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Subgraph Isomorphism

Subgraph Isomorphism
Input: two graphs H and G .

Parameter: |V (H)|
Task: decide if G has a subgraph isomorphic to H.

Pattern H Host G

For a class F of graphs, F-Subgraph Isomorphism is the
restriction of the problem when the pattern H is in F .
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Special cases of Subgraph Isomorphism
We can express the following well-studied problems as special cases
of Subgraph Isomorphism:

Clique
NP-hard, W[1]-hard

Biclique
NP-hard, W[1]-hard

Long Path
NP-hard, FPT, no polynomial kernel
unless NP ⊆ coNP/poly.

Matching
Polynomial-time solvable.

Triangle Packing
NP-hard, FPT, has a polynomial kernel.
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H-packing
Packing

Input: two graphs H and G , an integer t.
Parameter: t · |V (H)|

Task: decide if there are t vertex-disjoint subgraphs of
G , each isomorphic to H.

Pattern H Host G

t = 3

For a fixed graph H, H-Packing is the problem restricted to
a fixed pattern graph H.
For a class F of graphs, F-Packing is the restriction of the
problem when the pattern H is in F .
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Main goal

Question
What kind of pattern graphs make Packing and Subgraph
Isomorphism easy?

Formally, characterize the classes F for which these problems
have

polynomial-time algorithms,
polynomial kernels,
polynomial Turing kernels.

Our goal is to prove dichotomy theorems: the problem is easy
if and only if F has certain property, and hard otherwise.
To make this technically feasible, we focus on hereditary
classes: we assume that F is closed under taking induced
subgraphs.
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Many-one vs. Turing kernels

Polynomial many-one kernels
Given an instance (x , k), creates an equivalent instance (x ′, k ′) with
|x ′| = kO(1) and k ′ = kO(1) in time (|x |+ k)O(1).

x
k

n bits

x ′
k ′

kO(1) bits
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Many-one vs. Turing kernels

Polynomial Turing kernels
Solves instance (x , k) in time (|x |+k)O(1) using oracle access solving
instances (x ′, k ′) with |x ′| = kO(1) and k ′ = kO(1) in a single step.

x
k

n bits

x ′
k ′

kO(1) bits

x ′
k ′

kO(1) bits

x ′
k ′

kO(1) bits

OR

Most typical form: it creates |x |O(1) instances such that the
answer is the OR of these instances.
Negative evidence for polynomial Turing kernels:
WK[1]-hardness introduced by [Hermelin et al. 2013].
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Packing

Polynomial-time solvability is well-understood:

Theorem [Kirkpatrick and Hell 1978]

H-Packing is NP-hard for every connected graph H with at least
3 vertices.

Easy extensions to disconnected graphs and graph classes:

Corollary
H-Packing is polynomial-time solvable if every component of H
has at most two vertices, and NP-hard otherwise.

Corollary
F-Packing is polynomial-time solvable if every component of
every graph in F has at most two vertices, and NP-hard otherwise.
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Packing

Kernelization is also well understood:

For every fixed H, there is a kernel of size O(k |V (H)|).
Interpret the problem as packing of sets of size |V (H)|, then
kernelization using the Sunflower Lemma.

Better question: pattern H is part of the input, but restricted to
a class F .

But before that, a short recap. . .
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Sunflower lemma
Definition: Sets S1, S2, . . . , Sk form a sunflower if the sets
Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petal center

Sunflower Lemma [Erdős and Rado, 1960]

If the size of a set system is greater than (p − 1)d · d! and it
contains only sets of size at most d , then the system contains a
sunflower with p petals. Furthermore, in this case such a sunflower
can be found in polynomial time.
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Sunflowers and packing

d-Set Packing
Given a collection S of sets of size at most d and an integer t, find
a set S of t elements that intersects every set of S.

petal center

Reduction Rule
Suppose more than dt + 1 sets form a sunflower.

If the sets are disjoint ⇒ we are done.
Otherwise, keep only dt + 1 of the sets.
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Marking

Another interpretation:

We can mark a set M of f (d)td elements such that the following
holds. If Z is any set of at most dt elements and there is an S ∈ S
with S ∩ Z = ∅, then there is also such an S ⊆ M.

We can mark a set M of f (d)td elements such that if there is a
solution with t sets, then there is such a solution inside M.
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Marking

Another interpretation:

We can mark a set M of f (|V (H)|)k |V (H)| vertices such that the
following holds. If Z is any set of at most k vertices and there is a
copy of H disjoint from Z , then there is such a copy inside M.

In the H-Packing problem, we can mark a set M of f (d)k |V (H)|

vertices (where k = t · |V (H)|) such that if there is solution, then
there is a solution inside M.

Bottom line:
We need marking procedures of this form for packing problems.
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Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

F is small/thin if ∃a, b ≥ 0 such that every H ∈ F is a-small/b-thin.
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Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

Theorem
F-Packing admits a many-one polynomial kernel if F is
small/thin, and otherwise does not have a polynomial kernel
(unless NP ⊆ coNP/poly).
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Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

Theorem
F-Packing admits a polynomial Turing kernel if F is small/thin,
and otherwise W[1]-hard, WK[1]-hard, or Long Path-hard.
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Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

Turing kernels do not buy us more power
for F-Packing!
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Ingredients for F-Packing kernelization dichotomy

Classification
Small/thin graph classes characterize the easy cases.

Algorithms
Marking procedure based on the Sunflower lemma for
small components and on problem-specific arguments for
thin bipartite components.

Hard families
Kernelization lower bound for each hard family by
polynomial-parameter transformations from Uniform
Exact Set Cover.

Ramsey arguments
Hereditary F that is not small/thin contains one of the
hard families.
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Packing thin bicliques

A special case of the kernelization result:

Theorem
Kx ,y -Packing admits a a polynomial kernel for every fixed x
(y is part of the input).

We need a marking procedure:

We can mark a set M of kO(x) vertices such that the following
holds. If Z is any set of at most k vertices and there is a copy of
Kx ,y disjoint from Z , then there is a copy in M \ Z .
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Marking procedure for thin bicliques
We prove a more technical statement:

For every (A′,B ′), we can mark a set M of kO(x) vertices such that
the following holds. If Z is any set of at most k vertices and there
is a copy of Kx ,y extending (A′,B ′) and disjoint from Z , then there
is a copy of Kx ,y in M \ Z . [Not necessarily extending (A′,B ′)!].

A copy (A,B) of Kx ,y extends (A′,B ′) if A′ ⊆ A and B ′ ⊆ B .

B ′

A′
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Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions
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Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Main step:
If there are k + 1 copies: done.

If there are at most k copies: branch on including into A′ or
B ′ each of the at most k(x + y) vertices of the copies.
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Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Corner case 1: |A′| = x

The extensions are just common neighbors of A′.
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Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

common neighbors of A′

Corner case 1: |A′| = x

The extensions are just common neighbors of A′.

Mark k + y common neighbors of A′ (or all of them, if they are
fewer).
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Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Corner case 2: |A′| < x , |B ′| = x

The extensions are just common neighbors of B ′.

If B ′ has less than k + y common neighbors, then branch on
including one of them into A′.
If B ′ has at least k + y common neighbors, then mark k + y
of them and we are done: B ′ and any y common neighbors
of B ′ form a Kx ,y !
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Packing thin bicliques

The recursive marking procedure branches into at most
2k(x + y) ≤ 2k2 directions and the recursion depth is at most 2x
⇒ at most kO(x) vertices are marked.

We can mark a set M of kO(x) vertices such that the following
holds. If Z is any set of at most k vertices and there is a copy of
Kx ,y disjoint from Z , then there is a copy in M \ Z .

Theorem
Kx ,y -Packing admits a a polynomial kernel for every fixed x
(y is part of the input).

The marking procedure can be extended to arbitrary thin bipartite
graphs, but it is much more technical.
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Ingredients for F-Packing kernelization dichotomy

Classification
Small/thin graph classes characterize the easy cases.

Algorithms
Marking procedure based on the Sunflower lemma for
small components and on problem-specific arguments for
thin bipartite components.

Hard families
Kernelization lower bound for each hard family by
polynomial-parameter transformations from Uniform
Exact Set Cover.

Ramsey arguments
Hereditary F that is not small/thin contains one of the
hard families.
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Hard families
n vertices

n vertices
length `

Path(`) Biclique(n) 2-broom(s, n)Clique(n)

OperaHouse(s, n)Fountain(s, n) LongFountain(s, t, n) SubDivStar(n)

(` = 5) (n = 4) (n = 3)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.
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Hard families

Theorem
F-Packing is WK[1]-hard if one of the following holds:

{SubDivStar(n) | n ≥ 1} ⊆ F ,
{Fountain(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{LongFountain(s, t, n) | n ≥ 1} ⊆ F for some integer t ≥ 1
and odd integer s ≥ 3,
{2-broom(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3, or
{OperaHouse(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3.
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Reducion from
Uniform Exact Set Cover

Version of Set Cover where every set has the same size n/k .

Sets

Elements

Reduction to F-Packing if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F .
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Ramsey arguments

Theorem
If a hereditary class F is not small/thin, then at least one of the
following holds:

{Path(n) | n ≥ 1} ⊆ F ,
{Clique(n) | n ≥ 1} ⊆ F ,
{Biclique(n) | n ≥ 1} ⊆ F ,

{SubdivStar(n) | n ≥ 1} ⊆ F ,
{Fountain(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{LongFountain(s, t, n) | n ≥ 1} ⊆ F for some integer t ≥ 1 and odd
integer s ≥ 3,
{2-broom(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3, or
{OperaHouse(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3.
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Ramsey-type arguments
A large graph has a large clique or independent set.

vs.

A large c-edge-colored clique has a large monochromatic clique.

vs.vs.vs.

A large c-edge-colored biclique has a large monochromatic
biclique.

vs.vs.vs.

If a graph has a long path, then it has a large induced path, a
clique, or an induced biclique. [Galvin, Rival, Sands 1982]

vs.vs.
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Ramsey arguments

Need to show: if a connected nonbipartite graph is large, then it
contains a large bad guy.

v = p0

pi∗

X2,i∗

p`−1

w = p`

v = p0

pi∗

X2,i∗

p`−1

w = p`

Case 1.a Case 1.b
z1 z2

w

z1 z2

Case 2.a Case 2.b

C C w
C

C

X3

X3 wq2
q1 q4

q3

C

X3

wq2
q1 q4

q3

C

X3

Observation: if there is no long induced path, then a large
component has to contain a vertex of large degree.
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Finding subgraphs in polynomial time

Subgraph Isomorphism
Input: two graphs H and G .
Task: decide if G has a subgraph isomorphic to H.

Some classes for which F-Subgraph Isomorphism is
polynomial-time solvable:

F is the class of all matchings
F is the class of all stars
F is the class of all stars, each edge subdivided once
F is the class of all windmills

matching star subdivided star windmill
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Finding subgraphs
Definition
Class F is matching splittable if there is a constant c such that
every H ∈ F has a set S of at most c vertices such that every
component of H − S has size at most 2.

1

2

3

S

Theorem
Let F be a hereditary class of graphs. If F is matching splittable,
then F-Subgraph Isomorphism is randomized polynomial-time
solvable and NP-hard otherwise.
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Ingredients for F-Subgraph Isomorphism
polynomial-time dichotomy

Classification
Matching splittable graph families characterize the easy
cases.

Algorithms
Algorithm by guessing a few vertices + reduction to col-
ored matching.

Hard families
Finding cliques, bicliques, n ·P3, and n ·K3 are all NP-hard.

Ramsey arguments
Hereditary F that is not matching splittable contains ei-
ther all cliques, bicliques, n · P3, or n · K3.
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Finding subgraphs (algorithm)

Theorem
If hereditary class F is matching splittable, then F-Subgraph
Isomorphism is randomized polynomial-time solvable.

Guess the image S ′ of S in G .
Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).
Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S
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Finding subgraphs (algorithm)

Theorem [Mulmuley, Vazirani, Vazirani 1987]

There is a randomized polynomial-time algorithm that, given a
graph G with red and blue edges and integer k , decides if there is a
perfect matching with exactly k red edges.

More generally:

Theorem
Given a graph G with edges colored with c colors and c integers k1,
. . . , kc , we can decide in randomized time nO(c) if there is a
matching with exactly ki edges of color i .

This is precisely what we need to complete the algorithm for
F-Subgraph Isomorphism for matching splittable F .

29



Finding subgraphs (hardness proof)

Lemma
Let F be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

F contains every clique.
F contains every biclique.
For every n ≥ 1, F contains n · K3.
For every n ≥ 1, F contains n · P3
(where P3 is the path on 3 vertices).

In each case, F-Subgraph Isomorphism is NP-hard
(recall that P3-Packing and K3-Packing are NP-hard).
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Finding subgraphs (hardness proof)

Definition
Class F is matching splittable if there is a constant c such that
every H ∈ F has a set S of at most c vertices such that every
component of H − S has size at most 2.

Equivalently: in every H ∈ F , we can cover every 3-vertex
connected set (i.e., every K3 and P3) by c vertices.

Observation: either
there are r vertex-disjoint copies of K3, or
there are r vertex-disjoint copies of P3, or
we can cover every K3 and every P3 by 6r vertices.
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Finding subgraphs (hardness proof)
Lemma
Let F be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

F contains every clique.
F contains every biclique.
For every n ≥ 1, F contains n · K3.
For every n ≥ 1, F contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6
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Finding subgraphs

What did we learn from the polynomial-time dichotomy?

Guessing the locations of a few vertices can
be really important for finding subgraphs!

Turing kernels can guess the locations of a few vertices and
produce a polynomial kernel for each guess.
But this can be a real problem for many-one kernels.

As we shall see, this leads to a difference in power between the two
types of kernelizations.
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Universal vertices

If every component of H is small/thin, then we can kernelize using
the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing
kernel even if we attach a constant number of universal vertices.

34



Universal vertices

If every component of H is small/thin, then we can kernelize using
the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing
kernel even if we attach a constant number of universal vertices.

34



Universal vertices

If every component of H is small/thin, then we can kernelize using
the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing
kernel even if we attach a constant number of universal vertices.

34



Splittable graphs
Definition
A graph H is (a, b, c , d)-splittable if it has a set S of at most c
vertices such that

if H − S is a-small/b-thin, and
each component C of H − S has at most d vertices whose
closed neighborhood in G [C ] is not universal to NH(C ) ∩ S .

S

F is splittable if ∃a, b, c , d such that every F ∈ F is (a, b, c, d)-
splittable.
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Splittable graphs
Definition
A graph H is (a, b, c , d)-splittable if it has a set S of at most c
vertices such that

if H − S is a-small/b-thin, and
each component C of H − S has at most d vertices whose
closed neighborhood in G [C ] is not universal to NH(C ) ∩ S .

Theorem
If F is a splittable hereditary class, then F-Subgraph
Isomorphism admits a polynomial Turing kernel, otherwise it is
W[1]-hard, WK[1]-hard, or Long Path-hard.
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Ingredients for F-Subgraph Isomorphism Turing
kernelization dichotomy

Classification
Splittable graph families characterize the easy cases.

Algorithms
Algorithm by guessing a few vertices + marking procedure
for small/thin components.

Hard families
Hard families coming from the packing problem + two
new hard families specific for subgraph isomorphism.

Ramsey arguments
Hereditary F that is not splittable contains at least one of
the hard families.
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Hard families
Hardness results coming from the hardness of packing:

LongFountain(s, t, n)

n vertices

length s

(s = 5, n = 4)

n vertices

length s

length
t

n vertices length s

n
vertices

(s = 5, n = 4)
OperaHouse(s, n)SubDivStar(n)

(s = 5, t = 3, n = 4) (n = 4)
Fountain(s, n)

n vertices

n vertices
length `

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)
Path(`) Biclique(n) 2-broom(s, n)Clique(n)
(` = 5) (n = 4) (n = 3)

If {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then F-Packing is WK[1]-
hard.
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If {n · LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then F-Subgraph
Isomorphism is WK[1]-hard.
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Hard families

Two new types of hard families:

length
s

n vertices

n vertices

SubDivTree(s, n) DiamondFan(n)
(n = 4)(s = 3, n = 3)

We prove that F-Subgraph Isomorphism is WK[1]-hard if
{DiamondFan(n) | n ≥ 1} ⊆ F or
{SubDivTree(s, n) | n ≥ 1} ⊆ F for some s ≥ 1.
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Ramsey arguments

Theorem
If a hereditary class F is not splittable, then at least one of the
following holds:

{Path(n) | n ≥ 1} ⊆ F ,
{Clique(n) | n ≥ 1} ⊆ F ,
{Biclique(n) | n ≥ 1} ⊆ F ,
{n · SubDivStar(n) | n ≥ 1} ⊆ F ,
{n · Fountain(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{n · LongFountain(s, t, n) | n ≥ 1} ⊆ F for some integer t ≥ 1 and
odd integer s ≥ 3,
{n · 2-broom(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{n · OperaHouse(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{SubDivTree(s, n) | n ≥ 1} ⊆ F for some integer s ≥ 1, or
{DiamondFan(n) | n ≥ 1} ⊆ F .
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Many-one kernels for Subgraph Isomorphism

The landscape of many-one kernels is very confusing.

Fountain(3, n) n · K3

SubDivStar(n) n · P3

Polynomial kernel

SubDivStar(n) n · K3

2 · SubDivStar(n) n · P3

No polynomial kernel
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Summary

Goal: dichotomies for Packing and Subgraph
Isomorphism from the viewpoints of

polynomial-time algorithms,
many-one kernels,
and Turing kernels.

The project was doable, except for many-one kernelization for
Subgraph Isomorphism

For Packing, Turing kernels do not give us more power than
many-one kernels.
Guessing a few vertices seems to be a very basic step for
Subgraph Isomorphism.
Why was not the polynomial-time dichotomy for Subgraph
Isomorphism known earlier?
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