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Minimum sum multicoloring

• Given: a graph G(V,E), and demand function x : V → N

• Find: an assignment Ψ of x(v) colors (integers) to every vertex v, such that
neighbors receive disjoint sets

• Goal: The finish time f(v) of vertex v is the largest color (integer) assigned
to it in the coloring. Minimize

∑
v∈V f(v), the sum of the coloring.
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Sum of the coloring:
5 + 1 + 2 + 4 + 3 + 5 = 20
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Application in scheduling

Scheduling of interfering jobs, minimizing the sum of completion times (same
as minimizing the average completion times)

vertices ⇐⇒ jobs
demands ⇐⇒ days required

edges ⇐⇒ interfering pairs of jobs
colors ⇐⇒ days

assignment of colors ⇐⇒ assignment of days
finish time of a vertex ⇐⇒ day when the job is finished

sum of the coloring ⇐⇒ sum of the completion times
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Example

E: 3

C: 2B: 1A: 2 5

D: 1 4 F: 1 4 5
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Preemptive scheduling: the jobs can be interrupted
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Known results

Special case , the chromatic sum problem: x(v) = 1, ∀v ∈ V

• General graphs:

? cannot be approximated within n1−ε even if every demand is 1
(unless NP = ZPP) [Bar-Noy et al., 1998],

? O(n/log2n) approximation for sum multicoloring [Bar-Noy et al., 2000]

• Bipartite graphs:

? 1.5-approximation for sum multicoloring [Bar-Noy and Kortsarz, 1998]
? APX-hard, even if every demand is 1
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Known results

• Planar graphs:

? (1 + ε)-approximation for sum multicoloring [Halldórsson and Kortsarz,
1999]

? NP-complete even if every demand is 1

• Trees:

? (1 + ε)-approximation for sum multicoloring [Halldórsson et al., 1999]
? polynomial time solvable if every demand is 1 [Kubicka, 1989],
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Known results

• Planar graphs:

? (1 + ε)-approximation for sum multicoloring [Halldórsson and Kortsarz,
1999]

? NP-complete even if every demand is 1

• Trees:

? (1 + ε)-approximation for sum multicoloring [Halldórsson et al., 1999]
? polynomial time solvable if every demand is 1 [Kubicka, 1989],

New result: Minimum sum multicoloring is NP-hard on binary trees, even if
every demand is polynomially bounded (in the size of the tree)
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List multicoloring

As a first step of the proof, we introduce another problem where trees are
difficult to color:

List multicoloring

• Given: a graphG(V,E), a demand function x : V → N, and a set of avail-
able colors L(v) for every vertex

• Find: an assignment Ψ of x(v) colors to every vertex v, such that

? neighbors receive disjoint sets and
? Ψ(v) ⊆ L(v)
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Theorem: List multicoloring is NP-complete in trees.

(Sketch of proof) Reduction from the maximum independent set problem
(“Is there an independent set of size k?”)

The tree is a star with one leaf for each edge.
For every edge vxvy, let {x, y} be the list of the corresponding leaf.
The list of the central node v contains every color.
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Claim: In every list coloring of the star, the colors assigned to the central node
form an independent set.
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Returning to minimum sum multicoloring. (There are no lists, the goal is to
minimize

∑
v∈V f(v), where f(v) is the largest color assigned to v.)

The NP-hardness of minimum sum coloring in trees is proved by a similar
reduction. The lists are simulated by “penalty gadgets” .
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Every vertex xi has demand a⇒ the sum of vertices xi is at least aC. If C is
“very large”, then this forces v to have only colors greater than a:

• If v has only colors greater than a ⇒ every vertex xi can receive colors
{1, . . . , a} ⇒ their total sum is aC.

• If v has a color≤ a⇒ every xi has a color greater than a⇒ their total sum
is at least aC + C.
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Remaining steps

• A similar gadget can force v to have only colors less than b

• Using these two gadgets, we can force v to have colors from a given set
⇒ we can prove that minimum sum multicoloring is NP-complete in trees

• With a more complicated construction, we can make penalty gadgets with
maximum degree 3
⇒ we can prove that minimum sum multicoloring is NP-complete in binary
trees
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Summary

• Coloring problem: Minimum sum multicoloring (minimize the sum of the
finish times)

• Previous positive result: Minimum sum multicoloring is polynomial in trees
if every demand is 1 (or bounded by a constant)

More general result: if every demand is at most p, then the problem can
be solved in O(n · (p logn)p) time⇒ polynomial time, if every demand is
O(logn/ log logn)

• Previous positive result: (1 + ε)-approximation algorithm for minimum
sum multicoloring in trees.

• New negative result: Minimum sum multicoloring is NP-complete in binary
trees.

• List multicoloring is NP-complete in binary trees.


