Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels

Dániel Marx¹ Bart M.P. Jansen²

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> ²Eindhoven University of Technology, The Netherlands

> > WorKer 2015 Nordfjordeid, Norway June 1, 2015

SUBGRAPH ISOMORPHISM

For a class \mathcal{F} of graphs, \mathcal{F} -SUBGRAPH ISOMORPHISM is the restriction of the problem when the pattern H is in \mathcal{F} .

Special cases of SUBGRAPH ISOMORPHISM

We can express the following well-studied problems as special cases of SUBGRAPH ISOMORPHISM:

H-packing

PACKING
Input:two graphs H and G, an integer t.Parameter: $t \cdot |V(H)|$ Task:decide if there are t vertex-disjoint subgraphs of
G, each isomorphic to H.

- For a fixed graph *H*, *H*-PACKING is the problem restricted to a fixed pattern graph *H*.
- For a class \mathcal{F} of graphs, \mathcal{F} -PACKING is the restriction of the problem when the pattern H is in \mathcal{F} .

Main goal

Question

What kind of pattern graphs make PACKING and SUBGRAPH ISOMORPHISM easy?

- \bullet Formally, characterize the classes ${\mathcal F}$ for which these problems have
 - polynomial-time algorithms,
 - polynomial kernels,
 - polynomial Turing kernels.
- Our goal is to prove dichotomy theorems: the problem is easy if and only if ${\cal F}$ has certain property, and hard otherwise.
- To make this technically feasible, we focus on *hereditary* classes: we assume that \mathcal{F} is closed under taking induced subgraphs.

Many-one vs. Turing kernels

Polynomial many-one kernels

Given an instance (x, k), creates an equivalent instance (x', k') with $|x'| = k^{O(1)}$ and $k' = k^{O(1)}$ in time $(|x| + k)^{O(1)}$.

Many-one vs. Turing kernels

Polynomial Turing kernels

Solves instance (x, k) in time $(|x|+k)^{O(1)}$ using oracle access solving instances (x', k') with $|x'| = k^{O(1)}$ and $k' = k^{O(1)}$ in a single step.

Many-one vs. Turing kernels

Polynomial Turing kernels

Solves instance (x, k) in time $(|x|+k)^{O(1)}$ using oracle access solving instances (x', k') with $|x'| = k^{O(1)}$ and $k' = k^{O(1)}$ in a single step.

- Most typical form: it creates $|x|^{O(1)}$ instances such that the answer is the OR of these instances.
- Negative evidence for polynomial Turing kernels: WK[1]-hardness introduced by [Hermelin et al. 2013].

Packing

Polynomial-time solvability is well-understood:

Theorem [Kirkpatrick and Hell 1978] *H*-PACKING is NP-hard for every connected graph *H* with at least

3 vertices.

PACKING

Polynomial-time solvability is well-understood:

Theorem [Kirkpatrick and Hell 1978]

H-PACKING is NP-hard for every connected graph H with at least 3 vertices.

Easy extensions to disconnected graphs and graph classes:

Corollary

H-PACKING is polynomial-time solvable if every component of H has at most two vertices, and NP-hard otherwise.

Corollary

 \mathcal{F} -PACKING is polynomial-time solvable if every component of every graph in \mathcal{F} has at most two vertices, and NP-hard otherwise.

Packing

Kernelization is also well understood:

- For every fixed H, there is a kernel of size $O(k^{|V(H)|})$.
- Interpret the problem as packing of sets of size |V(H)|, then kernelization using the Sunflower Lemma.

PACKING

Kernelization is also well understood:

- For every fixed H, there is a kernel of size $O(k^{|V(H)|})$.
- Interpret the problem as packing of sets of size |V(H)|, then kernelization using the Sunflower Lemma.

Better question: pattern *H* is part of the input, but restricted to a class \mathcal{F} .

But before that, a short recap...

Sunflower lemma

Definition: Sets S_1, S_2, \ldots, S_k form a sunflower if the sets $S_i \setminus (S_1 \cap S_2 \cap \cdots \cap S_k)$ are disjoint.

petal center

Sunflower Lemma [Erdős and Rado, 1960]

If the size of a set system is greater than $(p-1)^d \cdot d!$ and it contains only sets of size at most d, then the system contains a sunflower with p petals. Furthermore, in this case such a sunflower can be found in polynomial time.

Sunflowers and packing

d-Set Packing

Given a collection S of sets of size at most d and an integer t, find a set S of t elements that intersects every set of S.

Reduction Rule

Suppose more than dt + 1 sets form a sunflower.

- If the sets are disjoint \Rightarrow we are done.
- Otherwise, keep only dt + 1 of the sets.

Marking

Another interpretation:

We can mark a set M of $f(d)t^d$ elements such that the following holds. If Z is any set of at most dt elements and there is an $S \in S$ with $S \cap Z = \emptyset$, then there is also such an $S \subseteq M$.

Ţ

We can mark a set M of $f(d)t^d$ elements such that if there is a solution with t sets, then there is such a solution inside M.

Marking

Another interpretation:

We can mark a set M of $f(|V(H)|)k^{|V(H)|}$ vertices such that the following holds. If Z is any set of at most k vertices and there is a copy of H disjoint from Z, then there is such a copy inside M.

In the *H*-PACKING problem, we can mark a set *M* of $f(d)k^{|V(H)|}$ vertices (where $k = t \cdot |V(H)|$) such that if there is solution, then there is a solution inside *M*.

Bottom line:

We need marking procedures of this form for packing problems.

Definition

A graph is *a*-small/*b*-thin if every connected component

- has at most a vertices, or
- is a bipartite graph whose smallest size has at most *b* vertices.

 \mathcal{F} is small/thin if $\exists a, b \ge 0$ such that every $H \in \mathcal{F}$ is *a*-small/*b*-thin.

Definition

A graph is *a*-small/*b*-thin if every connected component

- has at most a vertices, or
- is a bipartite graph whose smallest size has at most *b* vertices.

Theorem

 \mathcal{F} -PACKING admits a many-one polynomial kernel if \mathcal{F} is small/thin, and otherwise does not have a polynomial kernel (unless NP \subseteq coNP/poly).

Definition

A graph is *a*-small/*b*-thin if every connected component

- has at most a vertices, or
- is a bipartite graph whose smallest size has at most *b* vertices.

Theorem

 \mathcal{F} -PACKING admits a polynomial Turing kernel if \mathcal{F} is small/thin, and otherwise W[1]-hard, WK[1]-hard, or LONG PATH-hard.

Definition

A graph is *a*-small/*b*-thin if every connected component

- has at most a vertices, or
- is a bipartite graph whose smallest size has at most *b* vertices.

Turing kernels do not buy us more power for \mathcal{F} -PACKING!

Ingredients for $\mathcal{F} ext{-}\operatorname{PackING}$ kernelization dichotomy

Classification

Small/thin graph classes characterize the easy cases.

Ingredients for $\mathcal{F} ext{-}\operatorname{PackING}$ kernelization dichotomy

Classification

Small/thin graph classes characterize the easy cases.

Algorithms

Marking procedure based on the Sunflower lemma for small components and on problem-specific arguments for thin bipartite components.

Ingredients for $\mathcal{F} ext{-}\operatorname{PACKING}$ kernelization dichotomy

Classification

Small/thin graph classes characterize the easy cases.

Algorithms

Marking procedure based on the Sunflower lemma for small components and on problem-specific arguments for thin bipartite components.

Hard families

Kernelization lower bound for each hard family by polynomial-parameter transformations from UNIFORM EXACT SET COVER.

Ingredients for $\mathcal{F} ext{-}\operatorname{PackING}$ kernelization dichotomy

Classification

Small/thin graph classes characterize the easy cases.

Algorithms

Marking procedure based on the Sunflower lemma for small components and on problem-specific arguments for thin bipartite components.

Hard families

Kernelization lower bound for each hard family by polynomial-parameter transformations from UNIFORM EXACT SET COVER.

Ramsey arguments

^JHereditary $\mathcal F$ that is not small/thin contains one of the hard families.

Packing thin bicliques

Theorem

A special case of the kernelization result:

 $K_{x,y}$ -PACKING admits a a polynomial kernel for every fixed x (y is part of the input).

We need a marking procedure:

We can mark a set M of $k^{O(x)}$ vertices such that the following holds. If Z is any set of at most k vertices and there is a copy of $K_{x,y}$ disjoint from Z, then there is a copy in $M \setminus Z$.

We prove a more technical statement:

For every (A', B'), we can mark a set M of $k^{O(x)}$ vertices such that the following holds. If Z is any set of at most k vertices and there is a copy of $K_{x,y}$ extending (A', B') and disjoint from Z, then there is a copy of $K_{x,y}$ in $M \setminus Z$. [Not necessarily extending (A', B')!].

A copy (A, B) of $K_{x,y}$ extends (A', B') if $A' \subseteq A$ and $B' \subseteq B$.

A' B'

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$. disjoint extensions

16

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$. disjoint extensions

Main step:

• If there are k + 1 copies: done.

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$.

Main step:

• If there are k + 1 copies: done.

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$.

Main step:

- If there are k + 1 copies: done.
- If there are at most k copies: branch on including into A' or
 B' each of the at most k(x + y) vertices of the copies.

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$. disjoint extensions

Corner case 1: |A'| = x

The extensions are just common neighbors of A'.

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$. disjoint extensions

Corner case 1: |A'| = x

The extensions are just common neighbors of A'.

Mark k + y common neighbors of A' (or all of them, if they are fewer).

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$. disjoint extensions

Corner case 2: |A'| < x, |B'| = x

The extensions are just common neighbors of B'.

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$. disjoint extensions

Corner case 2: |A'| < x, |B'| = x

The extensions are just common neighbors of B'.

• If B' has less than k + y common neighbors, then branch on including one of them into A'.

Greedily find copies of $K_{x,y}$ extending (A', B') that meet only in $A' \cup B'$. disjoint extensions

Corner case 2: |A'| < x, |B'| = x

The extensions are just common neighbors of B'.

- If B' has less than k + y common neighbors, then branch on including one of them into A'.
- If B' has at least k + y common neighbors, then mark k + y of them and we are done: B' and any y common neighbors of B' form a $K_{x,y}!$

Packing thin bicliques

The recursive marking procedure branches into at most $2k(x + y) \le 2k^2$ directions and the recursion depth is at most $2x \Rightarrow$ at most $k^{O(x)}$ vertices are marked.

We can mark a set M of $k^{O(x)}$ vertices such that the following holds. If Z is any set of at most k vertices and there is a copy of $K_{x,y}$ disjoint from Z, then there is a copy in $M \setminus Z$.
Packing thin bicliques

The recursive marking procedure branches into at most $2k(x + y) \le 2k^2$ directions and the recursion depth is at most $2x \Rightarrow$ at most $k^{O(x)}$ vertices are marked.

We can mark a set M of $k^{O(x)}$ vertices such that the following holds. If Z is any set of at most k vertices and there is a copy of $K_{x,y}$ disjoint from Z, then there is a copy in $M \setminus Z$.

Theorem

 $K_{x,y}$ -PACKING admits a a polynomial kernel for every fixed x (y is part of the input).

The marking procedure can be extended to arbitrary thin bipartite graphs, but it is much more technical.

Ingredients for $\mathcal{F} ext{-}\operatorname{PackING}$ kernelization dichotomy

Classification

Small/thin graph classes characterize the easy cases.

Algorithms

Marking procedure based on the Sunflower lemma for small components and on problem-specific arguments for thin bipartite components.

Hard families

Kernelization lower bound for each hard family by polynomial-parameter transformations from UNIFORM EXACT SET COVER.

Ramsey arguments

^JHereditary $\mathcal F$ that is not small/thin contains one of the hard families.

Theorem

 \mathcal{F} -PACKING is WK[1]-hard if one of the following holds:

- {SubDivStar(n) | $n \ge 1$ } $\subseteq \mathcal{F}$,
- {Fountain(s, n) | $n \ge 1$ } $\subseteq \mathcal{F}$ for some odd integer $s \ge 3$,
- {LongFountain $(s, t, n) \mid n \ge 1$ } $\subseteq \mathcal{F}$ for some integer $t \ge 1$ and odd integer $s \ge 3$,
- $\{2\text{-broom}(s,n) \mid n \geq 1\} \subseteq \mathcal{F}$ for some odd integer $s \geq 3$, or
- {OperaHouse(s, n) | $n \ge 1$ } $\subseteq \mathcal{F}$ for some odd integer $s \ge 3$.

Reducion from UNIFORM EXACT SET COVER

Version of SET COVER where every set has the same size n/k.

Reduction to \mathcal{F} -PACKING if {LongFountain(5, 2, *n*) | $n \ge 1$ } $\subseteq \mathcal{F}$.

Ramsey arguments

Theorem

If a hereditary class \mathcal{F} is not small/thin, then at least one of the following holds:

- $\{\operatorname{Path}(n) \mid n \geq 1\} \subseteq \mathcal{F},$
- {Clique(n) | $n \ge 1$ } $\subseteq \mathcal{F}$,
- {Biclique(n) | $n \ge 1$ } $\subseteq \mathcal{F}$,
- {SubdivStar(n) | $n \ge 1$ } $\subseteq \mathcal{F}$,
- {Fountain $(s, n) \mid n \ge 1$ } $\subseteq \mathcal{F}$ for some odd integer $s \ge 3$,
- {LongFountain(s, t, n) | $n \ge 1$ } $\subseteq \mathcal{F}$ for some integer $t \ge 1$ and odd integer $s \ge 3$,
- $\{2\text{-broom}(s,n) \mid n \ge 1\} \subseteq \mathcal{F}$ for some odd integer $s \ge 3$, or
- {OperaHouse(s, n) | $n \ge 1$ } $\subseteq \mathcal{F}$ for some odd integer $s \ge 3$.

• A large graph has a large clique or independent set.

• A large graph has a large clique or independent set.

• A large *c*-edge-colored clique has a large monochromatic clique.

• A large graph has a large clique or independent set.

• A large *c*-edge-colored clique has a large monochromatic clique.

• A large *c*-edge-colored biclique has a large monochromatic biclique.

• A large graph has a large clique or independent set.

• A large *c*-edge-colored clique has a large monochromatic clique.

• A large *c*-edge-colored biclique has a large monochromatic biclique.

• If a graph has a long path, then it has a large induced path, a clique, or an induced biclique. [Galvin, Rival, Sands 1982]

Ramsey arguments

Need to show: if a connected nonbipartite graph is large, then it contains a large bad guy.

Observation: if there is no long induced path, then a large component has to contain a vertex of large degree.

Finding subgraphs in polynomial time

Subgraph Isomorphism	
Input:	two graphs H and G .
Task:	decide if G has a subgraph isomorphic to H .

Some classes for which \mathcal{F} -SUBGRAPH ISOMORPHISM is polynomial-time solvable:

- \bullet ${\cal F}$ is the class of all matchings
- \bullet ${\cal F}$ is the class of all stars
- \bullet ${\cal F}$ is the class of all stars, each edge subdivided once
- ${\mathcal F}$ is the class of all windmills

matching

star

subdivided star

windmill

Finding subgraphs

Definition

Class \mathcal{F} is **matching splittable** if there is a constant *c* such that every $H \in \mathcal{F}$ has a set *S* of at most *c* vertices such that every component of H - S has size at most 2.

Theorem

Let \mathcal{F} be a hereditary class of graphs. If \mathcal{F} is matching splittable, then \mathcal{F} -SUBGRAPH ISOMORPHISM is randomized polynomial-time solvable and NP-hard otherwise.

Classification

Matching splittable graph families characterize the easy cases.

Classification

Matching splittable graph families characterize the easy cases.

Algorithms

Algorithm by guessing a few vertices + reduction to colored matching.

Classification

Matching splittable graph families characterize the easy cases.

Algorithms

Algorithm by guessing a few vertices + reduction to colored matching.

Hard families

Finding cliques, bicliques, $n \cdot P_3$, and $n \cdot K_3$ are all NP-hard.

Classification

Matching splittable graph families characterize the easy cases.

Algorithms

Algorithm by guessing a few vertices + reduction to colored matching.

Hard families

Finding cliques, bicliques, $n \cdot P_3$, and $n \cdot K_3$ are all NP-hard.

Ramsey arguments

⁵Hereditary \mathcal{F} that is not matching splittable contains either all cliques, bicliques, $n \cdot P_3$, or $n \cdot K_3$.

Theorem

If hereditary class \mathcal{F} is matching splittable, then \mathcal{F} -SUBGRAPH ISOMORPHISM is randomized polynomial-time solvable.

Theorem

If hereditary class \mathcal{F} is matching splittable, then \mathcal{F} -SUBGRAPH ISOMORPHISM is randomized polynomial-time solvable.

• Guess the image S' of S in G.

Theorem

If hereditary class \mathcal{F} is matching splittable, then \mathcal{F} -SUBGRAPH ISOMORPHISM is randomized polynomial-time solvable.

- Guess the image S' of S in G.
- Classify the edges of *H S* according to their neighborhoods in *S* (at most 2^{2c} colors).

Theorem

If hereditary class \mathcal{F} is matching splittable, then \mathcal{F} -SUBGRAPH ISOMORPHISM is randomized polynomial-time solvable.

- Guess the image S' of S in G.
- Classify the edges of H Saccording to their neighborhoods in S (at most 2^{2c} colors).
- Classify the edges of G S'according to which edge of H - Scan be mapped into it (use parallel edges if needed).
- Task is to find a matching in G S' with a certain number of edges of each color.

Theorem [Mulmuley, Vazirani, Vazirani 1987]

There is a randomized polynomial-time algorithm that, given a graph G with red and blue edges and integer k, decides if there is a perfect matching with exactly k red edges.

More generally:

Theorem

Given a graph G with edges colored with c colors and c integers k_1 , ..., k_c , we can decide in randomized time $n^{O(c)}$ if there is a matching with exactly k_i edges of color i.

This is precisely what we need to complete the algorithm for \mathcal{F} -SUBGRAPH ISOMORPHISM for matching splittable \mathcal{F} .

Lemma

Let \mathcal{F} be a hereditary class of graphs that is not matching splittable. Then at least one of the following is true.

- \mathcal{F} contains every clique.
- \mathcal{F} contains every biclique.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot K_3$.
- For every n ≥ 1, *F* contains n · P₃ (where P₃ is the path on 3 vertices).

In each case, \mathcal{F} -SUBGRAPH ISOMORPHISM is NP-hard (recall that P_3 -PACKING and K_3 -PACKING are NP-hard).

Definition

Class \mathcal{F} is **matching splittable** if there is a constant c such that every $H \in \mathcal{F}$ has a set S of at most c vertices such that every component of H - S has size at most 2.

Equivalently: in every $H \in \mathcal{F}$, we can cover every 3-vertex connected set (i.e., every K_3 and P_3) by *c* vertices.

Observation: either

- there are r vertex-disjoint copies of K_3 , or
- there are r vertex-disjoint copies of P_3 , or
- we can cover every K_3 and every P_3 by 6r vertices.

Lemma

- \mathcal{F} contains every clique.
- \mathcal{F} contains every biclique.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot P_3$.
- Consider many vertex-disjoint P_3 's.
- For every i < j, there are 2⁹ possibilities between {a_i, b_i, c_i} and {a_j, b_j, c_j}.
- There is a homogeneous set of many P_3 's with respect to these 2⁹ possibilities.
- In each of the 2⁹ cases, we find many disjoint P₃'s, a clique, or a biclique.

Lemma

- \mathcal{F} contains every clique.
- \mathcal{F} contains every biclique.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot P_3$.
- Consider many vertex-disjoint P₃'s.
- For every i < j, there are 2⁹ possibilities between {a_i, b_i, c_i} and {a_j, b_j, c_j}.
- There is a homogeneous set of many P_3 's with respect to these 2^9 possibilities.
- In each of the 2^9 cases, we find many disjoint P_3 's, a clique, or a biclique.

Lemma

- \mathcal{F} contains every clique.
- \mathcal{F} contains every biclique.
- For every $n \geq 1$, \mathcal{F} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot P_3$.
- Consider many vertex-disjoint P₃'s.
- For every i < j, there are 2⁹ possibilities between {a_i, b_i, c_i} and {a_j, b_j, c_j}.
- There is a homogeneous set of many P_3 's with respect to these 2⁹ possibilities.
- In each of the 2^9 cases, we find many disjoint P_3 's, a clique, or a biclique.

Lemma

- \mathcal{F} contains every clique.
- \mathcal{F} contains every biclique.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot K_3$.
- For every $n \ge 1$, \mathcal{F} contains $n \cdot P_3$.
- Consider many vertex-disjoint P_3 's.
- For every i < j, there are 2⁹ possibilities between {a_i, b_i, c_i} and {a_j, b_j, c_j}.
- There is a homogeneous set of many P_3 's with respect to these 2^9 possibilities.
- In each of the 2⁹ cases, we find many disjoint P₃'s, a clique, or a biclique.

Finding subgraphs

What did we learn from the polynomial-time dichotomy?

Guessing the locations of a few vertices can be really important for finding subgraphs!

- Turing kernels can guess the locations of a few vertices and produce a polynomial kernel for each guess.
- But this can be a real problem for many-one kernels.

As we shall see, this leads to a difference in power between the two types of kernelizations.

Universal vertices

If every component of H is small/thin, then we can kernelize using the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing kernel even if we attach a constant number of universal vertices.
Universal vertices

If every component of H is small/thin, then we can kernelize using the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing kernel even if we attach a constant number of universal vertices.

Universal vertices

If every component of H is small/thin, then we can kernelize using the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing kernel even if we attach a constant number of universal vertices.

Splittable graphs

Definition

A graph H is (a, b, c, d)-splittable if it has a set S of at most c vertices such that

- if H S is *a*-small/*b*-thin, and
- each component C of H S has at most d vertices whose closed neighborhood in G[C] is not universal to $N_H(C) \cap S$.

 \mathcal{F} is splittable if $\exists a, b, c, d$ such that every $F \in \mathcal{F}$ is (a, b, c, d)-splittable.

Splittable graphs

Definition

A graph H is (a, b, c, d)-splittable if it has a set S of at most c vertices such that

- if H S is *a*-small/*b*-thin, and
- each component C of H S has at most d vertices whose closed neighborhood in G[C] is not universal to $N_H(C) \cap S$.

Theorem

If \mathcal{F} is a splittable hereditary class, then \mathcal{F} -SUBGRAPH ISOMORPHISM admits a polynomial Turing kernel, otherwise it is W[1]-hard, WK[1]-hard, or LONG PATH-hard.

Classification

Splittable graph families characterize the easy cases.

Classification

Splittable graph families characterize the easy cases.

Algorithms

Algorithm by guessing a few vertices + marking procedure for small/thin components.

Classification

Splittable graph families characterize the easy cases.

Algorithms

Algorithm by guessing a few vertices + marking procedure for small/thin components.

Hard families

Hard families coming from the packing problem + two new hard families specific for subgraph isomorphism.

Classification

Splittable graph families characterize the easy cases.

Algorithms

Algorithm by guessing a few vertices + marking procedure for small/thin components.

Hard families

Hard families coming from the packing problem + two new hard families specific for subgraph isomorphism.

Ramsey arguments

Hereditary ${\cal F}$ that is not splittable contains at least one of the hard families.

Hard families

Hardness results coming from the hardness of packing:

If {LongFountain(5, 2, n) | $n \ge 1$ } $\subseteq \mathcal{F}$, then \mathcal{F} -PACKING is WK[1]-hard.

Hard families

Hardness results coming from the hardness of packing:

If $\{n \cdot \text{LongFountain}(5, 2, n) \mid n \geq 1\} \subseteq \mathcal{F}$, then \mathcal{F} -SUBGRAPH ISOMORPHISM is WK[1]-hard.

Hard families

Two new types of hard families:

We prove that \mathcal{F} -SUBGRAPH ISOMORPHISM is WK[1]-hard if

- {DiamondFan $(n) \mid n \geq 1$ } $\subseteq \mathcal{F}$ or
- {SubDivTree $(s, n) \mid n \geq 1$ } $\subseteq \mathcal{F}$ for some $s \geq 1$.

Ramsey arguments

Theorem

If a hereditary class ${\boldsymbol{\mathcal{F}}}$ is not splittable, then at least one of the following holds:

- $\{\operatorname{Path}(n) \mid n \geq 1\} \subseteq \mathcal{F},$
- {Clique(n) | $n \ge 1$ } $\subseteq \mathcal{F}$,
- {Biclique(n) | $n \ge 1$ } $\subseteq \mathcal{F}$,
- $\{n \cdot \mathsf{SubDivStar}(n) \mid n \geq 1\} \subseteq \mathcal{F}$,
- $\{n \cdot \text{Fountain}(s, n) \mid n \ge 1\} \subseteq \mathcal{F} \text{ for some odd integer } s \ge 3$,
- $\{n \cdot \text{LongFountain}(s, t, n) \mid n \ge 1\} \subseteq \mathcal{F}$ for some integer $t \ge 1$ and odd integer $s \ge 3$,
- $\{n \cdot 2\text{-broom}(s, n) \mid n \ge 1\} \subseteq \mathcal{F}$ for some odd integer $s \ge 3$,
- $\{n \cdot \text{OperaHouse}(s, n) \mid n \ge 1\} \subseteq \mathcal{F}$ for some odd integer $s \ge 3$,
- {SubDivTree $(s, n) \mid n \ge 1$ } $\subseteq \mathcal{F}$ for some integer $s \ge 1$, or
- {DiamondFan $(n) \mid n \geq 1$ } $\subseteq \mathcal{F}$.

Many-one kernels for SUBGRAPH ISOMORPHISM

The landscape of many-one kernels is very confusing.

Summary

- Goal: dichotomies for PACKING and SUBGRAPH ISOMORPHISM from the viewpoints of
 - polynomial-time algorithms,
 - many-one kernels,
 - and Turing kernels.
- The project was doable, except for many-one kernelization for SUBGRAPH ISOMORPHISM
- For PACKING, Turing kernels do not give us more power than many-one kernels.
- Guessing a few vertices seems to be a very basic step for SUBGRAPH ISOMORPHISM.
- Why was not the polynomial-time dichotomy for SUBGRAPH ISOMORPHISM known earlier?