame

represen tation and searc h tec hniques. W e ha v e found that although their relativ e sp eed v aries, the sp eedup

�gures of the t w o systems are v ery similar.

Our future plans include the mo di�cation of some critical parts of Aurora and Muse to a v oid some of the

problems highligh ted b y our exp erimen ts, suc h as unnecessary sync hronisation at atom creation. W e also

hop e that with the further dev elopmen t of the EMRM protot yp e w e will b e able to test the parallel b eha viour

of other, more complex searc h problems as w ell.

128

Ac kno wledgmen t

The authors are indebted to all their colleagues in the CUBIQ pro ject and gratefully ac kno wledge the supp ort

of the Europ ean Union Cop ernicus programme, under pro ject CP93-10979 `CUBIQ'.

References

[1] Kha yri A. M. Ali and Roland Karlsson. The Muse Or-P arallel Prolog mo del and its p erformance. In

Saum y a Debra y and Man uel Hermenegildo, editors, Pr o c e e dings of the 1990 North A meric an Confer enc e

on L o gic Pr o gr amming , pages 757�776, Austin, 1990. ALP , MIT Press.

[2] An thon y Beaumon t, S Muth u Raman, Péter Szeredi, and Da vid H D W arren. Flexible Sc heduling of

Or-P arallelism in Aurora: The Bristol Sc heduler. In P ARLE91: Confer enc e on Par al lel A r chite ctur es

and L anguages Eur op e , pages 403�420. Springer V erlag, June 1991. Lecture Notes in Computer Science,

V ol 506.

[3] Da vid Do dson, Hugh Reev es, and Rob Scott. ICD-Edit: A serv er for 2

3

/

4

-

D in teractiv e connection

diagram graphics with Prolog clien ts. T ec hnical rep ort TCU/CS/1995/2, Departmen t of Computer

Science, Cit y Univ ersit y , 1995. P oster presen tation at GD'94, Princeton, New Jersey , Octob er 1994.

[4] Zsuzsa F ark as, Péter Szeredi, and Gáb or Umann. CUBIQ to ol-set reference man ual, v ersion 4. T ec hnical

rep ort, IQSOFT Ltd., Hungary , 1995.

[5] Ewing Lusk, Da vid H. D. W arren, Seif Haridi, et al. The Aurora or-parallel Prolog system. New

Gener ation Computing , 7(2,3):243�271 , 1990.

[6] Katalin Molnár. P arallel Prolog with uncertain t y handling. In EUR OP AR'95 Par al lel Pr o c essing , pages

691�694. Springer, 1995. Lecture Notes in Computer Science 966.

[7] D. J. Roth w ell, R. A. Cote, J. P . Cordeau, and M. A. Boisv ert. Dev eloping a standard data structure

for medical language � the SNOMED prop osal. In Pr o c e e dings of 17th A nnual SCAMC, Washington ,

1993.

[8] SICS Programming Systems Group. Prolog Ob jects. In SICStus Pr olo g User's Manual , c hapter 29,

pages 275�307. Sw edish Institute of Computer Science, June 1995.

[9] Péter Szeredi and Zsuzsa F ark as. Handling large kno wledge bases in parallel Prolog, 1996. Presen ted at

the W orkshop on High P erformance Logic Programming Systems, in conjunction with Eigh th Europ ean

Summer Sc ho ol in Logic, Language, and Information, Prague, August 1996.

[10] Gáb or Umann, Rob ert B. Scott, Da vid C. Do dson, Zsuzsa F ark as, Katalin Molnár, László Péter, and

Péter Szeredi. Using graphical to ols in the CUBIQ exp ert system to ol-set. In Pr o c e e dings of the F ourth

International Confer enc e on Pr actic al Applic ations of Pr olo g , pages 405�422, 1996.

[11] Da vid H. D. W arren. The SRI mo del for or-parallel execution of Prolog�abstract design and imple-

men tation issues. In Pr o c e e dings of the 1987 Symp osium on L o gic Pr o gr amming , pages 92�102, 1987.

129

Chapter 10

Serving Multipl e HTML Clien ts from a

Prolog application

1

Péter Szeredi, Katalin Molnár and Rob Scott

2

IQSOFT In telligen t Soft w are Ltd. H-1142 T eleki Blank a u. 15-17

Budap est, Hungary

{szeredi,m oln ark ,s cot t}@ iq sof t.h u

Abstract

The pap er describ es our exp eriences with transforming a medical exp ert system to a clien t-serv er

arc hitecture using an HTML in terface.

W e brie�y presen t the exp ert system and describ e the exp eriences of its transformation to the

HTML-based user in terface. W e then fo cus on the issue of designing a single Prolog serv er capable

of serving m ultiple clien t requests.

W e presen t a solution based on an or-parallel Prolog system, Aurora. This approac h allo ws the

serv er to p erform indep enden t Prolog searc hes for eac h clien t, con trolled in teractiv ely b y the remote

user.

Keyw ords: Exp ert systems, HTML, Clien t-serv er arc hitectures, Prolog, P arallelism

10.1 In tro duction

The EMRM (Electronic Medical Record Managemen t) system protot yp e [1] has b een dev elop ed in the

CUBIQ Cop ernicus pro ject, using SICStus Prolog [13] and its or-parallel extension, Aurora [9]. The original

EMRM system uses a Tcl/Tk-based [11] forms in terface for in teracting with a single clien t. T o widen the

usabilit y of the system, w e are no w dev eloping an HTML-based in terface to EMRM. This approac h allo ws

the users to access the system from a heterogeneous computer net w ork (lo cal net w ork or In ternet), with

m uc h smaller resource requiremen ts on the lo cal computers.

Our e�orts are an example of a general trend in the AI comm unit y , to use the extended visibilit y that WWW

pro vides to mak e applications a v ailable through the In ternet. In order to in teract with end-users through

the WWW, suc h applications normally rely on so c k et-based in ter-pro cess comm unication features. Most

commercial Prolog systems (ALS, Quin tus, SICStus, etc.) already ha v e suc h features implemen ted. T o ols

1

This pap er has app eared in the pro ceeding s of the W orkshop on Logic Programming T o ols for INTERNET Applications

[15]

2

P art of the w ork rep orted here has b een carried out while the author w as at the Computer Science Departmen t, Cit y

Univ ersit y , Northampton Square, London EC1V 0HB, UK

130

ha v e also b een dev elop ed for helping the comm unicatio n with the end-user, suc h as the CGI handler in terface

of [5] and the supp ort functions of h tml.pl [4] for generating HTML do cumen ts from Prolog.

One of the ma jor issues that, w e b eliev e, ha v e not b een addressed so far is the problem of a single Prolog

program acting as a serv er for m ultiple WWW clien ts. This issue is imp ortan t as AI applications are normally

large and slo w to start up, so ha ving a separate cop y of the application running for eac h request ma y not b e

a viable solution.

Handling m ultiple clien ts means that m ultiple threads of con trol ha v e to b e handled in a single Prolog

program. Ha ving explored sev eral approac hes to this problem, in the case of EMRM, w e found that ac hieving

this goal in a traditional sequen tial Prolog implem en tation requires serious c hanges in the form ulation of

exp ert system rules, whic h results in losing the clarit y of the original kno wledge base. On the other hand

w e found that an or-parallel Prolog implem en tation can b e used to pro vide the functionalit y of serving

m ultiple clien ts, while k eeping the kno wledge base in tact and preserving the declarativ e st yle of kno wledge

represen tation.

In the follo wing w e brie�y outline the main functions of the EMRM and describ e the ma jor steps in trans-

forming its user in terface in to HTML. W e then discuss the problems stemming from the async hronous nature

of HTML comm unicati on, for b oth the single clien t and m ultiple clien t v ersions. Finally w e outline a solution

for async hronous handling of m ultiple clien ts using an or-parallel Prolog implemen tatio n.

10.2 An o v erview of EMRM

EMRM is designed to help ph ysicians to get as m uc h relev an t information ab out their patien t as p ossible

b efore meeting the patien t p ersonally . While w aiting for the do ctor the patien t can giv e information to

a medical assistan t who is supp orted b y EMRM. Some of the questions are generated on the basis of the

information already collected ab out the patien t, and the medical kno wledge incorp orated in the kno wledge

base of EMRM. The answ ers of the patien t are stored using the relev an t medical terms of SNOMED [12],

a medical thesaurus of o v er 40,000 terms. The ph ysician gets the collected data and the p ossible diagnoses

suggested b y EMRM b efore meeting the patien t. He can then collect further information b y examining

the patien t and c hec king for further symptoms. These data, the diagnoses and the further diagnostic and

therap eutic steps, are en tered in to the EMRM system b y the ph ysician and again stored as relations built

from SNOMED terms.

The Prolog implemen tatio n of EMRM th us consists of the follo wing main parts:

� dialogue managemen t

� medical rule-base

� SNOMED thesaurus

EMRM is a relativ ely large program (requiring ab out 20 Mb memory in the presen t protot yp e phase).

10.3 EMRM with a HTML user in terface

In the pro cess of transforming EMRM to a HTML in terface w e �rst implemen ted an HTML v ersion of the

SNOMED bro wser, an imp ortan t comp onen t that allo ws the user to �nd the appropriate medical term b y

a com bination of tree tra v ersal and text searc h [10]. W e then con tin ued the transformation pro cess for the

main dialogue of EMRM, including data en try and the displa y of the results.

The HTML v ersion of the EMRM serv er consists of the Prolog program, a WWW serv er and and a small

CGI script that mediates b et w een the Prolog program and the WWW serv er. The Prolog program is running

as a separate serv er pro cess on the WWW serv er computer. Because of the large program size and relativ ely

slo w startup time it is reasonable to ha v e the Prolog program running all the time, rather than to start it

up separately for eac h request.

In the Prolog program there is a main lo op w aiting for clien t requests on a so c k et from the WWW-serv er.

The user in terface of the Prolog program is based on �lazy� querying tec hniques. i.e. the user is ask ed

for some information only when the deduction pro cess requires this. The in teraction with the user is done

131

through forms that are dynamic HTML pages. Whenev er the user is ask ed for some information through

suc h a form, the system sends out the dynamic HTML page and w aits for the answ er. The ev aluation of the

Prolog program is then susp ended un til an answ er from the clien t pro cess arriv es. Suc h a lo w lev el w ait-lo op

is part of an y program co de that implemen ts forms. By the nature of the application suc h form requests are

em b edded within the Prolog searc h tree generated b y the medical rule-base.

The WWW serv er comm unicates with the Prolog program through the CGI script, that is in v ok ed whenev er

there is some comm unication from the user in terface side.

10.4 Problems with single clien t

The �rst problem, due to the async hronous nature of HTML comm unicati on, already arises in the case of

a single clien t. An HTML page do es not completely disapp ear after the user has answ ered the query on

the page, as it normally remains a v ailable through the history function of the bro wser (Netscap e, In ternet

Explorer, etc.). Th us, all the previous queries are there, and in principle the user can go bac k at an y time,

c hange and re-submit some of the earlier answ ers.

In our presen t implemen tati on w e forbid suc h re-submission requests. In principle, the bac ktrac king abilit y

of Prolog could b e used to in terpret suc h actions as requests to forget all information gathered since the

original of the re-submitted HTML page, and to restart the searc h with a new answ er to the query on that

page.

This can b e accomplished in a w a y similar to the implem en tation of the retry function a v ailable in most

Prolog debuggers. This function relies on a c hoice p oin t (suc h as created b y repeat/0) b eing placed in

fron t of eac h retry-p oin t. The retry op eration is then p erformed b y doing a far-reac hing cut (ancestor-cut),

pruning all c hoice p oin ts up to the c hosen retry-p oin t and then failing the computation. This un winds the

Prolog stac ks up to the required p oin t and, b ecause of the repeat , restarts the computation there.

F or this approac h to w ork, the program should not b e altering the Prolog dynamic database, so that execution

of the retried goal is restarted in the same setting as the original execution. As a p ossible exception to this

rule, earlier answ ers could b e stored in the database, and used as the default selections in the rep eated

queries.

10.5 Serving m ultipl e clien ts

The second, more serious problem arises when dealing with sev eral clien ts. E.g. if w e ha v e t w o clien ts, it

should b e p ossible to pro cess their answ ers in some in terlea v ed w a y , follo wing the relativ e timing of their

answ ers. In other w ords, w e can ha v e t w o clien ts, in di�eren t stages of ev aluation, b oth w aiting for some

user answ er, and w e should b e able to con tin ue the execution with whic hev er clien t answ ers earlier.

The simplest w a y to ac hiev e this coroutining b eha viour is b y requiring that the program in question is

form ulated as a set of separate actions to b e carried out in resp onse to the arriv al of an answ er. Although

suc h a set-up is easy to implemen t, in most cases it completely destro ys the logic of the program. This is not

only b ecause comm unication b et w een phases has to b e done through the Prolog dynamic database (rather

than logic v ariables), but more imp ortan tly b ecause the original logical structure of the rule-base cannot b e

preserv ed.

W e ha v e considered sev eral options for implemen ting the coroutining execution of an existing Prolog program,

without requiring its reform ulation:

� dev eloping a coroutining in terpreter,

� using existing coroutining features (suc h as freeze), p ossibly com bined with some compilation sc heme,

� using primitiv es for handling con tin uations as �rst class ob jects (as e.g. in the early implemen tatio n of

CS Prolog [7]).

A common dra wbac k of these sc hemes is that they w ork prop erly only with deterministic co de. As they all

rely on c hronological bac ktrac king in a single stac k regime, bac ktrac king in one of the coroutined branc hes

will lead to (unnecessary) bac ktrac king o v er the in terlea v ed execution steps of other branc hes.

132

As EMRM hea vily relies on bac ktrac king, w e need a solution that allo ws indep enden t bac ktrac king in the

coroutined branc hes.

A natural approac h is to consider parallel Prolog systems. There are sev eral approac hes in this area whic h

supp ort indep enden t exploration of m ultiple searc hes: or-parallel systems, suc h as Aurora; systems sup-

p orting indep enden t and-parallelism, suc h as the &-Prolog system [8]; and systems with explicit con trol of

parallelism, suc h as CSR Prolog [7], and BinProlog extensions [3].

As one of goals of the CUBIQ pro ject w as to examine the usabilit y of or-parallel Prolog systems in exp ert

system applications, it w as natural for us to explore whether Aurora can b e used to supp ort m ulti-clien t

EMRM execution.

10.6 Using an or-parallel Prolog as a m ulti-clie n t serv er

Aurora [9] is an or-parallel implem en tation of full Prolog based on SICStus 0.6. In Aurora a n um b er

of workers (i.e. pro cesses, normally running on separate pro cessors of a m ultipro cessor computer) w ork

together on exploring the searc h tree corresp onding to the Prolog program. Aurora preserv es sequen tial

Prolog seman tics, e.g. the side-e�ect predicates, suc h as the ones for input-output and dynamic database

handling, are executed in exactly the same left-to-righ t order as in a sequen tial Prolog.

This section outlines ho w Aurora can b e used to supp ort the execution of m ultiple indep enden t copies of

a Prolog program, whic h in teract with remote users through the WWW. It is crucial for this purp ose that

Aurora supp orts non-sync hronised execution of side-e�ect predicates, b y pro viding so called ca v alier v arian ts,

written as

cavalier(Pr e d) e.g. cavalier(write(foo)) .

Ca v alier predicates are executed imm ediately , without an y sync hronisation with other branc hes. A t ypical

usage of suc h predicates is to displa y tracing information on ho w the parallel execution pro ceeds.

Ca v alier predicates are executed atomically , i.e. if t w o comp eting branc hes reac h a side-e�ect predicate

a�ecting the same resource

3

sim ultaneously , then these predicates will b e executed in some arbitrary order,

one after the other. F or example, if a sequence of terms is displa y ed b y a ca v alier format predicate, this

sequence is guaran teed not to b e in termixed with output coming from other branc hes of the Prolog searc h

tree.

Aurora also allo ws the user to con trol whic h predicates can b e executed in parallel, b y appropriate declara-

tions.

W e no w �rst presen t a general sk eleton of a m ulti-clien t Prolog serv er (Figure 10.1) and then describ e ho w

the pro cess spa wning and comm uni cation primitiv es of the sk eleton can b e implem en ted in Aurora.

loop(Socket) :-

repeat,

next_event(Socket , Event),

process_event(Eve nt),

fail.

process_event(s essio n(S)) :-

spawn(run_session (S)).

process_event(a nswer (Req, Answer)) :-

out(Req, Answer).

query(Req, Answer) :-

in(Req, Answer).

Figure 10.1: The main loop of the mul ti-client execution scheme

3

e.g. the same dynamic predicate, or the same output stream

133

The predicate loop in Figure 10.1 implemen ts the (non-terminating) main lo op of the m ulti-clien t serv er.

The argumen t of loop represen ts the so c k et used for net w ork comm unicatio n. This predicate �rst w aits for

the next net w ork ev en t (in next_event), and then pro cesses the ev en t through process_event . An ev en t

can b e a request to start a new session, represen ted b y a Prolog term of form session(S) . This is pro cessed

b y spa wning a fresh cop y of the Prolog serv er program (run_session).

When, applying the lazy querying tec hnique, further input from the remote clien t is needed within a session,

the Prolog co de for the session has to call the query predicate of the ab o v e sk eleton

4

. A query has a unique

request iden ti�er (Req) as its input argumen t, and when the answ er arriv es it instan tiates its Answer output

argumen t. The answ er to the query is detected as an ev en t of form answer(Req, Answer) in the main lo op.

Pro cessing of this ev en t requires comm unicating the answ er to the session w aiting for it, this comm unicatio n

is done through t w o pro cedures named follo wing the Linda con v en tion [6] as out(Req, Answer) (on the

sender side, in the main lo op) and in(Req, Answer) (at receiving end, in the Prolog session).

W e no w pro ceed to sho w ho w the primitiv es spawn , in and out can b e implemen ted in Aurora. As a �rst

step let us assume that all of the user program (run_session) is declared to b e sequen tial, i.e. parallelism

is only used for implem en ting m ultiple execution of Prolog sessions.

:- parallel spawn/1.

spawn(Goal) :-

(

true

;

call(Goal) -> fail

).

in(Req, Answer) :-

repeat,

cavalier(retract(reque st(Re q,An swer))),

!.

out(Req, Answer) :-

cavalier(assert(r eques t(Req ,Ans wer))).

Figure 10.2: Simple implement a tion of pr ocess handling primitives

Figure 10.2 sho ws a simple implemen tatio n of the comm unicatio n primitiv es. Spa wning is ac hiev ed b y simply

op ening a parallel c hoice with t w o alternativ es: the �rst one is empt y , th us returns to the callee immedia tely ,

while the second one calls the goal to b e spa wned. The Aurora parallel sc heduler ensures that suc h a new

parallel alternativ e is executed b y an idle w ork er, if one exists. Note that this approac h do es not require

the forking of a new pro cess for eac h spa wn op eration: Aurora uses a �xed n um b er of w ork ers (pro cesses),

whic h are sc heduled to execute tasks as they arriv e (and sleep if there are no tasks to execute).

In this implemen tatio n, the comm unication b et w een the main lo op and the spa wned pro cesses is implem en ted

using a dynamic predicate, request/2 , as an application of general tec hniques describ ed in [14]. The in/2

predicate spins in a busy w aiting lo op un til the out/2 asserts the requested answ er. The assert and retract

predicates ha v e to b e ca v alier, so that they are executed irresp ectiv ely of their p osition in the Prolog or-tree.

The solution for pro cess comm unicatio n presen ted in Figure 10.2 has sev eral dra wbac ks. First, w ork ers w ait

in a busy lo op, th us w asting computing resources. This problem could b e o v ercome b y inserting a Unix sleep

in the lo op, th us making the pro cessor a v ailable for other computations. This solution, ho w ev er, still do es

not mak e the or-parallel sc heduler a w are of the fact that the execution branc h in question is susp ended. As

the Aurora system can b e started up with a �xed n um b er of w ork ers, sa y N , this means that at most N � 1

sessions can b e aliv e at an y momen t (one w ork er is executing the main lo op).

As a fairly recen t dev elopmen t, new primitiv es ha v e b een in tro duced in Aurora for user-con trolled susp ension

4

The call to query is normally preceded b y sending an HTML page to b e �lled in to the remote clien t. Comm unicati on in

this direction is fairly straigh tforw ard and is not discussed here.

134

and resumption of execution branc hes [2]:

� force_suspend(L)

F orces the curren t branc h to susp end, and assigns it the lab el L. Lab els curren tly can only b e in tegers.

� resume_forced_suspe nd(L)

This marks the susp ended branc h lab eled L as resumable and con tin ues with the curren t branc h.

The sc heduler ma y sc hedule a w ork er to restart the susp ended branc h an y time after this resumption

op eration has b een executed.

The new features mak e it p ossible to a v oid the busy w aiting in pro cess comm uni cation.

in(Req, Answer) :-

force_suspend(Req),

cavalier(retract(reque st(Re q,An swer))).

out(Req, Answer) :-

cavalier(assert(r eques t(Req ,Ans wer))),

resume_forced_sus pend(Req).

Figure 10.3: Pr ocess communica tion based on user contr olled suspension

Figure 10.3 sho ws the implemen tatio n of in and out with the new primitiv es. This approac h do es notify the

Aurora sc heduler ab out the branc h b ecoming susp ended and mak es it p ossible for the sc heduler to use the

w ork er for executing co de at other parts of the searc h tree. Consequen tly , it allo ws Aurora to b e run with

t w o w ork ers only and still serv e an y n um b er of requests, with in terlea v ed execution. Since one of the w ork ers

is w aiting for net w ork input most of the time, w e b eliev e that suc h a t w o-w ork er Aurora con�guration can

b e safely run on a mono-pro cessor computer as w ell.

On the other hand, if a m ultipro cessor is a v ailable as a serv er, there is no need to forbid the exploitation of

parallelism in the Prolog programs run. The Aurora sc heduler will ensure that parallelism is exploited b oth

b et w een the indep enden t threads of execution and within suc h threads.

10.7 Presen t status and future w ork

W e ha v e implemen ted the single-clien t v ersion of EMRM. Figure 10.4 presen ts a W eb page with the start-up

query of EMRM. W e ha v e designed the supp ort for m ulti-clien t execution of Prolog serv ers and tested the

�rst v ersion of pro cess comm unication primitiv es on simple examples.

W e plan to con tin ue the dev elopmen t of the m ulti-clien t v ersion of EMRM. W e also hop e to compare our

metho d with approac hes based on other parallel Prolog systems, suc h as &-Prolog and parallel BinProlog.

10.8 Conclusion

W e ha v e outlined EMRM, a Prolog application implemen ting a medical record managemen t exp ert sys-

tem. W e ha v e describ ed our w ork on transforming the user in terface of EMRM to apply a WWW bro wser

comm uni cating with the Prolog program through HTML forms and HTML pages.

W e ha v e outlined some tec hniques for in terlea v ed execution of m ultiple copies of a serv er application in

Prolog. W e ha v e p oin ted out that most of these are not capable of supp orting the prop er in terlea ving of

m ultiple bac ktrac king searc hes.

W e ha v e presen ted our design for a single Prolog serv er, based on an or-parallel implemen tatio n Aurora,

supp orting m ultiple clien ts with full supp ort for indep enden t Prolog searc h. The main adv an tage of this

approac h o v er running a separate cop y of the application for eac h clien t is the a v oidance of length y start-up

135

Figure 10.4: A snapshot of the EMRM opening p a ge

time and signi�can t reduction in memory requiremen ts. As a further adv an tage the single serv er approac h

allo ws easy comm unicati on b et w een the program instances serving the di�eren t clien ts, whic h ma y b e useful

e.g. for cac hing certain common results, collecting statistics, etc. An imp ortan t asp ect is that the kno wledge

base do es not need to b e c hanged and the commonly used lazy querying tec hniques can b e safely applied.

W e hop e to complete the dev elopmen t of the m ulti-clien t v ersion of EMRM in the near future. W e b eliev e

this serv er will b e able to serv e sev eral clien ts sim ultaneously , at a reasonable sp eed and with reasonable

resources.

Ac kno wledgemen t

The authors are indebted to all their colleagues in the CUBIQ pro ject and gratefully ac kno wledge the supp ort

of the Europ ean Union Cop ernicus programme, under pro ject CP93-10979 `CUBIQ'.

References

[1] László Balkán yi, Zsuzsa F ark as, and Katalin Molnár. EMRM Electronic Medical Record Managemen t

System. CUBIQ Cop ernicus pro ject deliv erable rep ort, IQSOFT Ltd., Hungary , 1995.

[2] T on y Beaumon t, Da vid H. D. W arren, and Péter Szeredi. Impro ving Aurora sc heduling. CUBIQ

Cop ernicus pro ject deliv erable rep ort, Univ ersit y of Bristol and IQSOFT Ltd., 1995.

[3] Ko en de Bossc here and P aul T arau. Blac kb oard-based extensions for parallel programming in BinProlog.

In Dale Miller, editor, L o gic Pr o gr amming - Pr o c e e dings of the 1993 International Symp osium , page 664,

V ancouv er, Canada, 1993. The MIT Press.

[4] D. Cab eza and M. Hermenegildo. h tml.pl: A simple HTML pac k age for Prolog and CLP systems.

T ec hnical rep ort, Computer Science Departmen t, T ec hnical Univ ersit y of Madrid, 1996.

136

[5] B Carp en ter. A Prolog-based CGI handler, 1996.

http://macduff.a ndrew .cmu. edu/c gpar ser/p rolog -cgi .html .

[6] N. Carreiro and D. Gelern ter. Linda in con text. Comm. of the A CM , 32(4), 1989.

[7] Iván F utó. Prolog with comm unicating pro cesses: F rom T-Prolog to CSR-Prolog. In Da vid S. W arren,

editor, Pr o c e e dings of the T enth International Confer enc e on L o gic Pr o gr amming , pages 3�17, Budap est,

Hungary , 1993. The MIT Press.

[8] M. V. Hermenegildo and K. J. Greene. &-Prolog and its p erformance: Exploiting indep enden t And-

P arallelism. In Da vid H. D. W arren and P eter Szeredi, editors, Pr o c e e dings of the Seventh International

Confer enc e on L o gic Pr o gr amming , pages 253�268, Jerusalem, 1990. The MIT Press.

[9] Ewing Lusk, Ralph Butler, T errence Disz, Rob ert Olson, Ross Ov erb eek, Ric k Stev ens, Da vid H. D.

W arren, Alan Calderw oo d, Péter Szeredi, Seif Haridi, P er Brand, Mats Carlsson, Andrzej Ciepielewski,

and Bogumiª Hausman. The Aurora or-parallel Prolog system. New Gener ation Computing , 7(2,3):243�

271, 1990.

[10] Katalin Molnár, Rob ert B. Scott, and Zsuzsa F ark as. HTML as a user in terface for a (Prolog) program.

In Poster Pr o c e e dings of the 4th World Wide Web Confer enc e , 1995.

[11] John K. Ousterhout. Tcl and the Tk T o olkit . Addison-W esley , 1994.

[12] D. J. Roth w ell, R. A. Cote, J. P . Cordeau, and M. A. Boisv ert. Dev eloping a standard data structure

for medical language � the SNOMED prop osal. In Pr o c e e dings of 17th A nnual SCAMC, Washington ,

1993.

[13] SICS Programming Systems Group. SICStus Pr olo g User's Manual . Sw edish Institute of Computer

Science, June 1995.

[14] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vija y Sarasw at and

Kazunori Ueda, editors, L o gic Pr o gr amming: Pr o c e e dings of the 1991 International L o gic Pr o gr amming

Symp osium , pages 355�371. The MIT Press, Octob er 1991.

[15] Péter Szeredi, Katalin Molnár, and Rob Scott. Serving m ultiple HTML clien ts from a Prolog application.

In P aul T arau, Andrew Da vison, Ko en de Bossc here, and Man uel Hermenegildo, editors, Pr o c e e dings

of the 1st Workshop on L o gic Pr o gr amming T o ols for INTERNET Applic ations, in c onjunction with

JICSLP'96, Bonn, Germany , pages 81�90. COMPULOG-NET, Septem b er 1996.

137

Conclusions

This thesis describ es w ork on the Aurora or-parallel Prolog system. T o conclude, w e �rst summarise the

con tributions of the author, and then giv e a brief ev aluation of the problems encoun tered, their solutions,

and the signi�cance of the results.

Con tributi on s

The follo wing is a summary of the main results ac hiev ed b y the author of this thesis.

Implemen t ati on: I dev elop ed a pro�ling tec hnique for Aurora and carried out detailed p erformance analy-

sis in the early stages of the pro ject. This pro�ling tec hnique has b een used throughout the pro ject and

signi�can tly help ed subsequen t design decisions. I w as the principal designer of the engine-sc heduler

in terface, whic h enabled the dev elopmen t of m ultiple sc heduler and engine comp onen ts. I designed the

basic Bristol sc heduler whic h later ev olv ed to b e the main sc heduler used in Aurora.

Extensions: I dev elop ed t w o language extension prop osals to supp ort adv anced searc h tec hniques in or-

parallel Prolog systems: for sync hronisation of dynamic predicate up dates and for adv anced optimisa-

tion searc h in v olving branc h-and-b ound and alpha-b eta pruning. I dev elop ed a protot yp e implemen-

tation for b oth extensions in Aurora and carried out case studies to pro v e their usefulness.

Applicati ons: I w as a principal con tributor to sev eral application pro jects in div erse areas: computational

molecular biology , hierarc hical kno wledge bases and WWW-serv ers. These applications pro v e the

viabilit y of Aurora and of or-parallel Prolog systems in general.

Ev aluation

The conclusion of the Aurora o v erview pap er (Chapter 2, Section 2.7) giv es a summary of ho w the Aurora

dev elopmen t team view ed its results as of 1989. W e no w try to reiterate the main issues raised there and

giv e an up-to-date ev aluation of the Aurora pro ject.

W e already stated in 1989 that Aurora demonstrated the feasibilit y of the SRI mo del as a means for trans-

forming an e�cien t sequen tial Prolog to an or-p ar al lel engine . Since then, the main impro v em en ts on the

engine side w ere link ed to the dev elopmen t of the second generation of Aurora with SICStus 0.6 as its core.

This Aurora system con tains the new engine-sc heduler in terface, as describ ed in Chapter 5.

T o da y , the SICStus 0.6-based Aurora engine is fairly outdated. Re-building the engine on top of an up-to-

date Prolog, suc h as the curren t SICStus3 implemen tati on, do es not p ose an y conceptual problems, but it

do es require substan tial e�ort to b e in v ested.

The 1989 Aurora pap er lists sev eral outstanding issues in sche duling , whic h ha v e b een solv ed since then,

suc h as b etter sc heduling heuristics and handling of sp eculativ e w ork. The Bristol sc heduler, describ ed in

Chapter 4, applied a new, �dispatc hing on b ottom-most� heuristics, whic h resulted in coarser task gran ularit y

and reduced task switc hing o v erheads. F urther impro v em en ts to Bristol sc heduler [1] pro vided supp ort for

b etter sc heduling of sp eculativ e w ork. Also, a new sc heduler, called Dharma, w as dev elop ed [8], applying

the so called �branc h lev el sc heduling� approac h, whic h also giv es go o d results on b oth sp eculativ e and

non-sp eculativ e w ork.

138

The main problems of supp orting the ful l Pr olo g language in an or-parallel setup w ere solv ed b y 1989.

Ho w ev er, to mak e the system usable in practice, sev eral further issues had to b e tac kled: selecting the

precise set of async hronous built-in predicates; de�ning and implemen ting the dynamic database up date

seman tics for the async hronous case; solving the problems of parallel �le input-output; pro viding immediate

(as opp osed to p ost-mortem) parallel tracing facilities. Ha ving solv ed these problems [2], Aurora b ecame

the �rst full-�edged Prolog system capable of exploiting or-parallelism in arbitrary Prolog programs.

The 1989 pap er lists three ma jor applic ations of Aurora, Since then sev eral further applications w ere suc-

cessfully p orted to Aurora, including the ones describ ed in this thesis (Chapters 8�10) as w ell as others, e.g.

[4 , 7, 3]. Exploration of further application areas is op ened up b y w ork describ ed in the language extension

part of the thesis (Chapters 6�7).

Regarding the multipr o c essor hardw are, an imp ortan t new dev elopmen t w as the p orting of Aurora to the

BBN GP1000 and TC2000 mac hines, with non-uniform memory access (NUMA) arc hitecture [5]. While the

traditional m ultipro cessors scale up to ab out 30 CPUs, the NUMA mac hines can ha v e a m uc h larger n um b er

of pro cessors. Aurora has sho wn almost linear sp eedups for programs with large searc h trees, including the

molecular biology application of Chapter 8. A related dev elopmen t w as the implemen tatio n of an em ulator

for the Data Di�usion Mac hine (DDM) virtual shared memory arc hitecture [10] on transputer net w orks [6].

Aurora w as p orted to the DDM em ulator and promising sp eedups w ere obtained.

As discussed in the 1989 pap er, the biggest obstacle in obtaining truly comp etitiv e b ottom-line p erformanc e

is still the relativ ely high cost of m ultipro cessors. Mac hines with a high n um b er of pro cessors are still fairly

exp ensiv e, but p ersonal computers with 2 to 8 pro cessors are b ecoming relativ ely c heap. W e b eliev e that

suc h lo w-cost m ultipro cessor PCs, running a parallel Prolog implemen tati on suc h as Aurora, will b ecome

cost-e�ectiv e to ols for solving searc h problems.

The main insigh ts gained from the dev elopmen t of Aurora are the follo wing. First, the decomp osition of

Aurora in to sc heduler and engine comp onen ts w as crucial in the dev elopmen t pro cess. The strict engine-

sc heduler in terface made it p ossible to exp erimen t with di�eren t sc heduling strategies and to re-use an Aurora

sc heduler in the Andorra-I implem en tation. Second, the problems of sc heduling dominated the Aurora

dev elopmen t. Fiv e sc hedulers w ere dev elop ed with di�eren t sc heduling principles and di�eren t underlying

data structures. The sc heduling algorithms b ecame more and more concerned with exploiting parallelism

in �di�cult� cases suc h as v ery �ne-grained parallelism, or sp eculativ e w ork. Third, Prolog, in spite of

its declarativ e ro ots is still v ery m uc h a sequen tial language. The Prolog comm unit y seems to prefer to

think sequen tially , e.g. the Prolog standard insists on all-solution predicates, suc h as bagof, returning the

list of solutions in the sequen tial order. Observing suc h a restriction implies a signi�can t o v erhead on

parallel execution, whic h is unnecessary in a lot of cases. A p ositiv e example in this resp ect is the Mercury

language[9], a new fully declarativ e logic programming language, the seman tics of whic h do es not con tain

an y restrictions on execution order.

W e b eliev e that w ork on Aurora had a signi�can t impact on researc h in parallel logic programming. Aurora

has pro v ed that it is feasible to supp ort the full Prolog language in an or-parallel implemen tation. Aurora

w ork included substan tial researc h on sc heduling or-parallelism, whic h can b e used in other parallel imple-

men tations of logic programmi ng. Aurora serv ed as a basis for the Andorra-I system supp orting b oth or- and

and-parallelism. Aurora has pro v ed that exploiting parallelism implicitl y , without programmer in terv en tion,

is viable and can lead to substan tial sp eedups in real-life applications.

References

[1] T on y Beaumon t and Da vid H. D. W arren. Sc heduling Sp eculativ e W ork in Or-parallel Prolog Systems.

In L o gic Pr o gr amming: Pr o c e e dings of the 10th International Confer enc e . MIT Press, 1993.

[2] Mats Carlsson, Ewing L. Lusk, and Péter Szeredi. Smo othing rough edges in Aurora (Extended Ab-

stract). In Pr o c e e dings of the First COMPULOG-NOE A r e a Me eting on Par al lelism and Implementation

T e chnolo gy . T ec hnical Univ ersit y of Madrid, Ma y 1993.

[3] K. Eshghi and C. Preist. Mo del-based diagnosis applied to a real problem. T ec hnical Rep ort HPL-91-

115, Hewlett P ac k ard Lab oratories, Bristol, UK, 1991.

[4] F eliks Klu¹niak. Dev eloping applications for Aurora. T ec hnical Rep ort TR-90-17, Univ ersit y of Bristol,

Computer Science Departmen t, August 1990.

139

[5] Sh y am Mudam bi. P erformances of aurora on NUMA mac hines. In Koic hi F uruk a w a, editor, Pr o c e e dings

of the Eighth International Confer enc e on L o gic Pr o gr amming , pages 793�806, P aris, F rance, 1991. The

MIT Press.

[6] Henk L. Muller, P aul W. A. Stallard, and Da vid H. D. W arren. The Data Di�usion Mac hine with a

scalable p oin t-to-p oin t net w ork. T ec hnical Rep ort CSTR-93-17, Univ ersit y of Bristol, Octob er 1993.

[7] C.J. Ra wlings, W.R.T. T a ylor, J. Ny ak airu, J. F o x, and M.J.E. Stern b erg. Using Prolog to represen t

and reason ab out protein structure. In Eh ud Shapiro, editor, Thir d International Confer enc e on L o gic

Pr o gr amming, L ondon , pages 536�543. Springer-V erlag, 1986.

[8] Raéd Y ousef Sindaha. Branc h-lev el sc heduling in Aurora: The Dharma sc heduler. In Dale Miller, editor,

L o gic Pr o gr amming - Pr o c e e dings of the 1993 International Symp osium , pages 403�419, V ancouv er,

Canada, 1993. The MIT Press.

[9] Zoltan Somogyi, F ergus Henderson, and Thomas Con w a y . The execution algorithm of Mercury: an

e�cien t purely declarativ e logic programmi ng language. Journal of L o gic Pr o gr amming , 29(1-3):17�64,

1996.

[10] Da vid H. D. W arren and Seif Haridi. Data Di�usion Mac hine�a scalable shared virtual memory m ulti-

pro cessor. In International Confer enc e on Fifth Gener ation Computer Systems 1988 . ICOT, 1988.

140

