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Abstract

In the edge precoloring extension problem we are given a graph with
some of the edges having a preassigned color and it has to be decided
whether this coloring can be extended to a proper k-edge-coloring of the
graph. In list edge coloring every edge has a list of admissible colors, and
the question is whether there is a proper edge coloring where every edge
receives a color from its list. We show that both problems are NP-complete
on (a) planar 3-regular bipartite graphs, (b) bipartite outerplanar graphs,
and (c) bipartite series-parallel graphs. This improves previous results of
Easton and Parker [6], and Fiala [8].

1 Introduction

In graph vertex coloring we have to assign colors to the vertices such that
neighboring vertices receive different colors. Starting with [7] and [28], a gener-
alization of coloring was investigated: in the list coloring problem each vertex
can receive a color only from its prescribed list of admissible colors. In the pre-
coloring extension problem a subset W of the vertices have preassigned colors
and we have to extend this precoloring to a proper coloring of the whole graph,
using only colors from a given color set C. It can be viewed as a special case of
list coloring: the list of a precolored vertex consists of a single color, while the
list of every other vertex is C. A thorough survey on list coloring, precoloring
extension, and list chromatic number can be found in [26, 1, 12, 13].

In this paper we consider the edge coloring version of list coloring and pre-
coloring extension. Colbourn [3] has shown that edge precoloring extension is
NP-complete for complete bipartite graphs. Easton and Parker [6], and inde-
pendently Fiala [8] have shown that the problem is NP-complete for 3-regular
bipartite graphs. In Section 2 we strengthen this result by showing that the
problem remains NP-complete for planar 3-regular bipartite graphs. The main
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difficulty of the proof is to find gadgets that are planar and 3-regular at the
same time. As the first step of the proof, we show that list edge coloring is also
NP-complete on the same class of graphs.

The unrestricted version of edge coloring is known to be NP-complete [11,
18]. However, the problem is easy for bipartite graphs: by Kőnig’s Line Coloring
Theorem [16], every bipartite graph with maximum degree ∆ can be edge colored
with ∆ colors. Vizing [27] has show that every planar graph with maximum
degree ∆ ≥ 8 can be edge colored with ∆ colors, and conjectured that the same
holds for every ∆ ≥ 6. The case ∆ = 7 was proved by Sanders and Zhao [25].
For ∆ = 3, 4, 5 there are planar graphs with maximum degree ∆ that cannot be
edge colored with ∆ colors. Hence edge coloring planar graphs is easy for ∆ ≥ 7,
expected to be easy for ∆ = 6, and the complexity is open for ∆ = 3, 4, 5. (See
[30] for an overview of algorithmic results on edge coloring.) Our results show
that the more general list edge coloring and edge precoloring extension problems
are NP-hard even if the graph is both planar and bipartite.

In [10, 9, 15, 29] the list edge coloring problem is considered for series-parallel
graphs, sufficient conditions are given for some special cases. In Section 3 we
investigate the computational complexity of the problem. An easy argument
shows that precoloring edge extension and list edge coloring can be solved in
polynomial-time for bounded degree outerplanar graphs. However, we prove
that the problems are NP-complete for outerplanar and series-parallel graphs if
the maximum degree can be arbitrary.

Outerplanar and series-parallel graphs have treewidth at most 2, thus the
results of Section 3 show that precoloring edge extension and list edge coloring
are NP-complete for partial 2-trees. However, both problems can be solved in
polynomial time for trees (see [19]). This is somewhat surprising, since there are
very few problems that are polynomial-time solvable for trees but NP-hard for
partial 2-trees. Usually it is expected that if a dynamic programming approach
works for trees, then it can be generalized to partial k-trees. A recent example
where the problem is easy for trees but NP-hard for partial 2-trees is the edge
disjoint paths problem [23].

2 Planar bipartite graphs

In this section we prove that the precoloring extension problem is NP-complete
on the edges of planar 3-regular bipartite graphs. First we prove that the more
general list edge coloring problem is NP-complete for such graphs, then we
present a reduction from list coloring to precoloring extension.

The proof is by reduction from the 1-in-3 Satisfiablity problem, which is the
following: given a formula in conjunctive normal form, every clause contains
exactly 3 literals, decide if a variable assignment exists such that exactly one
literal is true in every clause. The 1-in-3 Satisfiability problem remains NP-
complete even with the following restrictions:

Theorem 2.1 ([22]). 1-in-3 Satisfiablity is NP-complete even if
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Figure 1: The variable setting gadget. The two numbers on each edge show the
list of available colors.

• every variable appears in exactly 3 clauses,

• there is no negation in the formula, and

• the underlying bipartite graph of the formula (where the vertex representing
a clause is connected to vertices representing the variables appearing in the
clause) is planar.

Theorem 2.2. List edge coloring is NP-complete for planar 3-regular bipartite
graphs.

Proof. We construct variable setting gadgets and satisfaction testing gadgets,
and connect them in such a way that the resulting graph can be colored if and
only if the given formula is satisfiable (in 1-in-3 sense). If the original formula
satisfies the requirements of Theorem 2.1, then the resulting graph is planar and
3-regular.

Figure 1 shows the variable setting gadget. It is easy to verify that it has
only two colorings: the coloring that assigns the first (resp. second) color of the
list to each edge. Therefore in every coloring of the gadget, the pendant edges
receive the same color, either 1 or 2. The coloring that assigns color 1 to the
pendant edges corresponds to setting the variable to “true,” and the coloring
that assigns 2 to these edges corresponds to “false.”

The satisfaction testing gadget is shown on Figure 2. We claim that it has
only three colorings, the numbers in the frames are the colors assigned to the
edges in the three colorings. Let ψ be a coloring of this gadget. First, let us verify
that ψ(AiCi) = ψ(BiDi) for i = 1, 2, 3 in every coloring ψ. For this purpose, it
is sufficient to follow the implications of say, ψ(A1C1) = 1 and ψ(B1D1) = 2, to
arrive to a contradiction. The case i = 3 is somewhat more complicated to verify:
ψ(A3C3) = 1 and ψ(B3D3) = 2 imply ψ(C3D3) = ψ(E3F3) = 3, ψ(C3E3) = 2,
ψ(D3F3) = 1; edges D3F3 and E3F3 force ψ(F3E2) = 2, ψ(F2E2) = 1; edges
C3E3 and E3F3 force ψ(J1E3) = 1, ψ(J1I1) = 3, ψ(H1J1) = 2, ψ(H1G1) = 3,
ψ(E1G1) = 1, and ψ(G1I1) = 2. Now there is no color left for edge I1F2, since
edges F2E2, G1I1, and J1I1 use all three colors. Furthermore, it can be shown
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Figure 2: The satisfaction-testing gadget. The numbers on the edges show the
list of available colors on the edge. The three numbers in each frame show the
three colors assigned to the edge in the three possible colorings of the graph.

that ψ(A1C1) = ψ(B1D1) = 1 implies that ψ is the first coloring defined on
Figure 2. Similarly, ψ(A2C2) = ψ(B2D2) = 1 (resp. ψ(A3C3) = ψ(B3D3) = 1)
implies that ψ is the second (resp. third) coloring. Thus in every coloring of the
gadget, exactly one of the pairs AiCi and BiDi is colored with color 1, the others
with color 2. A coloring that assigns color 1 to AiCi and BiDi corresponds to
a variable assignment where the clause is satisfied by its ith literal.

Figure 3 shows the overview of the construction. Take a copy of the variable
setting gadget Gx for each variable x and a satisfaction-testing gadget GC for
each clause C of the formula. If x appears in clause C, then Gx and GC are
connected by a pair of edges. Fix a planar embedding of the formula, and fix an
ordering of the occurences of each variable in such a way that the clauses of a
variable are located in clockwise order around the variable. Similarly, for each
clause fix an ordering of the literals in such a way that the variables of a clause
are in clockwise order around the clause. Assume that x is the ith variable in
clause C, and C is the jth clause where x appears, then connect Gx and GC

by identifying the edges AjCj and BjDj of Gx with AiCi and BiDi of GC ,
respectively.

The resulting graph is bipartite since the gadgets are bipartite (Figure 1
and 2 show the two color classes) and when we identified two edges, we only
identified vertices that belong to the same color class. Since every variable
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Figure 3: The reduction from 1-in-3 SAT to the list edge coloring problem. We
connect the variable setting components and the satisfaction testing components
with pairs of edges.

appears in exactly three clauses and every clause has exactly three literals,
the resulting graph is 3-regular. The gadgets are planar, and because of the
planarity of the formula, the graph can be embedded in the plane such that two
pairs of edges do not cross each other. Note that in the variable setting gadget,
edge BjDj is in clockwise direction from the edge AjCj , while in the satisfaction
testing gadget BiDi is in counterclockwise direction from AiCi. Thus the two
edges connecting a variable setting gadget with a satisfaction testing gadget do
not cross each other, as shown on Figure 3. Therefore the resulting graph G is
planar, bipartite and 3-regular.

It is clear from the construction that G has a proper list edge coloring if
and only if the formula has a satisfying variable assignment (in 1-in-3 sense).
Obviously, the graph can be built in polynomial time, thus we have proved that
the problem is NP-complete. �

List coloring is reduced to precoloring extension by locally replacing the
edges by some partially precolored graphs.

Theorem 2.3. Precoloring extension is NP-complete on the edges of planar
3-regular bipartite graphs.

Proof. We reduce list edge coloring to precoloring extension as follows. By the
proof of Theorem 2.2, it can be assumed that only the three colors 1, 2, 3 appear
in the lists. If only a single color appears in the list of an edge, then the edge
is precolored with that color. If all three colors appear in the list of an edge,
then the edge is not precolored. If edge uv has a 2 element list, say color i is
not allowed (1 ≤ i ≤ 3), then we replace uv by the gadget shown on Figure 4.
The edges x1x3 and x2x4 are precolored with color i.

We claim that the list edge coloring problem has a solution in the original
graph G if and only if the precoloring in the constructed graph G′ can be
extended to a proper 3-edge-coloring. First, a coloring of G can be used to
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Figure 4: The gadget used to replace those edges that have 2 element lists.

obtain a precoloring extension of G′: if edge uv has color c, then the gadget
corresponding to uv can be colored such that both ux1 and x2v receive color
c. On the other hand, in every 3-edge-coloring of G′ edges ux1 and x2v receive
the same color, a color different from the forbidden color i of edge uv: since
both x1x3 and x2x4 are precolored to i, only two colors are available for the
edges ux1, x1x2, x2v. Therefore a precoloring extension of G′ determines a list
coloring of G. �

3 Outerplanar graphs

A graph is outerplanar if it has a planar embedding such that all the vertices lie
on the exterior face. A graph is series-parallel if it can be created from K2 by
repeatedly duplicating and subdividing the edges. If an outerplanar graph is 2-
connected, then it is series-parallel. Some authors give a more general definition
of series-parallel graphs by allowing to start from an arbitrary tree instead of
a K2. We are giving complexity results here, thus using the more restrictive
definition makes our results stronger.

Edge precoloring extension can be solved in linear time for bounded degree
outerplanar and series-parallel graphs as follows. It is well-known that these
graphs have treewidth at most 2. We show that if both the treewidth and
the maximum degree of a graph are bounded by a constant, then precoloring
extension can be solved in linear time. First, if the graph has maximum degree
d, and the number of available colors is greater than 2(d− 1), then the problem
becomes trivial: every edge can receive a color that is not used on the at most
2(d − 1) edges adjacent to it. Therefore it can be assumed that there are at
most 2(d−1) available colors. If a graph has treewidth at most w and maximum
degree d, then the treewidth of its line graph is at most (w + 1)d − 1 (see [2,
Lemma 32]). Edge precoloring extension is the same as precoloring extension
in the line graph. By [14], precoloring extension can be solved in linear time
if both the treewidth and the number of available colors are constant. (This
result also follows from the fact that precoloring extension with a fixed number
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of colors can be expressed in monadic second order logic, see [4, 17].) A similar
argument works in the case of list edge coloring.

Thus Theorem 2.3 cannot be strengthened to outerplanar graphs. However,
if we drop 3-regularity, then the problem remains NP-complete for bipartite
outerplanar graphs and series-parallel graphs. In the proof we follow the same
path as in Section 2: first it is shown that list coloring is NP-complete with the
given restrictions, then list coloring is reduced to precoloring extension.

Theorem 3.1. List edge coloring is NP-complete for bipartite outerplanar graphs.

Proof. The proof is by reduction from 3SAT. Given a formula φ in conjunctive
normal form with n variables and m clauses, we construct an instance of the
list edge coloring problem in such a way that the graph can be colored if and
only if φ is satisfiable.

We assume that every variable occurs exactly twice positively and exactly
twice negated in φ, and every clause contains exactly 3 literals. This can be
achieved as follows. It is well-known that 3SAT remains NP-complete if every
variable occurs exactly twice positively, exactly once negated, and every clause
contains two or three literals (see e.g., [24, Section 9]). Let us assume that
the number of variables is even, if not, then duplicate every variable and every
clause. Let x1, x2, . . . , xt be the variables of φ. We add t/2 new variables
y1, y2, . . . , y t

2

and t new clauses (x̄1 ∨ y1 ∨ ȳ1), (x̄2 ∨ y1 ∨ ȳ1), (x̄3 ∨ y2 ∨ ȳ2),

(x̄4 ∨ y2 ∨ ȳ2), . . . , (x̄t−1 ∨ y t

2

∨ ȳ t

2

), (x̄t ∨ y t

2

∨ ȳ t

2

) to the formula. Now every
variable occurs exactly twice positively and twice negated. These new clauses
are satisfied in every variable assignment, hence the new formula is satisfiable
if and only if the original is satisfiable. Furthermore, if there is a clause (x ∨ y)
containing only two literals, then add a new variable z, and replace this clause
with (x∨ z ∨ z)∧ (z̄ ∨ z̄ ∨ y). It is easy to see that this transformation does not
change the satisfiability of the formula.

The set of colors C contains 4n colors: there is one color corresponding
to each occurence of a variable. For 1 ≤ i ≤ n, color 4i corresponds to the
first positive occurence of xi, color 4i − 1 corresponds to the second positive
occurence of xi, color 4i − 2 corresponds to the first negated occurence of xi,
and color 4i− 3 corresponds to the second negated occurence of xi.

We construct the list edge coloring instance as follows. Let v be a vertex.
For every 1 ≤ i ≤ n, attach 5 new vertices ai, bi, ci, di, ei to v as shown on
Figure 5. These edges correspond to variable xi. The lists are as shown on the
figure. For every 1 ≤ j ≤ m, a new vertex uj is attached to v. The list of vuj

contains three colors: the colors that correspond to the three literals in the jth
clause of φ.

Given a satisfying assignment of φ, we construct a coloring ψ ofG. If variable
xi is true, then the 6 edges corresponding to xi receive the first color from their
lists. If xi is false, then the edges receive the second color from the lists. Notice
that with this coloring the colors used on edges incident to v are exactly those
colors that correspond to the false literals in the assignment. By assumption,
the assignment satisfies every clause of the formula, every clause contains at
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Figure 5: The edges corresponding to variable xi of the formula.

least one true literal, hence the list of every edge vuj contains at least one color
not used on v. Therefore we can extend ψ to the edges vuj , and the graph can
be colored.

To prove the other direction assume that there is a coloring ψ of G. We
show that for every 1 ≤ i ≤ n, either

• ψ(vbi) = 4i− 3 and ψ(vdi) = 4i− 2, or

• ψ(vbi) = 4i− 1 and ψ(vdi) = 4i hold.

If ψ(vbi) = 4i − 3, then ψ(aibi) = 4i ⇒ ψ(bici) = 4i − 1 ⇒ ψ(cidi) = 4i ⇒
ψ(vdi) = 4i − 2. A similar argument shows that if ψ(vbi) = 4i − 1, then
ψ(vdi) = 4i follows. We set variable xi to true in the first case, and to false
in the second case. This yields a satisfying variable assignment of φ: if the jth
clause is not satisfied, then all of its literals are false, which implies that the
colors corresponding to these literals appear at v. However, this means that the
three colors in the list of vuj are already used at v, therefore edge vuj cannot
receive any color, contradicting the assumption that ψ is a list coloring of G. �

Theorem 3.2. Precoloring extension is NP-complete on the edges of bipartite
outerplanar graphs.

Proof. The proof is by reduction from the list edge coloring problem. Consider
a bipartite outerplanar graph constructed by the reduction of Theorem 3.1.
Notice that every edge lies on the outer face. Let the color set C be the union
of the lists. If the list of an edge xy contains 2 colors, then this edge is replaced
as follows. We add two new vertices x′, y′, and 3 new edges xx′, x′y′, y′y.
Furthermore, we attach |C| − 2 new edges x′x′1, . . . , x

′x′|C|−2
to vertex x′, and

another |C|−2 new edges y′y′1, . . . , y
′y′|C|−2

to y′. Denote by c1, . . . , c|C|−2 the

|C| − 2 colors in C that do not appear in the list of xy. The edges x′x′i and y′y′i
are precolored with color ci. These precolored edges ensure that in every edge
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coloring xx′, x′y′, y′y receive a color from the list of xy, which implies that the
colors of xx′ and y′y are the same. Therefore edges xx′ and yy′ effectively act
as a single edge with the same list as xy. Moreover, since xy is on the outer
face, the graph remains outerplanar and bipartite.

Consider and edge vuj having list size 3. Here we use the fact that uj has
degree 1. We attach |C|−3 new edges ujuj,1, . . . , ujuj,|C|−3 to uj , and precolor
them with the colors not in the list of vuj. It is clear that now edge vuj has to
receive a color from the list of vuj. Therefore we have constructed an instance
of the edge precoloring extension problem that has a solution if and only if the
list edge coloring problem has a solution.

�

Corollary 3.3. Precoloring extension is NP-complete on the edges of bipartite
series-parallel graphs.

Proof. We show how to make a bipartite outerplanar graph 2-connected without
changing the solvability of the edge precoloring extension instance. Together
with Theorem 3.2 and the fact that 2-connected outerplanar graphs are series-
parallel, this proves that edge precoloring extension is NP-complete for series-
parallel graphs.

The graph is outerplanar, hence by traversing the boundary of the outer
face we visit every vertex at least once. Since there can be cutvertices in the
graph, there might be vertices that are visited more than once. Let v0, v1,
. . . , vn−1 the order of vertices as they are first encountered while traversing
the boundary of the outer face. We add new vertices and edges to the graph
to make it Hamiltonian, and therefore 2-connected. If vi and vi+1 (indices are
taken modulo n) belong to the same bipartition class, then add a new vertex wi

and two new edges viwi and wivi+1. Edge viwi is precolored with a new color
α, and wivi+1 is precolored with a new color β. If vi and vi+1 are in different
classes, then add two new vertices w′

i, w
′′
i , and three edges viw

′
i (precolored to

α), w′
iw

′′
i (not precolored), w′′

i vi+1 (precolored to β). It can be shown that the
graph remains outerplanar after these modifications. The two new colors α and
β appear at every vertex of the original graph, hence they cannot be used for
the original edges. Thus the solvability of the instance did not change. �

4 Conclusions

In this paper we have considered the edge precoloring extension and list edge
coloring problems on certain restricted graph classes. First we proved hardness
results for list edge coloring, since building gadgets is more convenient in this
problem. With simple local replacements, we reduced the list coloring problem
to precoloring extension. It turned out that both problems are NP-complete for
planar 3-regular bipartite graphs. This result can be useful in showing the NP-
completeness of other planar graph problems. For example, this result is used
in [5] to show the NP-hardness of weighted edge coloring of planar 3-regular
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bipartite graphs, and in [20] to show that minimum sum edge coloring of planar
bipartite graphs is NP-hard.

List edge coloring is polynomial-time solvable for trees [19]. In fact, for
trees the more general problem of list edge multicoloring is polynomial-time
solvable as well [19, 21]. However, by Theorem 3.1 these algorithms cannot be
generalized for bounded treewidth graphs, since the problem is NP-complete
already for partial 2-trees.
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