1. Construct a deterministic finite automaton which is equivalent to the following non-deterministic finite automaton using the algorithm we have learned in class. \(\Sigma = \{a, b\} \)
2. (a) Define the star operation on languages. (If \(A \) is a language then what is the definition of the language \(A^* \)?)

(b) Prove that if \(A \) is a regular language then \(A^* \) is also regular. (We have proved this in class.)
3. Let $\Sigma = \{a, b\}$ and let the language L contain all words over Σ for which at least one of the following conditions are satisfied:

- the number of a characters and the number of b characters in the word are both odd
- the first and last character of the word is the same
- the word does not contain the subword $bbbb$

Prove that L is a regular language.
4. Prove that the language $L = \{(ab)^n c^{5n} \mid n \geq 1\}$ is not regular. Use the pumping lemma.