
The Complexity of Tree Multicolorings

Dániel Marx?

Dept. of Computer Science and Information Theory,
Budapest University of Technology and Economics

dmarx@cs.bme.hu

Abstract. The multicoloring problem is that given a graph G and in-
teger demands x(v) for every vertex v, assign a set of x(v) colors to
vertex v, such that neighboring vertices have disjoint sets of colors. In
the preemptive sum multicoloring problem the finish time of a vertex is
defined to be the highest color assigned to it. The goal is to minimize
the sum of the finish times. The study of this problem is motivated by
applications in scheduling. Answering a question of Halldórsson et al. [4],
we show that the problem is strongly NP-hard in binary trees. As a first
step toward this result we prove that list multicoloring of binary trees is
NP-complete.

1 Introduction

Graph multicoloring problems are often used to model scheduling of dependent
jobs. Given a set of jobs, one has to assign a set of time slots to every job. The
constraints are the following: every job has a length, which is the number of time
slots it requires, and there are interfering pairs of jobs which cannot be active
in the same time slot. In the preemptive scheduling model it is assumed that the
jobs can be interrupted arbitrarily, the time slots assigned to a job do not have to
be consecutive. This scheduling problem can be translated into a multicoloring
problem on graphs as follows. The vertices of a graph correspond to the jobs and
two jobs are connected if they cannot be executed at the same time. The colors
correspond to the time slots and every vertex has a color requirement x(v), which
is the length of the job. In a multicoloring x(v) colors have to be assigned to
every vertex v such that neighboring vertices have disjoint sets of colors. Clearly,
there is one to one correspondence between the feasible preemptive schedulings
of the jobs and the feasible multicolorings of the graph.

One traditional optimization goal is to minimize the total completion time
(makespan) of the scheduling, that is, the highest color assigned to the vertices
(or, equivalently, the total number of different colors assigned). This problem is
called multicoloring or weighted coloring. Another well-studied optimization goal
is to minimize the average completion time of the jobs, which is the same as to
minimize the sum of the completion times. This problem, preemptive minimum
sum multicoloring, will be studied in this paper. It can be stated formally as
follows:
? Research supported by grant OTKA 30122 of the Hungarian National Science Fund.

Preemptive Sum Multicoloring (pSMC)
Input: A graph G(V,E) and a demand function x: V → N
Output: A multicoloring Ψ : V → 2N such that |Ψ(v)| = x(v) for every
v ∈ V , and Ψ(u) ∩ Ψ(v) = ∅ if u and v are neighbors in G.
Goal: Let the finish time of vertex v in coloring Ψ be the highest color as-
signed to it, fΨ (v) = max{i ∈ Ψ(v)}. The goal is to minimize

∑
v∈V fΨ (v),

the sum of the coloring Ψ .

If every demand is 1, i.e., x(v) ≡ 1, then we obtain the chromatic sum problem
as a special case. The study of chromatic sums were started in [9,11,10]. The
complexity and approximability of the chromatic sum in certain restricted classes
of graphs were investigated in several papers [2,6,12,13].

Approximation results for arbitrary demand function x(v) on general and
k-colorable graphs were given by Bar-Noy et al. [1]. A polynomial time approx-
imation scheme for preemptive minimum sum multicoloring is known for trees
[4], for partial k-trees and planar graphs [3]. In [4] it is shown that the problem
can be solved optimally in polynomial time in trees if every demand is bounded
by a fixed constant. However, in general, the complexity of the problem in trees
(and in paths) remained an open question. The main result of the paper is to
show that the problem is NP-hard on binary trees, even if every demand is
polynomially bounded. As a first step, we also prove the NP-completeness of
another variant of multicoloring, the so-called list multicoloring.

In Section 2, we introduce some notations and present the result on list
multicoloring. Section 3 defines penalty gadgets, which are the most important
tools of the reduction in Section 4.

2 Preliminaries

We slightly extend the problem by allowing x(v) = 0. Clearly this does not
make the problem more difficult, but it will be needed for technical reasons. If
x(v) = 0, then define fΨ (v) = 0 in every coloring Ψ . Notice that by using this
definition the trivial inequality fΨ (v) ≥ x(v) holds even if x(v) = 0.

Let us introduce some notations. If V ′ ⊆ V and Ψ is a coloring then let
fΨ (V

′) =
∑

v∈V ′ fΨ (v). Similarly, x(V ′) =
∑

v∈V ′ x(v). The sum of the optimum
coloring of (G, x) is denoted by OPT(G, x), or by OPT(G) if the function x(v)
is clear from the context. The notation [a, b] stands for the set {a, a + 1, . . . , b}
if a ≤ b, otherwise it is the empty set.

The size of the input to the multicoloring problem is the size of the graph,
and it does not include the size of the demand function.

Instead of the preemptive sum multicoloring problem, we start with the NP-
completeness of another multicoloring problem. The following is the obvious com-
mon generalization of list coloring and multicoloring (for a thorough overview
on list coloring and related problems, see [14]):

List Multicoloring
Input: A graph G(V,E), a demand function x: V → N, a set of colors C
and a color list L: V → 2C for each vertex
Question: Is there a multicoloring Ψ : V → 2C such that |Ψ(v)| = x(v),
Ψ(v) ⊆ L(v) for every v ∈ V , and Ψ(u) ∩ Ψ(v) = ∅ if u and v are
neighbors in G?

Clearly, this problem is NP-complete in every class of graphs where either
multicoloring or list coloring is NP-complete. List coloring is NP-complete in
bipartite graphs [5,8], but both problems can be solved in polynomial time in
trees (see [7] for a linear time list coloring algorithm in trees). On the other
hand, list multicoloring of trees is NP-complete:

Theorem 2.1. The list multicoloring problem remains NP-complete restricted
to trees.

Proof. The reduction is from the maximum independent set problem. For every
graph G(V,E) and integer k, we will construct a tree T (in fact, a star), a demand
function, and a color list for each node, such that the tree can be colored with
the lists if and only if G has an independent set of size k. The colors correspond
to the vertices of G, the leaves of the star correspond to the edges of G. The
construction will ensure that the colors given to the central node correspond to
an independent set in G.

Let e1, e2, . . . , em be the edges of G and denote by ui,1 and ui,2 the two end
vertices of edge ei. The tree T is a star with a central node v and m leaves
v1, . . . , vm. The demand of v is k and the demand of every leaf is 1. The set of
colors C corresponds to the vertex set V . The color list of the central node v is
the set C, the list of node vi is the set {ui,1, ui,2}.

Assume that there is a proper list coloring of T . It assigns k colors to v. The
corresponding set of k vertices will be independent in G: at least one end vertex
of each edge ei is not contained in this set since node vi must be colored with
either ui,1 or ui,2. On the other hand, if there is an independent set of size k in
G, then we can assign this k colors to v and extend the coloring to the nodes vi:
either ui,1 or ui,2 is not contained in the independent set, thus it can be assigned
to vi. ut

There are two main difficulties in adapting these ideas for the minimum sum
coloring problem.

– We want to prove NP-completeness in binary trees. The central node of the
star has high degree.

– There are no lists in the minimum sum coloring problem. How can we forbid
a node from using certain colors?

The first problem can be solved quite easily with a ’color copying’ trick. To
demonstrate this, we present a stronger form of Theorem 2.1:

Theorem 2.2. The list multicoloring problem remains NP-complete restricted
to binary trees.

Proof. The proof is essentially the same as in Theorem 2.1, but the degree m
central node of the star is replaced by a path v′1, v

′
2, . . . , v

′
2m−1 of 2m− 1 nodes.

The m neighbors of v are connected to the m nodes v′1, v
′
3, . . . , v

′
2m−1 one by

one. The list of every node v′i is C, the demands are x(v′2i+1) = k and x(v′2i) =
|C|−k. It is easy to see that in every proper multicoloring of the tree, the nodes
v′1, v

′
3, . . . , v

′
2m−1 receive the same set of k colors. Furthermore, as in the previous

proof, this set corresponds to an independent set in G.
ut

To solve the second problem, certain ’penalty gadgets’ will be constructed,
Section 3 is devoted to this task.

3 The penalty gadgets

The goal of the penalty gadgets is that by connecting such a gadget to a node
v, we can force v not to use certain colors: if node v uses a forbidden color, then
the gadget can be colored only with a ’very large’ penalty.

For offset t, demand size d and penalty C we define a tree Tt,d,C . The root r
of this tree will be connected to some node v. When the root r of this tree uses
the set [t+ 1, t+ d], then the tree can be colored optimally. On the other hand,
if v uses even one color from [t+1, t+d], then r cannot have the set [t+1, t+d]
and so fΨ (Tt,d,C) ≥ OPT (Tt,d,C , x) + C. When C is sufficiently large, then this
will force v to use colors not in [t+ 1, t+ d].

Proposition 3.1. For integers d,C > t ≥ 0 there is a binary tree Tt,d,C and a
demand function x(v) such that

1. The root r has demand x(r) = d.
2. Ψ(r) = [t+ 1, t+ d] in every optimum coloring Ψ .
3. If Ψ(r) 6= [t+1, t+d] for a coloring Ψ , then fΨ (Tt,d,C) ≥ OPT(Tt,d,C , x)+C.
4. The demand x of every vertex is polynomially bounded by d and C.

Furthermore, there is an algorithm which, given t, d and C, outputs the tree
Tt,d,C , the demand function x and the value OPT(Tt,d,C , x) in time polynomial
in d and C.

Proof. Let k = dlog2(C + t)e and Ĉ = 2k. Obviously, C + t ≤ Ĉ < 2(C + t).
The tree Tt,d,C consists of a complete binary tree and some attached paths. The
complete binary tree T0 has k + 1 levels, the root r is on level 1 and the leaves,
`1, `2, . . . , `Ĉ , are on level k+1. Attach a path of k+3 nodes to every leaf: node

`i (1 ≤ i ≤ Ĉ) is connected to path Pi: ai,k+2, ai,k+1, . . . , ai,2, ai,1, ai,0 (nodes
`i and ai,k+2 are neighbors). Figure 1 shows the construction for t = 2, d = 4,

C = 6. Clearly, Tt,d,C has 2Ĉ−1+(k+3)Ĉ nodes, which is polynomially bounded
in C.

We say that a node is of type j if it is either on the jth level of T0 or it is an
ai,j for some 1 ≤ i ≤ Ĉ.

The demand x(v) will depend only on the type of node v. Let

g(0) = t,

g(1) = d,

g(n) = (3d+ t+ C) · 4n−2 for n ≥ 2.

Obviously, g(n) is monotone and it is easy to see that

g(i+ 1) ≥ 3g(i) + C + t ≥ g(i− 1) + C + t

for all i ≥ 1 (these inequalities will be used later).
For a node v of type i let x(v) = g(i). This implies that x(r) = g(1) = d for

the root r. The maximum value of x(v) is g(k + 2) = (3d+ t+ C) · 4k, which is
bounded by a polynomial of d and C.

PSfrag replacements

`1 `2 `3 `4 `5 `6 `7 `8

a1,5

a1,0

a1,1

a1,2

a1,3

a1,4

a2,5

a2,4

a2,3

a2,2

a2,1

a2,0

rT0

[7, 24]
[7, 24]
[7, 24]

[7, 24]

[7, 24]

[7, 24]

[7, 24]

[25, 100]
[25, 100]

[25, 100]

[25, 100]

[25, 100]

[101, 400]

[101, 400]

[101, 400]

Set of colors assigned by ΨDemand

4
4

20
80

320

1280

320

320

80

80

20

20

2
1

1

1
2
3
4

5

4

4

4

4

3

3

2

2

20

Type

[1, 2]
[3, 6]
[1, 2]
[1, 2]
[1, 2]

[1, 2]

[1, 2]

[1, 2]

[1, 2]

[1, 2]

[3, 6]
[3, 6]
[3, 6] [3, 6]

[3, 6]

[3, 6]

[3, 6]

[3, 6]

[401, 1600]

Fig. 1. The tree Tt,d,C for t = 2, d = 4 and C = 6. The nodes on the same level
have the same type. On the right are the demands and also the colors assigned by the
optimum coloring.

We describe a proper multicoloring Ψ , which will turn out to be the unique
optimum solution. The same color set is assigned to the nodes of the same type.
Start with Ψ(v) = [1, t] for every node v of type 0. Then color the different types
in increasing order: assign to the nodes of type i the first g(i) colors not used
by the type i − 1 nodes. This gives a proper coloring since the already colored
neighbors of type i nodes are type i − 1 nodes. Notice that the root r receives
the set [t + 1, t + d], as required. It is easy to prove that the finish time of a
node v of type i is fΨ (v) = g(i) + g(i − 1) = x(i) + x(i − 1) since there will be

exactly g(i− 1) ’skipped’ colors and the finish time of nodes of type i is greater
then the finish time of the nodes of type i − 1 because g(i) > g(i − 2). The
following simple observation will be used later: if u is a type i node and v is its
type i + 1 neighbor, then in every coloring Φ, the equalities Φ(u) = Ψ(u) and
fΦ(v) = fΨ (v) = g(i + 1) + g(i) imply Φ(v) = Ψ(v). This follows directly from
the definition of Ψ : there is just one way of choosing the first x(v) = g(i + 1)
colors not used by u.

The following three lemmas show that Ψ is an optimum coloring, and if a
coloring Φ assigns to r a set different from Ψ(r) = [t+1, t+d], then fΦ(Tt,d,C) ≥
fΨ (Tt,d,C) + C.

Lemma 3.2. (a) fΦ(T0) ≥ fΨ (T0)− t holds for every coloring Φ of (Tt,d,C , x).
(b) If Φ(r) = Ψ(r), then fΦ(T0) ≥ fΨ (T0).
(c) If there is a v ∈ T0 \{r} such that fΦ(v) < fΨ (v), then fΦ(T0) ≥ fΨ (T0)+C.

Proof. Let L = {v ∈ T0 : fΦ(v) < fΨ (v)} and let H = T0 \ L be its complement
in T0. We note that L is an independent set. To see this, let v and u be neighbors
of type i and i+1, respectively. The sum of their demand is g(i)+ g(i+1), thus
at least one of them must have finish time not smaller than g(i) + g(i + 1).
Clearly this makes it impossible to have fΦ(v) < fΨ (v) = g(i) + g(i − 1) and
fΦ(u) < fΨ (u) = g(i) + g(i+ 1) simultaneously.

Partition the vertices of T0 as follows. Define a subset Sv for every node
v ∈ H. Let v ∈ Sv for every v ∈ H, and u ∈ L is in Sv iff v is the parent of u.
When the root r is in L then r forms a set itself, S∗ = {r}. It is clear that this
defines a partition, every vertex is in exactly one subset. Apart from S∗, every
subset contains a node from H and zero, one or two nodes from L.

Assume that the set Sv contains no node from L. Then fΦ(Sv) ≥ fΨ (Sv)
follows from the definition of H and L. Now consider a set Sv which has at least
one node from L. It contains a type i node v from H and one or two type i+ 1
nodes (u1, u2) from L. Since v and uz (z = 1, 2) are neighbors and the sum of
their demand is g(i)+g(i+1), at least one of them must have finish time at least
g(i) + g(i+1). Since uz is in L, we have fΦ(uz) < fΨ (uz) = g(i) + g(i+1), thus
fΦ(v) ≥ g(i)+ g(i+1). Therefore, fΦ(v)− fΨ (v) ≥ (g(i)+ g(i+1))− (g(i− 1)+
g(i)) = g(i+ 1)− g(i− 1). Since fΨ (uz) = g(i+ 1) + g(i) and x(uz) = g(i+ 1),
clearly fΦ(uz)− fΨ (uz) ≥ −g(i). Now

fΦ(Sv)− fΨ (Sv) ≥ (g(i+ 1)− g(i− 1))− 2g(i) ≥ g(i+ 1)− 3g(i) ≥ C + t,

where the last inequality follows from g(i+ 1) ≥ 3g(i) + C + t.
If r is in S∗, then fΦ(S

∗) = fΨ (S
∗)+(fΦ(r)−fΨ (r)) holds. Therefore fΦ(T0) ≥

fΨ (T0)+(fΦ(r)−fΨ (r)) ≥ fΨ (T0)−t, since fΦ(r) ≥ d. This proves statement (a),
and (b) also follows because Φ(r) = Ψ(r) implies fΦ(r)−fΨ (r) = 0. Furthermore,
if fΦ(u) < fΨ (u) for some u ∈ T0 \ {r}, then fΦ(Sv) ≥ fΨ (Sv)+C + t for the set
Sv of the partition that contains u. This proves statement (c).

ut

Lemma 3.3. fΦ(Pi) > fΨ (Pi) holds for every coloring Φ 6= Ψ of Tt,d,C and for

every 1 ≤ i ≤ Ĉ.

Proof. Assume that fΦ(Pi) ≤ fΨ (Pi), define L = {v ∈ Pi : fΦ(v) < fΨ (v)} and
H = Pi \ L. If fΦ(Pi) ≤ fΨ (Pi) and Φ is different from Ψ , then there is a v ∈ Pi
such that fΦ(v) < fΨ (v), thus L is not empty. As in Lemma 3.2, it is easy to see
that L is an independent set. The nodes of Pi are partitioned into |H| classes: if
v ∈ H then v is in Sv, if u ∈ L then u is in Sv, where v is the child of u. Notice
that ai,0 ∈ H since fΨ (ai,0) = x(ai,0) = g(0) ≤ fΦ(ai,0).

We prove that fΦ(Sv) ≥ fΨ (Sv) for every Sv. If Sv = {v}, then it is clear
that fΦ(Sv) ≥ fΨ (Sv) holds. Assume that Sv = {u, v}, node u ∈ L is type
j + 1, and v ∈ H (its child) is type j ≥ 0. The finish time of node v is at least
x(u) + x(v) = g(j + 1) + g(j), therefore

fΦ(Sv) ≥ x(u) + (x(u) + x(v)) = g(j + 1) + (g(j + 1) + g(j))

holds. On the other hand, if j ≥ 1, then fΨ (Sv) = (g(j + 1) + g(j)) + (g(j) +
g(j − 1)), thus fΦ(Sv) > fΨ (Sv) follows from g(j + 1) > g(j) + g(j − 1). In the
case j = 0, we have fΨ (Sv) = t+(t+d) = g(j)+(g(j)+g(j+1)) < fΦ(Sv), since
fΦ(Sv) ≥ g(j+1)+ (g(j)+ g(j+1)) = d+(t+ d) (recall that t < d). Since H is
not empty, there is at least one subset Sv in the partition with fΦ(Sv) > fΨ (Sv),
contradicting fΦ(Pi) ≤ fΨ (Pi). ut

Lemma 3.4. If Φ(r) 6= Ψ(r) = [t+ 1, t+ d], then fΦ(Tt,d,C) ≥ fΨ (Tt,d,C) + C.

Proof. Denote by P ∗ =
⋃Ĉ
i=1

Pi = Tt,d,C \ T0 the union of the paths. If there
is a node v ∈ T0 \ {r} with fΦ(v) < fΨ (v), then by part (c) of Lemma 3.2
fΦ(T0) ≥ fΨ (T0)+C, and by Lemma 3.3 fΦ(P

∗) ≥ fΨ (P
∗) follows, which implies

fΦ(Tt,d,C) ≥ fΨ (Tt,d,C)+C, and we are ready. Therefore it can be assumed that
fΦ(v) ≥ fΨ (v) for every node v ∈ T0 \ {r}. Furthermore, if there is a v ∈ T0

with fΦ(v) ≥ fΨ (v) + C + t, then fΦ(T0) ≥ fΨ (T0) + C, thus fΦ(P
∗) ≥ fΨ (P

∗)
implies fΦ(Tt,d,C) ≥ fΨ (Tt,d,C) + C. In the following, it will be assumed that
fΨ (v) ≤ fΦ(v) ≤ fΨ (v) + C + t holds for every v ∈ T0 \ {r}.

Call a vertex v ’changed’ in Φ if Φ(v) 6= Ψ(v). The goal is to show that if the
root r is changed, then all the nodes a1,k+2, a2,k+2, . . . , aĈ,k+2

are changed. Let
v be a node of type i in T0 and let u be one of its children, a node of type i+1.
If v is changed, then there is a color j ∈ Φ(v) and j 6∈ Ψ(v). We consider two
cases. If j ≤ fΨ (u), then by the fact that j 6∈ Ψ(v) and the way Ψ was defined
j ∈ Ψ(u) follows. Therefore u is also changed since j ∈ Φ(v) implies j 6∈ Φ(u). In
the second case, where j > fΨ (u) = g(i+ 1) + g(i) we have

fΦ(v) ≥ j > g(i+ 1) + g(i) = (g(i+ 1)− g(i− 1)) + (g(i) + g(i− 1))

= g(i+ 1)− g(i− 1) + fΨ (v) ≥ fΨ (v) + C + t,

contradicting the assumption fΦ(v) ≤ fΨ (v) + C + t.
Assume that fΦ(Tt,d,C) < fΨ (Tt,d,C) + C. By applying the previous result

inductively, one finds that all the leaves `i and their children ai,k+2 (1 ≤ i ≤ Ĉ)
are changed. Lemma 3.3 ensures that Φ is not an optimum coloring of Pi, thus
fΦ(Pi) ≥ fΨ (Pi)+1 and fΦ(P

∗) ≥ fΨ (P
∗)+Ĉ ≥ fΨ (P

∗)+C+t. By Lemma 3.2,
fΦ(T0) ≥ fΨ (T0)− t, hence fΦ(Tt,d,C) ≥ fΨ (Tt,d,C) + C. ut

To prove Prop. 3.1, we have to show that requirements 2 and 3 hold. If Φ(r) =
Ψ(r), then by part (b) of Lemma 3.2 and by Lemma 3.3, fΦ(Tt,d,C) ≥ fΨ (Tt,d,C).
If Φ(r) 6= Ψ(r), then by Lemma 3.4, fΦ(Tt,d,C) ≥ fΨ (Tt,d,C) + C. Therefore the
coloring Ψ is an optimum coloring and the tree satisfies the requirements of the
proposition.

Clearly, the described tree Tt,d,C and the demand function x can be con-
structed in polynomial time. The sum of the optimum solution can be also
calculated, by adding the appropriate finish time of every node. ut

4 The reduction

We will reduce the maximum independent set problem to the minimum sum
coloring problem in binary trees. In the decision version of the minimum sum
coloring problem, the input is a graph G, a demand function x(v), and an integer
K, the question is whether there exists a multicoloring Ψ with sum less than K.
The reduction is based on the proof of Theorem 2.2. The penalty gadgets Tt,d,C
of Section 3 are used to imitate the effect of the color lists.

More precisely, the penalty gadget is used in two different ways: as a lower
penalty gadget and as an upper penalty gadget. The lower penalty gadget T Ld,C
is a tree T0,d,C . By connecting the root of such a tree to a node v, the node v
is forced to use only colors greater than d: otherwise the gadget can be colored
only with a penalty C. A tree will be called a tree of type TL if it is the tree
TLd,C for some d and C.

The upper penalty gadget TUd,C is a tree Td,C,C . If this gadget is connected to
a node v, then this forces v to use only colors not greater than d. If v uses only
colors not greater than d, then its finish time is at most d, and the gadget can
be colored optimally. If v uses a color greater than d but not greater than d+C,
then the gadget can be colored only with a penalty of C. If v uses colors greater
than d+C, then it has finish time at least d+C, which is a penalty of at least
C compared to the case when v uses only colors at most d.

Theorem 4.1. The minimum sum preemptive multicoloring problem is NP-
complete on binary trees when the value of the demand function is polynomially
bounded.

Proof. Let a graph G(V,E) and an integer k be given. Denote n = |V |, m = |E|
and let C = 8mn. Let integers ui,1 < ui,2 denote the two end vertices of the ith
edge in G.

We define a binary tree T , which consists of a core T̂ and some attached sub-
trees of type TL and TU . We start with a path of 2m−1 nodes, a1, b1, a2, b2, . . . ,

am−1, bm−1, am. Define x(ai) = k (1 ≤ i ≤ m) and x(bi) = C + n − k

(1 ≤ i ≤ m− 1). For every 1 ≤ i ≤ m attach a path of 6 nodes to ai. Let these
nodes be ci,1, di,1, ci,2, di,2, ci,3, di,3. Let x(ci,j) = 1, x(di,j) = C+n−1 (j = 1, 2)
and x(ci,3) = 1, x(di,3) = ui,2 − ui,1 − 1. Clearly, x(v) ≥ 0 for every node v.

This completes the definition of T̂ . Now attach trees of type TL and TU to T̂ as
follows (see Figure 2):

– a TUC+n,2C to every node bi (1 ≤ i ≤ m− 1),

– a TUn,C to the node a1,

– a TUC+n,2C to every node di,j (1 ≤ i ≤ m, j = 1, 2),

– a TUui,2+1,C to every node ci,1 (1 ≤ i ≤ m),

– a TLui,1−1,C to every node ci,2 (1 ≤ i ≤ m),

– a TLui,1,C
and a TUui,2−1,C to every node di,3 (1 ≤ i ≤ m).

PSfrag replacements

TU
n,c

TU
u1,2−1,C

TL
u1,1,C

TU
n+C,2C

TU
n+C,2C

TU
n+C,2C

a3 (k)

a2 (k)

b1

(C + n− k)

b2

(C + n− k)

(C + n− k)TU
n+C,2C

TU
n+C,2CTU

n+C,2C

c1,3 (1)

c1,1 (1) c1,2 (1)
d1,3 (ui,2 − ui,1 − 1)

a1 (k) d1,2

(C + n− 1)

(C + n− 1) (C + n− 1)
d1,1

TL
u1,1−1,CTU

u1,2+1,C

Fig. 2. The tree T for m = 3. For the sake of clarity, the nodes ci,j , di,j for i ≥ 2 and
the subtrees connected to these nodes are omitted. The numbers in parentheses are the
demand of the vertices.

It is clear that the size of the resulting tree T is polynomial in n, the number
of vertices of G, because T̂ has 8m− 1 nodes and we attach 7m trees to it, each
of size bounded by a polynomial in C + n.

As required by Prop. 3.1, the algorithm that constructs the trees of type T U

and TL also outputs the minimum sum of these 7m trees, that is, the value of
OPT(T \ T̂). Let K = OPT(T \ T̂) + x(T̂) + C.

The intuition behind the construction is that in a ’well-behaved’ solution,
when the coloring of the TL and TU trees are optimal, for every i, the three
nodes ci,1, ci,2, ci,3 have the same color. The trees attached to these nodes ensure
that this color must be either ui,1 or ui,2, one of the end nodes of the ith edge in
G. This color cannot appear in ai, this is the reason why the k colors assigned
to the nodes ai form an independent set, at least one end node of each edge is
not in the set.

First we prove that if there is an independent set S of size k, then T can be
colored with sum smaller than K. Let ûi ∈ {ui,1, ui,2}, ûi 6∈ S be an end node of

the ith edge. Assume that Ψ colors all the trees of type TU and TL optimally,
i.e., fΨ (T \ T̂) = OPT(T \ T̂) and let

– Ψ(ai) = S (1 ≤ i ≤ m),
– Ψ(bi) = [1, C + n] \ S (1 ≤ i ≤ m− 1),
– Ψ(ci,j) = {ûi} (1 ≤ i ≤ m, j = 1, 2, 3),
– Ψ(di,j) = [1, C + n] \ {ûi} (1 ≤ i ≤ m, j = 1, 2),
– Ψ(di,3) = [ui,1 + 1, ui,2 − 1] (1 ≤ i ≤ m).

It is straightforward to verify that Ψ is a proper coloring of T . Notice that
fΨ (v) ≤ x(v) + n holds for every node v of T̂ , thus fΨ (T̂) can be bounded by

x(T̂)+|T̂ |n. Therefore fΨ (T) = fΨ (T \T̂)+fΨ (T̂) ≤ OPT(T \T̂)+x(T̂)+|T̂ |n =

OPT(T \ T̂) + x(T̂) + (8m− 1)n < OPT(T \ T̂) + x(T̂) + C = K, what we had
to show.

To prove the other direction, we will show that when there is a coloring
Ψ with sum fΨ (T) < K, then there is a set of k independent vertices in G.

Obviously fΨ (T) = fΨ (T̂) + fΨ (T − T̂) ≥ x(T̂) + OPT(T \ T̂). If there is even

one node v ∈ T̂ such that fΨ (v) ≥ x(v)+C, then fΨ (T̂) ≥ x(T̂)+C and fΨ (T) ≥

OPT(T \ T̂)+x(T̂)+C = K. Thus it can be assumed that fΨ (v) < x(v)+C for

every v ∈ T̂ . Now consider a tree Tv of type TL or TU attached to some node
v ∈ T̂ . If fΨ (Tv) ≥ OPT(Tv) + C, then fΨ (T) ≥ x(T̂) + OPT(T \ T̂) + C = K.
Thus it can be assumed that fΨ (Tv) < OPT(Tv)+C. Therefore, by the definition
of Tv, if it is a TLd,C (resp. TUd,C) tree, then Ψ assigns to its root the set [1, d]
(resp. [d+1, d+C]). Obviously, it follows that the node v cannot use the colors
in this set.

By the argument in the previous paragraph, fΨ (a1) < x(a1)+C ≤ n+C and
Ψ(a1)∩[n+1, n+C] = ∅, which implies that Ψ(a1) contains only colors not greater
than n. Similarly, fΨ (b1) < x(b1)+C ≤ n+2C and Ψ(b1)∩[n+C+1, n+3C] = ∅,
which implies that the n − k + C colors in Ψ(b1) are not greater than n + C.
This set of colors must be disjoint from the k colors in Ψ(a1), therefore we have
Ψ(b1) = [1, n+ C] \ Ψ(a1). Furthermore, fΨ (a2) < x(a2) + C ≤ n+ C, hence it
must use the k colors not used by b1, therefore Ψ(a2) = Ψ(a1). Continuing on
this way, we get Ψ(ai) = Ψ(a1) = S for all 2 ≤ i ≤ m and S contains k colors
not greater than n.

Assume that the set S is not independent, that is, both end vertices of some
edge of G is in this set, ui,1, ui,2 ∈ S. From the assumption fΨ (T) < K follows
that ci,1 cannot use either of these colors.

We have seen that fΨ (ci,1) < 1+C and Ψ(ci,1)∩ [ui,2+1, ui,2+C] = ∅ follow
from the assumption fΨ (T) < K, which implies that the color of ci,1 is at most
ui,2 ≤ n. Moreover, since fΨ (di,1) < 2C+n−1 and Ψ(di,1)∩[n+C+1, n+3C] = ∅,
thus node di,1 must use the first C +n− 1 colors missing from ci,1, therefore we
have Ψ(di,1) = [1, C + n] \ Ψ(ci,1). Similarly as in the case of the nodes aj and
bj , it follows that Ψ(ci,1) = Ψ(ci,2) = Ψ(ci,3) = {u}. Furthermore, notice that
u ≥ ui,1, since ci,2 cannot use the colors below ui,1: these colors are assigned to
the root of the attached tree TLui,1−1,C . Similarly, u cannot be in [ui,2+1, ui,2+C]
since ci,1 cannot use these colors. Finally, observe that di,3 must have the colors

[ui,1 + 1, ui,2 − 1] which forbids ci,3 from using a color between ui,1 and ui,2.
Since u is a color not greater than C, thus it must be either ui,1 or ui,2.

If the demands are polynomially bounded, then the problem is obviously in
NP: a proper coloring with the given sum is a polynomial size certificate, which
finishes the proof of NP-completeness.

ut

5 Acknowledgments

I’m grateful to Katalin Friedl for useful discussions and for helpful comments,
which considerably improved the presentation of the paper. The comments of
Judit Csima were also very valuable.

References

1. Amotz Bar-Noy, Magnús M. Halldórsson, Guy Kortsarz, Ravit Salman, and Hadas
Shachnai. Sum multicoloring of graphs. J. Algorithms, 37(2):422–450, 2000.

2. Amotz Bar-Noy and Guy Kortsarz. Minimum color sum of bipartite graphs. J.
Algorithms, 28(2):339–365, 1998.

3. Magnús M. Halldórsson and Guy Kortsarz. Multicoloring planar graphs and par-
tial k-trees. In Randomization, approximation, and combinatorial optimization
(Berkeley, CA, 1999), pages 73–84. Springer, Berlin, 1999.

4. Magnús M. Halldórsson, Guy Kortsarz, Andrzej Proskurowski, Ravit Salman,
Hadas Shachnai, and Jan Arne Telle. Multi-coloring trees. In Computing and
combinatorics (Tokyo, 1999), pages 271–280. Springer, Berlin, 1999.

5. M. Hujter and Zs. Tuza. Precoloring extension. II. Graph classes related to bipar-
tite graphs. Acta Mathematica Universitatis Comenianae, 62(1):1–11, 1993.

6. Klaus Jansen. The optimum cost chromatic partition problem. In Algorithms and
complexity (Rome, 1997), pages 25–36. Springer, Berlin, 1997.

7. Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete
Appl. Math., 75(2):135–155, 1997.

8. J. Kratochv́ıl. Precoloring extension with fixed color bound. Acta Mathematica
Universitatis Comenianae, 62(2):139–153, 1993.

9. Ewa Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western Michigan
University, 1989.

10. Ewa Kubicka, Grzegorz Kubicki, and Dionisios Kountanis. Approximation algo-
rithms for the chromatic sum. In Computing in the 90’s (Kalamazoo, MI, 1989),
pages 15–21. Springer, Berlin, 1991.

11. Ewa Kubicka and Allan J. Schwenk. An introduction to chromatic sums. In
Proceedings of the ACM Computer Science Conf., pages 15–21. Springer, Berlin,
1989.

12. S. Nicoloso, M. Sarrafzadeh, and X. Song. On the sum coloring problem on interval
graphs. Algorithmica, 23(2):109–126, 1999.

13. Tibor Szkaliczki. Routing with minimum wire length in the dogleg-free Manhattan
model is NP-complete. SIAM J. Comput., 29(1):274–287, 1999.

14. Zsolt Tuza. Graph colorings with local constraints—a survey. Discuss. Math.
Graph Theory, 17(2):161–228, 1997.

