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ABSTRACT
Conditional lower bounds based on P ≠ NP, the Exponential-Time

Hypothesis (ETH), or similar complexity assumptions can provide

very useful information about what type of algorithms are likely to

be possible. Ideally, such lower boundswould be able to demonstrate

that the best known algorithms are essentially optimal and cannot

be improved further. In this tutorial, we overview different types

of lower bounds, and see how they can be applied to problems in

database theory and constraint satisfaction.
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1 INTRODUCTION
The design of efficient algorithms is in the focus of a large part of

theoretical computer science research. The practical need to solve

computational problems efficiently makes the systematic study of

algorithmic efficiency highly motivated. Decades of research in al-

gorithm design discovered mathematically beautiful and sometimes

very practical algorithmic techniques that gave us deep insights into

efficient computation in a wide range of contexts and application

domains. The field of computational complexity treats algorithmic

problems and computation as formal mathematical objects and tries

to prove relationships between them [8, 55].

Given the abundance of computation in our modern word, it is

justified to consider algorithms and computation as a fundamental
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mathematical objects, on par with basic objects in geometry, algebra,

and combinatorics. Researchers in computational complexity try

to learn as much as possible about the mathematical nature of

computation. But more pragmatically, computational complexity

can give very important messages to algorithm designers. By giving

information about limits of computation, it can prevent researchers

from wasting time in dead ends of study: trying to design algorithm

for problems that cannot be efficiently solved.

Having techniques to prove negative results can profoundly

change the way research in algorithms is done. For example, the

theory of NP-hardness changed the search for polynomial-time

algorithms from a hit and miss effort to a more systematically

doable project. Without NP-hardness, we would not be able to

distinguish problems that do not admit polynomial-time algorithms

from problems where we just were not yet successful in finding

algorithms. But with the possibility of giving negative evidence in

the form of NP-hardness, the lack of a known answer means that

the question is still an active research problem: we typically expect

that the algorithmic problem at hand can be eventually classified as

either polynomial-time solvable or NP-hard, and it is worth trying

to resolve the question one way or the other.

In a sense, computation complexity has not progressed much in

the past 50 years despite intense efforts: the core questions under-

lying the hardness of computation, such as the celebrated P ≠ NP

problem, are still wide open. However, by accepting certain well-

chosen complexity assumptions, such as the P ≠ NP hypothesis,

we can obtain conditional lower bounds explaining the apparent

complexity of a large number of problems. As a general theme

in computational complexity research, we can see a proliferation

of new assumptions. These assumptions typical postulate that a

certain type of algorithm does not exist for a particular fundamen-

tal problem (e.g., for Boolean satisfiability). The assumptions are

chosen to be both plausible and have strong explanatory power:

in many cases, they are able to show that the algorithms that we

currently have are optimal and cannot be improved any further.

Indeed, from the viewpoint of algorithm design, this is precisely

the role of computation complexity: to separate problems where

our current knowledge is complete from problems where there are

still algorithmic ideas waiting to be discovered.

Some of the complexity assumptions are standard (such as P ≠

NP), while others may be more controversial (such as the Strong

Exponential-Time Hypothesis (SETH)). Therefore, the reader may

wonder about the usefulness of proving conditional lower bounds

based on unproven assumptions. It is important to point out that

these conditional lower bounds are valuable even if we have doubts

about the validity of the assumptions. Suppose we use a complexity

assumption 𝑋 to prove that a certain type of algorithm does not
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exists for a specialized problem 𝑃 , perhaps in an application domain

such as database theory. Even if we do not believe in the validity

of the assumption 𝑋 , this conditional lower bound shows that the

difficulties we face when attacking problem 𝑃 have nothing to do

with the specific details of problem 𝑋 or the application area: we

are really facing assumption 𝑋 in disguise and we need to disprove

that first before any progress can be made on problem 𝑃 . In other

words, the conditional lower bound shows that we can stop trying

to obtain the desired algorithm for problem 𝑃 , as any such effort

would be better spent on trying to disprove the (typically more

fundamental) assumption 𝑋 .

The purpose of this article is to highlight some of the lower

bound techniques and show what kind of results they can deliver

in the context of database theory. We will introduce a number of

assumptions, contrast them, and show examples of their use. It

has to be emphasized that this article does not aim to be an up to

date survey of lower bounds in the area of database theory. The

focus is more on the diverse set of assumptions and lower bound

techniques that exist, rather than on presenting an exhaustive list of

applications for each technique. Some of these example applications

come directly from the literature on database query evaluation, but

others were stated in essentially equivalent forms in other domains:

for constraint satisfaction problems (CSP) or for graph-theoretic

problems. Therefore, we begin with introducing the terminology

for all these domains and then discuss the results using the most

appropriate terminology.

2 THE FOUR DOMAINS
Conjunctive query evaluation is a fundamental problem in database

theory. This problem can be equivalently seen as a CSP instance

and therefore some of the results in the CSP literature are directly

relevant. A large part of the CSP literature uses a formulation using

the homomorphism of relational structures, which in some special

cases degenerate to traditional graph problems. In this section, we

introduce the terminology for all these domains and show how they

are connected to each other.

2.1 Database queries
A join query 𝑄 is an expression of the form

𝑅1 (𝑎11, . . . , 𝑎1𝑟1
) ⊲⊳ · · · ⊲⊳ 𝑅𝑚 (𝑎𝑚1, . . . , 𝑎𝑚𝑟𝑚 ),

where the 𝑅𝑖 are relation names with attributes 𝑎𝑖1, . . . , 𝑎𝑖𝑟𝑖 . Let

𝐴 be the set of all attributes occurring in 𝑄 and 𝑛 = |𝐴|. A data-

base instance D for 𝑄 consists of a domain dom(D) and relations

𝑅𝑖 (D) ⊆ dom(D)𝑟𝑖 of arity 𝑟𝑖 . It is common to think of the rela-

tion 𝑅𝑖 (D) as a table whose columns are labeled by the attributes

𝑎𝑖1, . . . , 𝑎𝑖𝑟𝑖 and whose rows are the tuples in the relation. The an-

swer, or set of solutions, of the query 𝑄 in D is the 𝑛-ary relation

𝑄 (D) with attributes 𝐴 consisting of all tuples 𝑡 whose projection

on the attributes of 𝑅𝑖 belongs to the relation 𝑅𝑖 (D), for all 𝑖 . Given
the query𝑄 and the database𝐷 , the task in the JoinQuery problem

is to compute the set 𝑄 (D). In the Boolean JoinQuery problem,

we only need to decide if𝑄 (D) is empty or not. One can also define

the counting version of the problem (i.e, compute |𝑄 (D) |).
The primal graph of the query has the set𝐴 of attributes as vertex

set and two variables are adjacent if there is a relation containing

both of them. The hypergraph of the instance is defined similarly:

the vertex set is 𝐴, and each relation 𝑅𝑖 (𝑎𝑖1, . . . , 𝑎𝑖𝑟𝑖 ) is represented
by a hyperedge {𝑎𝑖1, . . . , 𝑎𝑖𝑟𝑖 }.

2.2 Constraint satisfaction problems
Constraint satisfaction is a general framework that includes many

standard algorithmic problems such as satisfiability, graph color-

ing, database queries, etc. A constraint satisfaction problem (CSP)

instance consists of a set 𝑉 of variables, a domain 𝐷 , and a set 𝐶

of constraints, where each constraint is a relation on a subset of

the variables. The task is to assign a value from 𝐷 to each variable

in such a way that every constraint is satisfied. For example, 3SAT

can be interpreted as a CSP instance where the domain is {0, 1}
and the constraints in 𝐶 correspond to the clauses (thus the arity

of each constraint is 3).

Formally, an instance 𝐼 of a constraint satisfaction problem is a

triple 𝐼 = (𝑉 , 𝐷,𝐶), where:
• 𝑉 is a set of variables,

• 𝐷 is a domain of values,

• 𝐶 is a set of constraints, {𝑐1, 𝑐2, . . . , 𝑐𝑞}. Each constraint 𝑐𝑖 ∈
𝐶 is a pair ⟨𝑠𝑖 , 𝑅𝑖 ⟩, where:
– 𝑠𝑖 is a tuple of variables of length𝑚𝑖 , called the constraint

scope, and

– 𝑅𝑖 is an𝑚𝑖 -ary relation over 𝐷 , called the constraint rela-

tion.

For each constraint ⟨𝑠𝑖 , 𝑅𝑖 ⟩ the tuples of 𝑅𝑖 indicate the allowed
combinations of simultaneous values for the variables in 𝑠𝑖 . The

length 𝑚𝑖 of the tuple 𝑠𝑖 is called the arity of the constraint. A

solution to a constraint satisfaction problem instance is a function

𝑓 from the set of variables 𝑉 to the domain 𝐷 of values such that

for each constraint ⟨𝑠𝑖 , 𝑅𝑖 ⟩ with 𝑠𝑖 = (𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑚 ), the tuple

(𝑓 (𝑣𝑖1 ), 𝑓 (𝑣𝑖2 ), . . . , 𝑓 (𝑣𝑖𝑚 )) is a member of 𝑅𝑖 . Given a CSP instance

𝐼 , we can consider the problem of deciding if a solution exists, the

problem of finding all solutions, or the problem of counting the

number of solutions.

We say that an instance is binary if each constraint relation is

binary, that is,𝑚𝑖 = 2 for every constraint
1
. The primal graph (or

Gaifman graph) of a CSP instance 𝐼 = (𝑉 , 𝐷,𝐶) is a graph 𝐺 with

vertex set 𝑉 , where 𝑥,𝑦 ∈ 𝑉 form an edge if and only if there is a

constraint ⟨𝑠𝑖 , 𝑅𝑖 ⟩ ∈ 𝐶 with 𝑥,𝑦 ∈ 𝑠𝑖 . The hypergraph of an instance

𝐼 = (𝑉 , 𝐷,𝐶) has 𝑉 as its vertex set and for every constraint in 𝐶 a

hyperedge that consists of all variables occurring in the constraint.

Given a join query 𝑄 and a database D, we can turn the query

problem into a CSP instance 𝐼 in a straightforward way: the domain

of 𝐼 is dom(D), the set of variables correspond to the attributes 𝐴

of𝑄 , and for each relation 𝑅𝑖 , there is a corresponding constraint 𝑐𝑖
on the variables 𝑎𝑖1, . . . , 𝑎𝑖𝑟𝑖 . It is clear that the tuples in the answer

set of 𝑄 in D are in one to one correspondence with the solutions

of the CSP instance 𝐼 . This establishes a correspondence between

the basic algorithmic problems of the two domains.

It is worth pointing out that even though the two problems

are equivalent, a large part of CSP research focuses on problem

instances where the domain has small constant size and the number

1
It is unfortunate that while some communities use the term “binary CSP” in the sense

that each constraint is binary (as does this dissertation), others use it in the sense that

the variables are 0-1, that is, the domain size is 2.
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of constraints is large (for example, 3SAT is such a problem). This

has to be contrasted with the typical setting in database theory

research where we assume that there are only a small number of

attributes and relations have low arity, but the domain can be large

and the number of tuples in a relation can be large.

2.3 Graph problems
Given a binary CSP instance 𝐼 = (𝑉 , 𝐷,𝐶), we can equivalently

formulate it as a graph problem. We construct a graph 𝐺 the fol-

lowing way: let us introduce |𝑉 | · |𝐷 | vertices𝑤𝑣,𝑑 (𝑣 ∈ 𝑉 , 𝑑 ∈ 𝐷)

and for ever constraint 𝑐𝑖 = ⟨(𝑢, 𝑣), 𝑅𝑖 ⟩, let us make𝑤𝑢,𝑑1
and𝑤𝑣,𝑑2

adjacent if and only if (𝑑1, 𝑑2) ∈ 𝑅𝑖 . Let𝑊𝑖 = {𝑤𝑖,𝑑 | 𝑑 ∈ 𝐷} and
consider the partition P = {𝑊1, . . . ,𝑊 |𝑉 |}. We say that a subgraph

𝐻 of 𝐺 respects the partition P if every class of the partition P
contains exactly one vertex of 𝐻 .

Let 𝑓 : 𝑉 → 𝐷 be a solution of 𝐼 . If we consider the vertices

{𝑤𝑣,𝑓 (𝑣) | 𝑣 ∈ 𝑉 }, then it is easy to see that they induce a sub-

graph 𝐻 that respects P and isomorphic to the primal graph of 𝐼 .

Conversely, it is not difficult to see that if𝐺 has a subgraph that re-

spects P and is isomorphic to the primal graph of 𝐼 , the it describes

a solution of 𝐼 . Therefore, the CSP instance can be described by an

instance of partitioned subgraph isomorphism: given graphs 𝐻 and

𝐺 , and partition P of 𝑉 (𝐺) into |𝑉 (𝐻 ) | classes, find a subgraph of

𝑉 that respects P and is isomorphic to 𝐻 . This problem is a natural

variant of the standard subgraph isomorphism problem (find a sub-

graph of 𝐺 isomorphic to 𝐻 ) and, as we have seen, its complexity

is tightly connected to the complexity of CSP instances where the

primal graph is 𝐻 .

There is another way in which graph-theoretic notions can de-

scribe the solutions of a CSP instance. Consider a binary CSP in-

stance 𝐼 = (𝑉 , 𝐷,𝐶) where every constraint 𝑐𝑖 = ⟨(𝑢, 𝑣), 𝑅𝑖 ⟩ con-
tains the same binary relation 𝑅𝑖 = 𝑅, which we further assume

to be symmetric (that is, (𝑑1, 𝑑2) ∈ 𝑅 if and only (𝑑2, 𝑑1) ∈ 𝑅). Let

𝐻 be the primal graph of 𝐼 and let 𝐺 be a graph with vertex set 𝐷

where 𝑑1, 𝑑2 ∈ 𝐷 are adjacent if and only if (𝑑1, 𝑑2) ∈ 𝑅. A homo-

morphism from 𝐻 to 𝐺 is a mapping 𝑓 : 𝑉 (𝐻 ) → 𝑉 (𝐺) such that

if 𝑢 and 𝑣 are adjacent in 𝐻 , then 𝑓 (𝑢) and 𝑓 (𝑣) are adjacent in
𝐺 . Note that 𝑓 does not have to be injective (i.e., 𝑓 (𝑢1) = 𝑓 (𝑢2) is
possible) and if 𝑢 and 𝑣 are not adjacent, then we do not require that

𝑓 (𝑢) and 𝑓 (𝑣) be nonadjacent as well. It is easy to see that every

solution 𝑓 : 𝑉 → 𝐷 of 𝐼 describes a homomophism from 𝐻 to 𝐺 ,

in fact, these homomorphisms are in one to one correspondence

with the solutions of 𝐼 . Therefore, the complexity of finding a ho-

momorphism from a fixed graph 𝐻 to the input graph 𝐺 is tightly

connected to the complexity of CSP for instances with primal graph

𝐻 where the same symmetric relation 𝑅 appears in every constraint.

If the relation 𝑅 is not symmetric, then a similar connection can be

made to the homomorphism problem in directed graphs.

2.4 Relational structures
The connection between CSP and graph homomorphisms that we

have seen in the previous section has two major limitations: it

worked only for binary CSP instances and only if every constraint

contained the same relation 𝑅. These limitations can be removed if

we move from graphs to the much more general setting of relational

structures.

A vocabulary 𝜏 is a finite set of relation symbols of specified

arities. The arity of 𝜏 is the maximum of the arities of all relational

symbols it contains. A 𝜏-structure A consists of a finite set 𝐴 called

the universe of A and for each relation symbol 𝑅 ∈ 𝜏 , say, of arity

𝑘 , a 𝑘-ary relation 𝑅A ⊆ 𝐴𝑘
. A homomorphism from a 𝜏-structure

A to a 𝜏-structure B is a mapping ℎ : 𝐴 → 𝐵 from the universe

of A to the universe of B that preserves all relations, that is, for

all 𝑅 ∈ 𝜏 , say, of arity 𝑘 , and all tuples (𝑎1, . . . , 𝑎𝑘 ) ∈ 𝑅A it holds

that (ℎ(𝑎1), . . . , ℎ(𝑎𝑘 )) ∈ 𝑅B. Note that if 𝜏 contains only a single

relational symbol, which has arity 2, then 𝜏-structures are essen-

tially directed graphs and the homomorphism problem between

𝜏-structures is equivalent to the homomorphism problem on di-

rected graphs.

More generally, we can express every CSP instance 𝐼 = (𝑉 , 𝐷,𝐶)
as a homomorphism problem the following way. Let 𝑐 = |𝐶 | be the
number of constraints. Let the vocabulary 𝜏 contain 𝑐 symbols 𝑄1,

. . . 𝑄𝑐 , where symbol 𝑄𝑖 has the same arity𝑚𝑖 as the constraint

𝑐𝑖 = ⟨𝑠𝑖 , 𝑅𝑖 ⟩. We define 𝜏-structure A over the universe 𝑉 such that

𝑄A
𝑖
contains only the tuple 𝑠𝑖 . We define 𝜏-structure B over the

universe 𝐷 such that 𝑄B
𝑖
is precisely the relation 𝑅𝑖 appearing in

constraint 𝑐𝑖 . Now it can be verified that a mapping 𝑓 : 𝑉 → 𝐷 is a

solution of 𝐼 if and only if 𝑓 is a homomorphism from A to B.

3 UNCONDITIONAL LOWER BOUNDS
Ideally, we would like to prove negative results and lower bounds

that are incontestably true mathematical statements. However, our

inability to prove the P ≠ NP hypothesis is a major barrier that

prevents us from proving most negative statements of interest. For

all we know, it is still possible that P = NP and we can solve all

database query and CSP instances in polynomial time, and hence

at the moment we cannot expect to unconditionally prove any

result that rules out such algorithms. As long as we are in the

classical setting of computation typically studied in computational

complexity (algorithm is given an input, needs to compute a yes-no

output), there is little hope in proving strong unconditional lower

bounds.

We can hope to obtain unconditional lower bounds only if we

deviate from the classical setting: for example, the problem involves

the cost of accessing the input or the cost of communication. We

show a particular, very simple setting in which we have tight un-

conditional lower bounds. If the task is to compute the answer to

a join query, then the size of the answer is obviously an uncondi-

tional lower bound on the number of steps needed for computing

the answer. This raises the question: what bounds can we give on

the size of the answer and are there query evaluation algorithms

that match this lower bound?

Formally, let 𝑄 = 𝑅1 (𝑎11, . . . , 𝑎1𝑟1
) ⊲⊳ · · · ⊲⊳ 𝑅𝑚 (𝑎𝑚1, . . . , 𝑎𝑚𝑟𝑚 )

be a join query and let D be a database instance for 𝑄 such that

every relation 𝑅𝑖 (D) contains at most 𝑁 tuples. What can we say

about the size of the answer? It is easy to see that 𝑁𝑚
is an obvious

upper bound: every tuple appearing in the answer chooses one

of the at most 𝑁 possibilities in each of the𝑚 relations. But this

bound is often very far from being tight. For example, for the query

𝑄 = 𝑅1 (𝑎1, 𝑎2) ⊲⊳ 𝑅2 (𝑎1, 𝑎3) ⊲⊳ 𝑅3 (𝑎2, 𝑎3), it is known that the

upper bound is 𝑁 3/2
instead of 𝑁 3

. The fractional number 3/2 in

the exponent of 𝑁 suggests that obtaining the bound cannot be
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completely obvious. Still, precise bounds can be obtained in a clean

way using known combinatorial techniques.

Let us define the hypergraph 𝐻 of the query 𝑄 the following

way: the vertices are the attributes and we introduce a hyperedge

{𝑎𝑖1, . . . , 𝑎𝑖𝑟𝑖 } for each relation 𝑅𝑖 (𝑎𝑖1, . . . , 𝑎𝑖𝑟𝑖 ). A fractional cover

of a hypergraph 𝐻 is a mapping 𝑓 : 𝑉 (𝐻 ) → [0, 1] such that for

every vertex 𝑣 ∈ 𝑉 (𝐻 ), we have

∑
𝑒∈𝐸 (𝐻 ),𝑣∈𝑒 𝑓 (𝑒) ≥ 1. That is,

𝑓 is a weight assignment on the edges such that the total weight

put on each vertex 𝑣 is at least 1. The weight of 𝑓 is

∑
𝑒∈𝐸 (𝐻 ) 𝑓 (𝑒)

and the fractional edge cover number 𝜌∗ (𝐻 ) of 𝐻 is the minimum

weight of a fractional edge cover of 𝐻 . For example, for the query

𝑄 = 𝑅1 (𝑎1, 𝑎2) ⊲⊳ 𝑅2 (𝑎1, 𝑎3) ⊲⊳ 𝑅3 (𝑎2, 𝑎3), the hypergraph 𝐻 is

a triangle and 𝜌∗ (𝐻 ) = 3/2 (assigning weight 1/2 to each edge

is a fractional edge cover and a quick analysis shows that this is

optimal).

Using a simple application of Shearer’s Lemma [24], which is

a purely combinatorial statement on entropy, one can show that

𝑁 𝜌∗ (𝐻 )
is an upper bound on the number of solutions.

Theorem 3.1 (Atserias, Grohe, Marx [9]). Let𝑄 be a join query

with hypergraph 𝐻 . Let D be a database for 𝑄 where every relation

has at most 𝑁 tuples. Then the answer of 𝑄 in D has size at most

𝑁 𝜌∗ (𝐻 )
.

Conversely, we can show that 𝑁 𝜌∗ (𝐻 )
is essentially a tight lower

bound. As it is usual with lower bound statements, we have to be a

bit more careful with the formulation.

Theorem 3.2 (Atserias, Grohe, Marx [9]). Let𝑄 be a join query

with hypergraph 𝐻 . For infinitely many 𝑁 ≥ 1, there is a database

D𝑁 for 𝑄 where every relation has at most 𝑁 tuples and the answer

of 𝑄 in D𝑁 has size at least 𝑁 𝜌∗ (𝐻 )
.

Theorem 3.2 provides an unconditional lower bound for any

algorithm computing the full answer of 𝑄 (but of course it does

not provide any bound on algorithms that just decide whether the

answer is empty or compute the size of the answer). Are there al-

gorithms that match this lower bound? The combinatorial proof of

Theorem 3.1 can be turned into an algorithm with a constant over-

head in the exponent, that is, to obtain 𝑁 𝜌∗ (𝐻 )+𝑂 (1)
running time.

With additional techniques, it is possible to give tight algorithms

that tightly match the lower bound.

Theorem 3.3 ([54, 61]). Let𝑄 be a join query with hypergraph 𝐻 .

Let D be a database for 𝑄 where every relation has at most 𝑁 tuples.

Then the answer of 𝑄 in D can be computed in time 𝑂 (𝑁 𝜌∗ (𝐻 ) ).

4 NP-HARDNESS
Since its conception and development in the early 70s [26, 38, 47],

NP-hardness has been the main workhorse of providing intractabil-

ity results for computational problems. The class NP contains deci-

sion problems that can be solved in nondeterministic polynomial

time. This robust definition covers (the decision version of) most

combinatorial and optimization problems of interest. If a problem

𝑃 is NP-hard, then this means in particular that a polynomial-time

algorithm for 𝑃 would give polynomial-time algorithms for ev-

ery problem in NP, which we take as strong evidence that such

an algorithm is unlikely. We prove NP-hardness of 𝑃 by giving a

polynomial-time reduction from a known NP-hard problem 𝑄 ; this

reduction shows that a polynomial-time algorithm for 𝑃 would give

a polynomial-time algorithm for 𝑄 and hence for every problem in

NP.

Most of the problems studied in database theory or in CSP re-

search are obviously NP-hard, as they contain basic hard problems

as special cases. Therefore, it is not completely obvious how to ask

reasonable questions about NP-hardness where the answer is not

trivial. One direction is to consider restricted parameter values. For

example, for CSP problems, one may ask if the problem remains

NP-hard if we restrict the domain size |𝐷 | to 2 (yes, as 3SAT is still a

special case), or restrict the constraints to binary (yes, 3-Coloring

is a special case), or we apply both restrictions (no, with |𝐷 | = 2

and binary constraints the problem becomes the polynomial-time

solvable 2SAT). Restricting the number |𝑉 | of variables to any con-

stant, say 10, gives a polynomial-time solvable special case even if

the domain size |𝐷 | is arbitrarily large (as we can try the at most

|𝐷 |10
possible assignments in polynomial time).

More generally, we can introduce restrictions on the problem

in a systematic way and determine which of the restrictions lead

to polynomial-time solvable and NP-hard special cases. In CSP

research, a very well studied family of special cases arise from re-

stricting the type of relations that are allowed in the constraints.

Formally, let 𝐷 be a finite domain and let R be a finite set of rela-

tions over 𝐷 . Then we denote by CSP(R) the special case of the
general CSP problem where the instance is allowed to contain only

constraints 𝑐 = ⟨𝑠, 𝑅⟩ where 𝑅 ∈ R. Equivalently, we can state this

restriction in the language of the homomorphism problem in a

very compact way. Let 𝜏 be a vocabulary and let B be a 𝜏-structure.

Then HOM(_,B) is the special case of the general homomorphism

problem where the input is a pair (A,B) of 𝜏-structures, where A
is arbitrary.

A classic result of Schaefer [59] characterized the complexity of

CSP(R) for any fixed finite set R of relation over the Boolean do-

main (i.e., |𝐷 | = 2). More precisely, Schaefer’s Dichotomy Theorem

showed that every such CSP(R) problem is either polynomial-time

solvable or NP-hard, and gave a clean characterization of the two

cases. For several years, it was an outstanding open problem to

prove an analog of this result for larger fixed domains (the Feder-

Vardi Conjecture [35]). After partial progress, the conjecture was

resolved in 2016 independently by Bulatov [21] and Zhuk [63].

While these classification results are cornerstones of modern CSP

research, translating them into the language of database theory does

not give much useful insight. Indeed, these characterization results

would concern special cases where the domain of the attributes have

constant size and every database relations is of constant size. From

the viewpoint of database theory, a more relevant family of special

cases can be obtained by restricting the structure of the query. Let

us focus on Boolean JoinQuery, the problem of deciding if the

answer set is empty or not. If we assume, for example, that the

primal graph of the query is a tree (acyclic graph), then it is easy

to solve the problem in polynomial time, while the problem may

remain NP-hard under other restrictions (for example, under the

assumption that the primal graph has maximum degree 3 or is a

planar graph etc.). Formally, in the language of CSPs, if G is any

class of graphs, we may want to understand the complexity of the

problem CSP(G), which is CSP under the restriction that the primal

graph belongs to class G.
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Can we identify every class G that leads to polynomial-time

solvable special cases and use NP-hardness to give evidence of

hardness for every other case? It is known that if G contains only

graphs of bounded treewidth, then CSP(G) becomes polynomial-

time solvable. Treewidth is a combinatorial measure of graphs

that can be though of as a number expressing how treelike the

graph is: treewidth is 1 if and only if the graph is an acyclic forest,

while other fixed values mean that the graph is similar to a tree

with each node being replaced by a small graph. While the formal

definition of treewidth is technical, it models very faithfully the

requirements that make the algorithmic paradigm “split on small

separators and recurse” work and its mathematical naturality is

further evidenced by the fact that it was independently discovered

in equivalent formulations at least three times [14, 41, 57]. The

precise definition of treewidth is not essential for this paper; we

include the definition here only for completeness.

Definition 4.1. A tree decomposition of a graph𝐺 is a pair (B,𝑇 )
where𝑇 is a tree and B = {𝐵𝑡 | 𝑡 ∈ 𝑉 (𝑇 )} is a collection of subsets

of 𝑉 (𝐺) such that:

• ⋃
𝑡 ∈𝑉 (𝑇 ) 𝐵𝑡 = 𝑉 (𝐺),

• for each edge 𝑥𝑦 ∈ 𝐸 (𝐺), {𝑥,𝑦} ⊆ 𝐵𝑡 for some 𝑡 ∈ 𝑉 (𝑇 );
• for each 𝑥 ∈ 𝑉 (𝐺) the set {𝑡 | 𝑥 ∈ 𝐵𝑡 } induces a connected
subtree of 𝑇 .

The width of the tree decomposition is max𝑡 ∈𝑉 (𝑇 ) {|𝐵𝑡 | − 1}. The
treewidth of a graph 𝐺 is the minimum width over all tree decom-

positions of 𝐺 . We denote by tw(𝐺) the treewidth of graph 𝐺 .

Freuder [37] showed that if the primal graph has bounded treewidth,

then the instance can be solved in polynomial time. By now, the re-

sult can be obtained by standard dynamic programming techniques

on tree decompositions.

Theorem 4.2 (Freuder [37]). For every fixed 𝑘 , a CSP instance

𝐼 = (𝑉 , 𝐷,𝐶) can be solved in time𝑂 ( |𝑉 | · |𝐷 |𝑘+1) if the primal graph

has treewidth at most 𝑘 .

It follows from Theorem 4.2 that CSP(G) is polynomial-time

solvable if G has bounded treewidth, and it is easy to find graph

classes G with unbounded treewidth (e.g., cliques) where the prob-

lem remains NP-hard. But, surprisingly, there seem to be cases

that are neither polynomial-time solvable or NP-hard, thus a full

classification into these two categories does not seem to be possible.

In the introduction, we mentioned that typically we expect

that the problem at hand can be eventually classified as either

polynomial-time solvable or NP-hard. While this may be true in

most cases, there is no mathematical reason why this should be

true in general. In fact, Ladner’s Theorem [48] states that if P ≠ NP,

then there are NP-intermediate problems in the class NP: prob-

lems that are neither polynomial-time solvable nor NP-hard. The

proof of Ladner’s Theorem produces NP-intermediate problems

that are highly artificial, so it is a different question whether there

are natural problems that are NP-intermediate. There are two prob-

lems that are often highlighted as natural candidates for being

NP-intermediate: Graph Isomorphism and Integer Factoriza-

tion. These two problems are not expected to be polynomial-time

solvable, and the fact that they can be solved much more efficiently

than brute force [10, 11, 49] suggests that they are not NP-hard

either.

One could say that the reason why Graph Isomorphism and

Integer Factorization are NP-intermediate is that the deep alge-

braic and number-theoretic structures underlying these problems

make them occupy a special place in the complexity landscape of

NP problems. However, it is important to point out that problems

can be (probably) NP-intermediate for more pedestrian reasons: it

is possible to scale down an NP-hard problem in a way that it no

longer NP-hard, but still not sufficiently easy to be polynomial-time

solvable. We will refer to the following (artificial) example also in

later sections.

Definition 4.3. A graph𝐺 is special if it has exactly two connected

components: a clique of size 𝑘 for some integer 𝑘 ≥ 1 and a path of

exactly 2
𝑘
vertices. Special CSP and Special Boolean JoinQuery

are the restricted cases of the general problems where we assume

that the primal graph is special.

Let us give some intuitive arguments why these problems could

be NP-intermediate (wewill make this more formal in later sections).

First, the path part can be solved efficiently in polynomial time.

Then we need to solve the clique part, which can certainly be done

by brute force in time 𝑂 (𝑛𝑘 ), where 𝑛 is the total length of the

input. But as already the primal graph has size larger than 2
𝑘
, we

have 𝑛 ≥ 2
𝑘
and hence 𝑘 ≤ log𝑛. Thus we can solve the problem in

quasipolynomial time 𝑛𝑂 (log𝑛)
, which would be an exceptionally

unusual property of an NP-hard problem. Moreover, it is not clear

what substantial improvements we can expect on this algorithm:

one would need to solve the clique part significantly faster than

brute force. Therefore, it seems that these problems variants are

likely to be NP-intermediate with best possible running time around

𝑛𝑂 (log𝑛)
.

This example shows that even if we just want to understand

which special cases are polynomial-time solvable, then NP-hardness

may not be sufficient for this purpose. As we shall see in later

sections, we need to use other lower bound techniques for this type

of classification. Additionally, these lower bound techniques can

provide stronger lower bounds beyond just ruling out polynomial-

time algorithms, showing the optimality of certain algorithms in a

tighter way.

5 PARAMETERIZED INTRACTABILITY
Parameterized complexity considers algorithmic problems where

each input instance has a parameter 𝑘 associated with it. This pa-

rameter is typically either the size of the solution we are looking

for or some measure of the input, such as the number of variables

in a formula, the dimension of the input point set, the maximum

degree of the input graph, or perhaps the alphabet size of the input

strings. The central goal of parameterized complexity is to develop

algorithms that are efficient on instances where the value of the

parameter is small. Formally, we say that a parameterized prob-

lem is fixed-parameter tractable (FPT) if it can be solved in time

𝑓 (𝑘) · 𝑛𝑂 (1)
, where 𝑛 is the size of the input and 𝑓 is a computable

function depending only on 𝑘 . This form of running time has to be

contrasted with the running time 𝑛𝑂 (𝑘)
of brute force algorithms

that are often easily achievable if 𝑘 is the size of the solution we

are looking for. Research in the past three decades has shown that
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many of the natural NP-hard problems are FPT with various param-

eterizations, leading to algorithms that are often highly nontrivial

and combinatorially deep [29, 31, 32, 36].

As an example, let us consider Vertex Cover: given a graph

𝐺 and an integer 𝑘 , the task is to find a vertex cover 𝑆 of size

at most 𝑘 , that is, a set 𝑆 of at most 𝑘 vertices such that every

edge of 𝐺 has at least one endpoint in 𝑆 . Clearly, we can solve the

problem by brute force on an 𝑛-vertex graph by trying each of the

𝑂 (𝑛𝑘 ) sets 𝑆 of size at most 𝑘 . But more efficient algorithms are

available: a standard application of the bounded-depth search tree

technique already delivers a 2
𝑘 · 𝑛𝑂 (1)

algorithm, which can be

further refined with additional techniques [23]. This means that

Vertex Cover is FPT parameterized by the size of the solution.

For Cliqe, the trivial 𝑂 (𝑛𝑘 ) brute force search can be improved

to about 𝑂 (𝑛𝜔𝑘/3)) (where 𝜔 < 2.3729 is the exponent for matrix

multiplication [6, 53, 53]), but no FPT algorithm is known despite

significant efforts.

Motivated by this apparent difference between Vertex Cover

and Cliqe, Downey and Fellows introduced the notion of W[1]-

hardness and the FPT ≠ W[1] hypothesis [31]. We omit here the

technical definitions related to the class W[1]; for the purpose

of proving negative evidence, it is sufficient to know that FPT ≠

W[1] is equivalent to the statement “Cliqe is not FPT” (or to

“Independent Set is not FPT”, as the two problems are equivalent

by taking the complement of the graph). To define W[1]-hardness,

we need first the following notion of reduction:

Definition 5.1. Let 𝑃 and𝑄 be two parameterized problems. A pa-

rameterized reduction transforms an instance 𝑥 of 𝑃 with parameter

𝑘 to an instance 𝑥 ′ of 𝑄 with parameter 𝑘 ′ such that

(1) (𝑥, 𝑘) is a yes-instance of 𝑃 if and only if (𝑥 ′, 𝑘 ′) is a yes-

instance of 𝑄 .

(2) The running time of the reduction is 𝑓 (𝑘) |𝑥 |𝑂 (1)
for some

computable function 𝑓 .

(3) We have 𝑘 ′ ≤ 𝑓 (𝑘) for some computable function 𝑓 .

The third requirement is what makes this notion very different

from usual polynomial-time reductions: we have to pay extra at-

tention not to blow up too much the parameter 𝑘 in the reduction.

Parameterized reductions were designed in a way that they transfer

the property of being FPT: it can be shown that if there is a param-

eterized reduction from 𝑃 to 𝑄 and 𝑄 is FPT, then 𝑃 is FPT as well.

We can define W[1]-hardness by saying that a problem 𝑃 is W[1]-

hard if there is a parameterized reduction from Cliqe to 𝑃 . We

can interpret this as evidence that 𝑃 is not FPT: an FPT algorithm

for 𝑃 would show that Cliqe is FPT, violating the FPT ≠ W[1]

hypothesis.

Let us have a look at the complexity of CSP via the lens of

parameterized complexity. Given a instance 𝐼 = (𝑉 , 𝐷,𝐶), we can
introduce the number 𝑘 = |𝑉 | of variables as the parameter of the

instance. We can decide if there is a solution by trying each of

the |𝐷 |𝑘 = 𝑂 (𝑛𝑘 ) possible assignments. The NP-hardness of the

problem implies that this cannot be improved to 𝑛𝑂 (1)
(assuming

P ≠ NP), but this does not rule out the possibility that the problem is

FPT parameterized by𝑘 , that is, there is a 𝑓 (𝑘)·𝑛𝑂 (1)
time algorithm.

Such an algorithm would be certainly of interest in contexts where

we can assume that 𝑘 is small, but 𝐷 is large (which is typically

true in database applications). However, it is easy to see that the

problem of finding a clique of size 𝑘 in a graph 𝐺 can be expressed

as a CSP problem with 𝑘 variables,

(𝑘
2

)
constraints, and domain

𝐷 = 𝑉 (𝐺). That is, there is a parameterized reduction from Cliqe

to CSP parameterized by the number of variables, showing that the

latter problem is unlikely to be FPT either.

We can now return to the question left open at the end of Sec-

tion 4: what are those classes G for which CSP(G) is polynomial-

time solvable? As we have seen, NP-hardness does not seem to be

sufficiently strong to highlight all the negative cases. Instead, let us

look at the fixed-parameter tractability of CSP(G), parameterized

by the number 𝑘 of variables. Now if CSP(G) can be proved to be

W[1]-hard for some G, then this implies in particular that it is not

polynomial-time solvable, assuming FPT ≠ W[1].

For example, let G contain every special graph, as defined in

Definition 4.3, and let us consider Special CSP (that is, CSP(G))
parameterized by the number of variables. Given an instance of

Cliqe (a graph 𝐺 where it has to be decided if there is a clique of

size 𝑘), then we can express it as a Special CSP instance as follows.

We introduce 𝑘 variables connected by

(𝑘
2

)
binary constraints to

express the problem of finding a 𝑘-clique, and additionally we

introduce 2
𝑘
dummy variables connected by constraints forming

a path. The primal graph is a 𝑘-clique plus a path on 2
𝑘
vertices,

as required in Special CSP. The reduction turns the problem of

finding a 𝑘-clique to a Special CSP instance on 𝑓 (𝑘) = 𝑘 + 2
𝑘

variables, hence this is a proper parameterized reduction. It follows

that Special CSP is W[1]-hard parameterized by the number of

variables, and hence unlikely to be polynomial-time solvable.

More generally, Grohe, Schwentick, and Segoufin [40] proved

that if G has unbounded treewidth, then CSP(G) is W[1]-hard,

leading to a complete classification.

Theorem 5.2 (Grohe, Schwentick, and Segoufin [40]). Let G
be a decidable class of graphs. Assuming FPT ≠ W[1], the following

are equivalent:

(1) G has bounded treewidth,

(2) CSP(G) is polynomial-time solvable,

(3) CSP(G) is FPT parameterized by the number 𝑘 of variables.

Observe that there is a major coincidence here: the polynomial-

time solvable cases are exactly the same as the FPT cases (which in

principle could have been a more general class). This coincidence

makes it possible to use W[1]-hardness to identify those cases that

are not polynomial-time solvable.

A more general result gives a classification in the framework of

homomorphism problem for relational structures (which can be

directly translated to results for Boolean JoinQuery). Let 𝜏 be a

vocabulary and letA be a class of 𝜏-structures. ThenHOM(A, _) is
the special case of the general homomorphism problemwhere given

two 𝜏-structures (A,B) with A ∈ A and B arbitrary, the task is to

decide if there is a homomorphism from A to B. The polynomial-

time solvable cases again depend on treewidth, but in a slightly

more complicated manner. If A′
is a substructure of A such that

there is a homomorphism from A to A′
, then the problem instances

(A,B) and (A′,B) are equivalent. The smallest such substructure

A′
of A is called the core of A (it is known to be unique up to
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isomorphism). It is the treewidth of this core that determines the

complexity of the problem.

Theorem 5.3 (Grohe [39]). Let 𝜏 be a finite vocabulary and let

A be a decidable class of 𝜏-structures. Assuming FPT ≠ W[1], the

following are equivalent:

(1) the cores of the structures in A have bounded treewidth,

(2) HOM(A, _) is polynomial-time solvable,

(3) HOM(A, _) is FPT parameterized by the size 𝑘 of the universe

of A.

Again, we have that the polynomial-time solvable and FPT cases

coincide, allowing the use of W[1]-hardness for the classification

of both properties.

6 THE EXPONENTIAL-TIME HYPOTHESIS
Parameterized complexity gives a finer understanding of the com-

plexity of problems: for example, the negative results not only tell us

that Cliqe is not polynomial-time solvable, but they rule out algo-

rithms with running time 𝑓 (𝑘)𝑛𝑂 (1)
. However, this is still a qualita-

tive result that rules out a certain running time, but does not tell us

the exact complexity of the problem: can the 𝑛𝑘 brute force search

be improved to, say, 𝑛
√
𝑘
, or to 𝑛𝑂 (log𝑘)

, or to 𝑛𝑂 (log log log log𝑘)
,

or to . . .? For all we know, such algorithms cannot be ruled out

based on the P ≠ NP or FPT ≠ W[1] conjectures. Similarly, for

FPT problems such as Vertex Cover where the best known al-

gorithms have running time of the form 2
𝑂 (𝑘) · 𝑛𝑂 (1)

, we cannot

rule out that these algorithms can be significantly improved to, say,

2
𝑂 (

√
𝑘) · 𝑛𝑂 (1)

.

The Exponential-Time Hypothesis (ETH), formulated by Impagli-

azzo, Paturi, and Zane [43, 44], makes the assumption P ≠ NP more

quantitative: informally, it not only tells us that NP-hard problems

do not have polynomial-time algorithms, but it postulates that NP-

hard problems really require exponential time and cannot be solved

in subexponential time. The formal statement of the ETH is some-

what technical and for most applications it is more convenient to

use the following assumption instead, which is an easy consequence

of the ETH:

Hypothesis 1 (Conseqence of the ETH, Impagliazzo, Paturi,

and Zane [43, 44]). 3SAT with 𝑛 variables cannot be solved in time

2
𝑜 (𝑛)

.

3SAT is the fundamental satisfiability problem where, given a

Boolean formula in conjunctive normal form with at most 3 literals

in each clause (e.g., (𝑥1 ∨𝑥3 ∨𝑥5) ∧ (𝑥1 ∨𝑥2 ∨𝑥3) ∧ (𝑥2 ∨𝑥3 ∨𝑥4)),
the task is to decide whether a satisfying assignment exists. For

completeness, let us recall the formal statement of the ETH, of which

Hypothesis 1 is an easy consequence. Let 𝑠𝑘 be the infinum of all

real numbers 𝛿 for which there exists an𝑂 (2𝛿𝑛) time algorithm for

𝑘-SAT. Then the ETH is the assumption that 𝑠𝑘 > 0 for every 𝑘 ≥ 3.

It is easy to show that this assumption implies Hypothesis 1, hence

if we can show that some statement would refute Hypothesis 1,

then it would refute the ETH as well.

As 3SAT can interpreted as a special case of CSP with domain

size 2 and constraints of arity 3, we can translate Hypothesis 1 into

the language of CSPs to obtain a lower bound for solving instances

with constant domain size.

Corollary 6.1. Assuming the ETH, there is no algorithm that

solves every CSP instance 𝐼 = (𝑉 , 𝐷,𝐶) in time 2
𝑜 ( |𝑉 |) · 𝑛𝑂 (1)

, even

if |𝐷 | = 2 and every constraint has arity at most 3.

Hypothesis 1 rules out the existence of algorithms that are subex-

ponential in the number 𝑛 of variables. But the number𝑚 of clauses

in a 3SAT instance can be up to cubic in the number of variables,

thus the length of the instance can be much larger than𝑂 (𝑛). There-
fore, Hypothesis 1 does not rule out the existence of algorithms that

are subexponential in the length of the instance: it could be poten-

tially the case that all the really hard instances of 3SAT have, say,

Ω(𝑛2) clauses, hence a 2
𝑜 (

√
𝑛+𝑚)

algorithm would be still compati-

ble with Hypothesis 1. Impagliazzo, Paturi and Zane [44] showed

that this is not the case: the Sparsification Lemma implies that, for

the purposes of Hypothesis 1, 3SAT remains hard already when

restricted to instances with a linear number of clauses. With the

Sparsification Lemma, the following stronger assumption follows

from Hypothesis 1:

Hypothesis 2 (Conseqence of the ETH + Sparsification

Lemma, Impagliazzo, Paturi, and Zane [44]). 3SAT with 𝑛 vari-

ables and𝑚 clauses cannot be solved in time 2
𝑜 (𝑛+𝑚)

.

This stronger assumption turns out to be very useful to prove

lower bounds for other problems. Reductions from 3SAT to other

problems typically create instances whose size depends not only

on the number 𝑛 of variables, but also on the number𝑚 of clauses,

hence it is important to have lower bounds on 3SAT in terms of both

𝑛 and𝑚. For example, if we look at textbook reductions from 3SAT

to 3-Coloring, then they transform a formula with 𝑛 variables and

𝑚 clauses into a graph with 𝑂 (𝑛 +𝑚) vertices and 𝑂 (𝑛 +𝑚) edges.
Such a reduction together with Hypothesis 2 implies a lower bound

for binary CSP over a constant domain size.

Corollary 6.2. Assuming the ETH, there is no algorithm that

solves every CSP instance 𝐼 = (𝑉 , 𝐷,𝐶) in time 2
𝑜 ( |𝑉 |+ |𝐶 |) · 𝑛𝑂 (1)

,

even if |𝐷 | = 3 and every constraint is binary.

Let us turn our attention now to parameterized problems. A key

result in parameterized complexity states that, assuming ETH, the

𝑛𝑘 brute force search for Cliqe cannot be improved better than a

constant factor in the exponent, even if we allow an arbitrary 𝑓 (𝑘)
factor in the running time.

Theorem 6.3 (Chen et al. [22]). Assuming ETH, Clique cannot

be solved in time 𝑓 (𝑘) · 𝑛𝑜 (𝑘) for any computable function 𝑓 .

The same is true for the Partitioned Cliqe, which, as we have

seen in Section 2.3, is essentially equivalent to a binary CSP in-

stance where the primal graph is clique. Therefore, we can translate

Theorem 6.3 into the language of CSPs.

Theorem 6.4. Assuming ETH, there is no algorithm that solves

every binary CSP instance 𝐼 = (𝑉 , 𝐷,𝐶) in time 𝑓 ( |𝑉 |) · |𝐷 |𝑜 ( |𝑉 |) | ·
𝑛𝑂 (1)

, where 𝑓 is an arbitrary computable function.

Moreover, we have seen in Section 5 that 𝑘-Cliqe can be re-

duced to a Special CSP instance with 𝑘 + 2
𝑘
variables. Together

with Theorem 6.3 it follows that, assuming the ETH, there is no

𝑓 ( |𝑉 |)𝑛𝑜 (log |𝑉 |)
time algorithm for Special CSP. This makes the

NP-intermediate status of the problem very precise: it is indeed
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𝑛𝑂 (log |𝑉 |)
the best possible running time we can hope for this

problem.

Note that the treewidth of a 𝑘-clique is 𝑘 − 1. Therefore, The-

orem 6.4 shows that if 𝑘 is the treewidth of the primal graph of

the CSP instance, then the 𝑛𝑂 (𝑘)
time algorithm of Freuder [37]

is essentially optimal in the sense that the exponent cannot be

improved by more than a constant factor.

Theorem 6.5. Assuming ETH, there is no algorithm that solves

every binary CSP instance 𝐼 = (𝑉 , 𝐷,𝐶) in time 𝑓 ( |𝑉 |) ·𝑛𝑜 (𝑘) , where𝑘
is the treewidth of the primal graph and 𝑓 is an arbitrary computable

function 𝑓 .

One could interpret Theorem 6.5 as saying that the treewidth-

based algorithm of Freuder is an optimal way of solving CSP in-

stances. However, this interpretation is misleading. What The-

orem 6.5 really says is that there is one type of primal graphs,

namely cliques, where the 𝑛𝑂 (𝑘)
running time that follows using

that treewidth-based algorithm is essentially optimal. This does not

rule out the possibility that there are some graph classes, maybe pla-

nar graphs, bounded-degree graphs, interval graphs, etc. where it is

possible to solve the problem 𝑛𝑜 (𝑘) time, where 𝑘 is the treewidth of

the primal graph. Formally, we can approach this possibility in the

spirit of Theorem 5.2, by considering the problem CSP(G), where
the primal graph is restricted some class G. The following lower

bound shows that the treewidth-based algorithm is still optimal for

any such CSP(G), up to a logarithmic factor in the exponent.

Theorem 6.6 ([52]). Let G be a class of graphs with unbounded

treewidth. Assuming ETH, there is no algorithm that solves every

instance 𝐼 = (𝑉 , 𝐷,𝐶) of CSP(G) in time 𝑓 ( |𝑉 |)𝑛𝑜 (𝑘/log𝑘)
, where 𝑘

is the treewidth of the primal graph and 𝑓 is an arbitrary computable

function.

The formulation of Theorem 6.6 was originally chosen in a way

to be analogous to the formulation of Theorem 5.2. However, it later

turned out that it is possible to state it in a slightly more robust

and expressive way that shows the precise complexity of individual

primal graphs.

Theorem 6.7 ([25]). Assuming the ETH, there exists a universal

constant 𝛼 > 0 such that for any fixed primal graph𝐺 with treewidth

𝑘 ≥ 2, there is no algorithm deciding the binary CSP instances 𝐼 =

(𝑉 , 𝐷,𝐶) whose primal graph is 𝐺 in time 𝑂 ( |𝐷 |𝛼 ·𝑘/log𝑘 ).

7 THE STRONG EXPONENTIAL-TIME
HYPOTHESIS

Despite the usefulness of the ETH, there are complexity lower

bounds that seem to be beyond the reach of what can be proved as

a consequence of this hypothesis. Impagliazzo, Paturi, and Zane [44]

proposed an even stronger assumption on the complexity of NP-

hard problems: the so-called Strong Exponential-Time Hypothesis

(SETH). Using the notation introduced at the beginning of Section 6,

the SETH assumes that lim𝑘→∞ 𝑠𝑘 = 1. The following consequence

of the SETH is a convenient formulation that can be used as a

starting point for lower bounds on other problems:

Hypothesis 3 (Conseqence of the SETH, Impagliazzo, Pa-

turi, and Zane [44]). SAT with 𝑛 variables and𝑚 clauses cannot

be solved in time (2 − 𝜖)𝑛 ·𝑚𝑂 (1)
for any 𝜖 > 0.

Intuitively, Hypothesis 3 states that there is no better algorithm

for SAT than the brute force search of trying each of the 2
𝑛
possible

assignments. Note that here SAT is the satisfiability problem with

unbounded clause length. For fixed clause length, algorithms better

than 2
𝑛
are known: for example, the best known algorithms for

3SAT and 4SAT have running times 1.308
𝑛
and 1.469

𝑛
, respectively

[42]. The SETH states that the base of the exponent has to get closer

and closer to 1 as the clause length increases, and it is not possible

to have an algorithm with base 2 − 𝜖 that works for arbitrary large

clause length.

It is important to note that there is no known analogue of the

Sparsification Lemma for the SETH. That is, we cannot assume

that the hard instances stipulated by Hypothesis 3 have only a

linear number of clauses: for all we know, the number of clauses

can be exponential in the number 𝑛 of variables. This severely

limits the applicability of lower bounds based on the SETH as any

reduction from the SAT instance would create instances whose sizes

are potentially exponentially large in 𝑛. Nevertheless, the SETH

has found applications in parameterized complexity, for example,

giving tight lower bounds on how the running time has to depend

on treewidth [15, 27, 28, 30, 33, 45, 46, 51].

An important parameterized problem for which the SETH gives a

very tight lower bound isDominating Set. The closed neighborhood

𝑁 [𝑣] = 𝑁 (𝑣) ∪ {𝑣} of a vertex 𝑣 consists of the vertex itself and

its neighbors. A dominating set 𝑆 is a set of vertices that contains

a vertex from the closed neighborhood of every vertex, in other

words, every vertex is either selected or has a selected neighbor. In

the Dominating Set problem, given a graph 𝐺 and an integer 𝑘 ,

the task is to find a dominating set 𝑆 of size at most 𝑘 . If 𝐺 is an

𝑛-vertex graph, then the trivial brute force algorithm enumerates

the𝑂 (𝑛𝑘 ) subsets of size at most 𝑘 and needs𝑂 (𝑛2) time for each of

them to check if they form a solution. This results in a𝑂 (𝑛𝑘+2) time

algorithm, which can be improved to 𝑛𝑘+𝑜 (1) [34]. The following
lower bound shows that any small constant improvement beyond

𝑘 in the exponent would violate the SETH.

Theorem 7.1 (Patrascu and Williams [56]). If there is an inte-

ger 𝑘 ≥ 3 and a real number 𝜖 > 0 such that 𝑘-Dominating Set can

be solved in time 𝑂 (𝑛𝑘−𝜖 ) on 𝑛-vertex graphs, then the SETH is false.

As a demonstration, we show how Theorem 7.1 allows us to

make Theorem 6.5 tighter. We are not just ruling out |𝐷 |𝑜 (𝑘) time,

but any potential improvement in the exponent of the domain size

beyond 𝑘 , getting closer to the upper bound of Theorem 4.2.

Theorem 7.2. If there are integers 𝑘 ≥ 3, 𝑐 ≥ 1, and a real

number 𝜖 > 0 such that there is an algorithm solving CSP instances

𝐼 = (𝑉 , 𝐷,𝐶) whose primal graph has treewidth at most 𝑘 in time

𝑂 ( |𝑉 |𝑐 · |𝐷 |𝑘−𝜖 ), then the SETH is false.

Proof. Let 𝑔 ≥ 1 be the smallest integer such that 𝑔𝜖 > 𝑐 +𝜖 and
let 𝑡 = 𝑔𝑘 . First we present a generic reduction from 𝑡-Dominating

Set on an 𝑛-vertex graph to a CSP instance with domain size 𝑛

where the treewidth of the primal graph is 𝑡 . Let 𝐺 be an 𝑛-vertex

graph where we need to find a solution 𝑆 of size at most 𝑡 . For

simplicity of notation, let us assume that𝑉 (𝐺) = [𝑛]. We construct

a CSP instance 𝐼 = (𝑉 , 𝐷,𝐶) the following way. The set 𝑉 contains

𝑡 + 𝑛 variables 𝑠1, . . . , 𝑠𝑡 , 𝑥1, . . . , 𝑥𝑛 . The domain 𝐷 is 𝑉 (𝐺) = [𝑛].
The intended meaning of the value of 𝑠𝑖 is the 𝑖-th vertex of the
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solution, and the intended meaning of 𝑥 𝑗 = 𝑖 is that the solution

vertex represented by 𝑠𝑖 is in 𝑁 [ 𝑗]. To enforce this interpretation,

for every 𝑖 ∈ [𝑡] and 𝑗 ∈ [𝑛], we introduce a constraint 𝑐𝑖, 𝑗 =

⟨(𝑠𝑖 , 𝑣 𝑗 ), 𝑅𝑖, 𝑗 ⟩, where

𝑅𝑖, 𝑗 = {(𝑎, 𝑏) | 𝑎 ∈ [𝑛], 𝑏 ∈ [𝑡], 𝑏 ≠ 𝑖}
⋃

{(𝑎, 𝑏) | 𝑎 ∈ [𝑛], 𝑏 ∈ [𝑡], 𝑏 = 𝑖, 𝑎 ∈ 𝑁 [ 𝑗]}

It is not difficult to check that if there is a solution to this CSP

instance, then {𝑠1, . . . , 𝑠𝑡 } is a dominating set (as vertex 𝑠𝑥 𝑗
is in

the closed neighborhood 𝑁 [ 𝑗] of 𝑗 ). Conversely, a solution 𝑆 of 𝑡-

Dominating Set can be turned into a solution of this CSP instance.

Observe that the primal graph is complete bipartite graph with 𝑡

vertices on one side and 𝑛 vertices on the other side. Such a graph

has treewidth at most 𝑡 .

To obtain the required form of the lower bound, we need to

modify the constructed CSP instance. Let us group the variables 𝑥1,

. . . , 𝑥𝑡 into 𝑡/𝑔 = 𝑘 groups of size 𝑔 each. If we increase the domain

from 𝐷 to 𝐷𝑔
(having size 𝑛𝑔), we can represent each group with a

single new variable (and modify the constraints accordingly). This

way, we can obtain an equivalent CSP instance 𝐼 ′ = (𝑉 ′, 𝐷 ′,𝐶 ′)
where |𝐷 ′ | = 𝑛𝑔 and treewidth of the primal graph is at most 𝑘 .

By our assumption, this CSP instance 𝐼 ′ (and hence the original

𝑡-Dominating Set instance) can be solved in time

𝑂 ( |𝑉 ′ |𝑐 · |𝐷 ′ |𝑘−𝜖 ) = 𝑂 (𝑛𝑐 · 𝑛𝑔 (𝑡/𝑔−𝜖) )
= 𝑂 (𝑛𝑡+𝑐−𝑔𝜖 ) = 𝑂 (𝑛𝑡−𝜖 ).

The size of the constructed instance 𝐼 ′ can be generously bounded

by 𝑂 (𝑛2𝑔+1) which is less than 𝑂 (𝑛𝑡−𝜖 ). The reduction presented

above can be done in time linear in the size of 𝐼 ′, hence the run-
ning time of the reduction itself is dominated by the running time

of solving 𝐼 ′ with the assumed algorithm. Therefore, we obtain

an algorithm for solving 𝑡-Dominating Set in time 𝑂 (𝑛𝑡−𝜖 ). By
Theorem 7.1, this violates SETH. □

In recent years, the SETH has been successfully used to give

lower bounds for polynomial-time solvable problems, for exam-

ple, by showing that the textbook 𝑂 (𝑛2) dynamic programming

algorithm for Edit Distance cannot be significantly improved: it

cannot be solved in time 𝑂 (𝑛2−𝜖 ) for any 𝜖 > 0, unless the SETH

fails [12, 19]. Many other tight results of this form can be found

in the recent literature under the name “fine-grained complexity”

[1, 3, 5, 12, 17–20, 56, 58, 62].

8 OTHER CONJECTURES
We finish the overview of lower bound techniques with a few other

complexity conjectures that have appeared recently in the litera-

ture. This section does not contain any strong results or nontrivial

reductions; the goal is to present assumptions that have direct con-

sequences when translated into the language of database theory

and CSP. The aim is to raise awareness of the existence of these

conjectures, which may be the starting point of future research.

The 𝑘-clique conjecture.Matrix multiplication techniques can

be used to detect if a graph contains a triangle: if𝐴 is the adjacency

matrix of 𝐺 , then 𝐺 contains a triangle if and only if 𝐴3
has a

nonzero value on the diagonal. Therefore, if we have an algorithm

for multiplying two 𝑛 × 𝑛 matrices in time 𝑂 (𝑛𝜔 ) for some 𝜔 (the

current best known algorithm has 𝜔 < 2.3729 [6]), then we can

detect in time 𝑂 (𝑛3) if an 𝑛-vertex graph contains a triangle. Ne-

setril and Poljak [53] showed in 1985 that this can be generalized

further for detecting a clique of size 𝑘 in time 𝑂 (𝑛𝜔𝑘/3) (if 𝑘 is

divisible by 3). As no significant improvement over this approach

appeared in the past 35 years, one can conjecture that there is no

𝑂 (𝑛 (𝜔−𝜖)𝑘/3+𝑐 ) time algorithm for 𝑘-Cliqe for any 𝜖, 𝑐 > 0. Ab-

boud, Backurs, and Vassilevska Williams [2] used this conjecture

to give evidence that Valiant’s 𝑂 (𝑛𝜔 ) time parsing algorithm [60]

from 1975 is optimal.

As discussed in Section 2.3, 𝑘-Cliqe on an 𝑛-vertex graph can

be represented as a CSP with 𝑘 variables,

(𝑘
2

)
constraints, and do-

main size 𝑛. Therefore, the 𝑘-clique conjecture further refines Theo-

rem 6.4 by ruling out not only a |𝐷 |𝑜 ( |𝑉 |)
dependence in the running

time, but also |𝐷 | (𝜔−𝜖) |𝑉 |/3+𝑐
for any 𝜖, 𝑐 > 0.

The 𝑑-uniform hyperclique conjecture. A hypergraph is 𝑑-

uniform if every hyperedge contains exactly 𝑑 vertices. The analog

of a 𝑘-clique in a 𝑑-uniform hypergraph is a set 𝑆 of 𝑘 vertices such

that each of the

(𝑘
𝑑

)
possible hyperedges are present in 𝑆 . Somewhat

surprisingly, matrix multiplication techniques seem to speed up

the search for 𝑘-cliques only for 𝑑 = 2 (ordinary graphs). For any

fixed 𝑑 ≥ 3, nothing substantially better is known than trying

every set of size 𝑘 . This suggests the conjecture that there is no

𝑂 (𝑛 (1−𝜖)𝑘+𝑐 ) time algorithm for detecting 𝑘-cliques in 𝑑-uniform

hypergraphs for any fixed 𝑑 ≥ 2 and 𝜖, 𝑐 > 0 [50]. We can again

translate this conjecture into the language of CSPs: we can show

that even if the arity of every constraint is at most 3, there is no

𝑓 ( |𝑉 |) · |𝐷 | (1−𝜖) |𝑉 |+𝑐 ·𝑛𝑂 (1)
algorithm for CSP for any 𝜖, 𝑐 > 0 and

computable function 𝑓 . Therefore, we get very tight lower bounds

showing that essentially the brute force search of all assignments

cannot be avoided. The 𝑑-uniform hyperclique conjecture was used

to rule out the possibility of constant-delay enumeration algorithms

[13, 16].

The triangle conjecture. In database query problems it is more

relevant to express the running time in terms of the size of the

database relations rather than the size of the domain. For example,

given the query 𝑄 = 𝑅1 (𝑎1, 𝑎2) ⊲⊳ 𝑅2 (𝑎1, 𝑎3) ⊲⊳ 𝑅3 (𝑎2, 𝑎3) whose
primal graph is the triangle, matrix multiplication can be used to

check in time 𝑂 (𝑑𝜔 ) if the answer is empty, where 𝑑 is the size

of the domain of the attributes. But what can we say about the

running time expressed as a function 𝑁 of the maximum size of

the relations? As we have seen in Section 3, the size of the solution

is 𝑂 (𝑁 3/2), we can enumerate it in time 𝑂 (𝑁 3/2), and this is tight.

However, this does not rule out the possibility that there are faster

algorithms for deciding if the answer is empty. In particular, can

this be solved in linear time? Note that this question is equivalent

to asking for the best possible running time for detecting triangles,

where the running time is now expressed as a function of the

number𝑚 of edges. The best known algorithm of this form detects

the existence of a triangle in time 𝑂 (𝑚2𝜔/(𝑤+1) ) [7] and one can

state as a conjecture (Strong Triangle Conjecture [4]) that this is

indeed best possible.

Invited Tutorial  
 
PODS ’21, June 20–25, 2021, Virtual Event, China

27



9 CONCLUSIONS
We have seen a sequence of complexity lower bounds of various

strengths. The results were based on assumptions with different

levels of plausibility, going all the way from unconditional bounds,

classic NP-completeness, to novel conjectures. The results also dif-

fer in the tightness of the lower bound: they can be only qualitative

results (polynomial-time vs. NP-hard, FPT vs. W[1]-hard) or quan-

titative lower bounds showing the optimality of current algorithms

to various levels of tightness.

What can we learn from all these results? First, when aiming

for a lower bound, we need to select a precise form of the bound.

Ideally, we would like to have negative results that rule out the

possibility of any improved algorithm compared to what is known

currently, showing that they are already optimal. The meaning of

“any improved algorithm” needs to be clarified precisely and the

choice of this meaning can greatly influence the technical difficulty

of the lower bound proof and the required assumptions. Second, we

need to choose a suitable complexity assumption that we can base

the result on. There are established conjectures, such as the ETH,

that are widely used in different domains. But we should be ready

to connect our database theory or CSP problem at hand with other,

less celebrated open question as well. The general theme of condi-

tional lower bounds is to transform a relatively specialized question

to a more fundamental question that was studied from multiple

directions. If we can formally establish that the main challenge in

understanding our problem is really some other, more fundamental

problem in disguise, then this means that spending further efforts

on finding improved algorithms is not timely and we can assume

for the time being that any algorithm matching the lower bound is

optimal. This is a common situation in complexity theory: as it is

often said, computational complexity progresses by reducing the

number of questions, without increasing the number of answers.
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