
Characterizing the easy-to-find subgraphs from
the viewpoint of polynomial-time algorithms,

kernels, and Turing kernels

Dániel Marx1 Bart M.P. Jansen2

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

2Eindhoven University of Technology,
The Netherlands

WorKer 2015
Nordfjordeid, Norway

June 1, 2015

1

Subgraph Isomorphism

Subgraph Isomorphism
Input: two graphs H and G .

Parameter: |V (H)|
Task: decide if G has a subgraph isomorphic to H.

Pattern H Host G

For a class F of graphs, F-Subgraph Isomorphism is the
restriction of the problem when the pattern H is in F .

2

Special cases of Subgraph Isomorphism
We can express the following well-studied problems as special cases
of Subgraph Isomorphism:

Clique
NP-hard, W[1]-hard

Biclique
NP-hard, W[1]-hard

Long Path
NP-hard, FPT, no polynomial kernel
unless NP ⊆ coNP/poly.

Matching
Polynomial-time solvable.

Triangle Packing
NP-hard, FPT, has a polynomial kernel.

3

H-packing
Packing

Input: two graphs H and G , an integer t.
Parameter: t · |V (H)|

Task: decide if there are t vertex-disjoint subgraphs of
G , each isomorphic to H.

Pattern H Host G

t = 3

For a fixed graph H, H-Packing is the problem restricted to
a fixed pattern graph H.
For a class F of graphs, F-Packing is the restriction of the
problem when the pattern H is in F .

4

Main goal

Question
What kind of pattern graphs make Packing and Subgraph
Isomorphism easy?

Formally, characterize the classes F for which these problems
have

polynomial-time algorithms,
polynomial kernels,
polynomial Turing kernels.

Our goal is to prove dichotomy theorems: the problem is easy
if and only if F has certain property, and hard otherwise.
To make this technically feasible, we focus on hereditary
classes: we assume that F is closed under taking induced
subgraphs.

5

Many-one vs. Turing kernels

Polynomial many-one kernels
Given an instance (x , k), creates an equivalent instance (x ′, k ′) with
|x ′| = kO(1) and k ′ = kO(1) in time (|x |+ k)O(1).

x
k

n bits

x ′
k ′

kO(1) bits

6

Many-one vs. Turing kernels

Polynomial Turing kernels
Solves instance (x , k) in time (|x |+k)O(1) using oracle access solving
instances (x ′, k ′) with |x ′| = kO(1) and k ′ = kO(1) in a single step.

x
k

n bits

x ′
k ′

kO(1) bits

x ′
k ′

kO(1) bits

x ′
k ′

kO(1) bits

OR

Most typical form: it creates |x |O(1) instances such that the
answer is the OR of these instances.
Negative evidence for polynomial Turing kernels:
WK[1]-hardness introduced by [Hermelin et al. 2013].

6

Many-one vs. Turing kernels

Polynomial Turing kernels
Solves instance (x , k) in time (|x |+k)O(1) using oracle access solving
instances (x ′, k ′) with |x ′| = kO(1) and k ′ = kO(1) in a single step.

x
k

n bits

x ′
k ′

kO(1) bits

x ′
k ′

kO(1) bits

x ′
k ′

kO(1) bits

OR

Most typical form: it creates |x |O(1) instances such that the
answer is the OR of these instances.
Negative evidence for polynomial Turing kernels:
WK[1]-hardness introduced by [Hermelin et al. 2013].

6

Packing

Polynomial-time solvability is well-understood:

Theorem [Kirkpatrick and Hell 1978]

H-Packing is NP-hard for every connected graph H with at least
3 vertices.

Easy extensions to disconnected graphs and graph classes:

Corollary
H-Packing is polynomial-time solvable if every component of H
has at most two vertices, and NP-hard otherwise.

Corollary
F-Packing is polynomial-time solvable if every component of
every graph in F has at most two vertices, and NP-hard otherwise.

7

Packing

Polynomial-time solvability is well-understood:

Theorem [Kirkpatrick and Hell 1978]

H-Packing is NP-hard for every connected graph H with at least
3 vertices.

Easy extensions to disconnected graphs and graph classes:

Corollary
H-Packing is polynomial-time solvable if every component of H
has at most two vertices, and NP-hard otherwise.

Corollary
F-Packing is polynomial-time solvable if every component of
every graph in F has at most two vertices, and NP-hard otherwise.

7

Packing

Kernelization is also well understood:

For every fixed H, there is a kernel of size O(k |V (H)|).
Interpret the problem as packing of sets of size |V (H)|, then
kernelization using the Sunflower Lemma.

Better question: pattern H is part of the input, but restricted to
a class F .

But before that, a short recap. . .

8

Packing

Kernelization is also well understood:

For every fixed H, there is a kernel of size O(k |V (H)|).
Interpret the problem as packing of sets of size |V (H)|, then
kernelization using the Sunflower Lemma.

Better question: pattern H is part of the input, but restricted to
a class F .

But before that, a short recap. . .

8

Sunflower lemma
Definition: Sets S1, S2, . . . , Sk form a sunflower if the sets
Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petal center

Sunflower Lemma [Erdős and Rado, 1960]

If the size of a set system is greater than (p − 1)d · d! and it
contains only sets of size at most d , then the system contains a
sunflower with p petals. Furthermore, in this case such a sunflower
can be found in polynomial time.

9

Sunflowers and packing

d-Set Packing
Given a collection S of sets of size at most d and an integer t, find
a set S of t elements that intersects every set of S.

petal center

Reduction Rule
Suppose more than dt + 1 sets form a sunflower.

If the sets are disjoint ⇒ we are done.
Otherwise, keep only dt + 1 of the sets.

10

Marking

Another interpretation:

We can mark a set M of f (d)td elements such that the following
holds. If Z is any set of at most dt elements and there is an S ∈ S
with S ∩ Z = ∅, then there is also such an S ⊆ M.

We can mark a set M of f (d)td elements such that if there is a
solution with t sets, then there is such a solution inside M.

11

Marking

Another interpretation:

We can mark a set M of f (|V (H)|)k |V (H)| vertices such that the
following holds. If Z is any set of at most k vertices and there is a
copy of H disjoint from Z , then there is such a copy inside M.

In the H-Packing problem, we can mark a set M of f (d)k |V (H)|

vertices (where k = t · |V (H)|) such that if there is solution, then
there is a solution inside M.

Bottom line:
We need marking procedures of this form for packing problems.

11

Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

F is small/thin if ∃a, b ≥ 0 such that every H ∈ F is a-small/b-thin.

12

Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

Theorem
F-Packing admits a many-one polynomial kernel if F is
small/thin, and otherwise does not have a polynomial kernel
(unless NP ⊆ coNP/poly).

12

Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

Theorem
F-Packing admits a polynomial Turing kernel if F is small/thin,
and otherwise W[1]-hard, WK[1]-hard, or Long Path-hard.

12

Kernels for F-Packing
Definition
A graph is a-small/b-thin if every connected component

has at most a vertices, or
is a bipartite graph whose smallest size has at most b vertices.

5-small/3-thin

Turing kernels do not buy us more power
for F-Packing!

12

Ingredients for F-Packing kernelization dichotomy

Classification
Small/thin graph classes characterize the easy cases.

Algorithms
Marking procedure based on the Sunflower lemma for
small components and on problem-specific arguments for
thin bipartite components.

Hard families
Kernelization lower bound for each hard family by
polynomial-parameter transformations from Uniform
Exact Set Cover.

Ramsey arguments
Hereditary F that is not small/thin contains one of the
hard families.

13

Ingredients for F-Packing kernelization dichotomy

Classification
Small/thin graph classes characterize the easy cases.

Algorithms
Marking procedure based on the Sunflower lemma for
small components and on problem-specific arguments for
thin bipartite components.

Hard families
Kernelization lower bound for each hard family by
polynomial-parameter transformations from Uniform
Exact Set Cover.

Ramsey arguments
Hereditary F that is not small/thin contains one of the
hard families.

13

Ingredients for F-Packing kernelization dichotomy

Classification
Small/thin graph classes characterize the easy cases.

Algorithms
Marking procedure based on the Sunflower lemma for
small components and on problem-specific arguments for
thin bipartite components.

Hard families
Kernelization lower bound for each hard family by
polynomial-parameter transformations from Uniform
Exact Set Cover.

Ramsey arguments
Hereditary F that is not small/thin contains one of the
hard families.

13

Ingredients for F-Packing kernelization dichotomy

Classification
Small/thin graph classes characterize the easy cases.

Algorithms
Marking procedure based on the Sunflower lemma for
small components and on problem-specific arguments for
thin bipartite components.

Hard families
Kernelization lower bound for each hard family by
polynomial-parameter transformations from Uniform
Exact Set Cover.

Ramsey arguments
Hereditary F that is not small/thin contains one of the
hard families.

13

Packing thin bicliques

A special case of the kernelization result:

Theorem
Kx ,y -Packing admits a a polynomial kernel for every fixed x
(y is part of the input).

We need a marking procedure:

We can mark a set M of kO(x) vertices such that the following
holds. If Z is any set of at most k vertices and there is a copy of
Kx ,y disjoint from Z , then there is a copy in M \ Z .

14

Marking procedure for thin bicliques
We prove a more technical statement:

For every (A′,B ′), we can mark a set M of kO(x) vertices such that
the following holds. If Z is any set of at most k vertices and there
is a copy of Kx ,y extending (A′,B ′) and disjoint from Z , then there
is a copy of Kx ,y in M \ Z . [Not necessarily extending (A′,B ′)!].

A copy (A,B) of Kx ,y extends (A′,B ′) if A′ ⊆ A and B ′ ⊆ B .

B ′

A′

15

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Main step:
If there are k + 1 copies: done.

If there are at most k copies: branch on including into A′ or
B ′ each of the at most k(x + y) vertices of the copies.

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Z

Main step:
If there are k + 1 copies: done.

If there are at most k copies: branch on including into A′ or
B ′ each of the at most k(x + y) vertices of the copies.

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Main step:
If there are k + 1 copies: done.
If there are at most k copies: branch on including into A′ or
B ′ each of the at most k(x + y) vertices of the copies.

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Corner case 1: |A′| = x

The extensions are just common neighbors of A′.

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

common neighbors of A′

Corner case 1: |A′| = x

The extensions are just common neighbors of A′.

Mark k + y common neighbors of A′ (or all of them, if they are
fewer).

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Corner case 2: |A′| < x , |B ′| = x

The extensions are just common neighbors of B ′.

If B ′ has less than k + y common neighbors, then branch on
including one of them into A′.
If B ′ has at least k + y common neighbors, then mark k + y
of them and we are done: B ′ and any y common neighbors
of B ′ form a Kx ,y !

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

common neighbors of B ′

Corner case 2: |A′| < x , |B ′| = x

The extensions are just common neighbors of B ′.

If B ′ has less than k + y common neighbors, then branch on
including one of them into A′.

If B ′ has at least k + y common neighbors, then mark k + y
of them and we are done: B ′ and any y common neighbors
of B ′ form a Kx ,y !

16

Marking procedure for thin bicliques
Greedily find copies of Kx ,y extending (A′,B ′) that meet only in
A′ ∪ B ′.

A′ B ′
disjoint extensions

Corner case 2: |A′| < x , |B ′| = x

The extensions are just common neighbors of B ′.

If B ′ has less than k + y common neighbors, then branch on
including one of them into A′.
If B ′ has at least k + y common neighbors, then mark k + y
of them and we are done: B ′ and any y common neighbors
of B ′ form a Kx ,y !

16

Packing thin bicliques

The recursive marking procedure branches into at most
2k(x + y) ≤ 2k2 directions and the recursion depth is at most 2x
⇒ at most kO(x) vertices are marked.

We can mark a set M of kO(x) vertices such that the following
holds. If Z is any set of at most k vertices and there is a copy of
Kx ,y disjoint from Z , then there is a copy in M \ Z .

Theorem
Kx ,y -Packing admits a a polynomial kernel for every fixed x
(y is part of the input).

The marking procedure can be extended to arbitrary thin bipartite
graphs, but it is much more technical.

17

Packing thin bicliques

The recursive marking procedure branches into at most
2k(x + y) ≤ 2k2 directions and the recursion depth is at most 2x
⇒ at most kO(x) vertices are marked.

We can mark a set M of kO(x) vertices such that the following
holds. If Z is any set of at most k vertices and there is a copy of
Kx ,y disjoint from Z , then there is a copy in M \ Z .

Theorem
Kx ,y -Packing admits a a polynomial kernel for every fixed x
(y is part of the input).

The marking procedure can be extended to arbitrary thin bipartite
graphs, but it is much more technical.

17

Ingredients for F-Packing kernelization dichotomy

Classification
Small/thin graph classes characterize the easy cases.

Algorithms
Marking procedure based on the Sunflower lemma for
small components and on problem-specific arguments for
thin bipartite components.

Hard families
Kernelization lower bound for each hard family by
polynomial-parameter transformations from Uniform
Exact Set Cover.

Ramsey arguments
Hereditary F that is not small/thin contains one of the
hard families.

18

Hard families
n vertices

n vertices
length `

Path(`) Biclique(n) 2-broom(s, n)Clique(n)

OperaHouse(s, n)Fountain(s, n) LongFountain(s, t, n) SubDivStar(n)

(` = 5) (n = 4) (n = 3)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.

19

Hard families
n vertices

n vertices
length `

Path(`) Biclique(n) 2-broom(s, n)Clique(n)

OperaHouse(s, n)Fountain(s, n) LongFountain(s, t, n) SubDivStar(n)

(` = 5) (n = 4) (n = 3)

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.

19

Hard families
n vertices

n vertices
length `

Path(`) Biclique(n) 2-broom(s, n)Clique(n)

OperaHouse(s, n)Fountain(s, n) LongFountain(s, t, n) SubDivStar(n)

(` = 5) (n = 4) (n = 3)

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)

n vertices

length s

(s = 5, n = 4)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.

19

Hard families
n vertices

n vertices
length `

Path(`) Biclique(n) 2-broom(s, n)Clique(n)

OperaHouse(s, n)Fountain(s, n) LongFountain(s, t, n) SubDivStar(n)

(` = 5) (n = 4) (n = 3)

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)

n vertices

length s

(s = 5, n = 4)

n vertices

length s

length
t

(s = 5, t = 3, n = 4)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.

19

Hard families
n vertices

n vertices
length `

Path(`) Biclique(n) 2-broom(s, n)Clique(n)

OperaHouse(s, n)Fountain(s, n) LongFountain(s, t, n) SubDivStar(n)

(` = 5) (n = 4) (n = 3)

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)

n vertices

length s

(s = 5, n = 4)

n vertices

length s

length
t

(s = 5, t = 3, n = 4)

n vertices

(n = 4)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.

19

Hard families

LongFountain(s, t, n)

n vertices

length s

(s = 5, n = 4)

n vertices

length s

length
t

n vertices length s

n
vertices

(s = 5, n = 4)
OperaHouse(s, n)SubDivStar(n)

(s = 5, t = 3, n = 4) (n = 4)
Fountain(s, n)

n vertices

n vertices
length `

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)
Path(`) Biclique(n) 2-broom(s, n)Clique(n)
(` = 5) (n = 4) (n = 3)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.

19

Hard families

LongFountain(s, t, n)

n vertices

length s

(s = 5, n = 4)

n vertices

length s

length
t

n vertices length s

n
vertices

(s = 5, n = 4)
OperaHouse(s, n)SubDivStar(n)

(s = 5, t = 3, n = 4) (n = 4)
Fountain(s, n)

n vertices

n vertices
length `

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)
Path(`) Biclique(n) 2-broom(s, n)Clique(n)
(` = 5) (n = 4) (n = 3)

We show e.g. that if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then
F-Packing is WK[1]-hard.

19

Hard families

Theorem
F-Packing is WK[1]-hard if one of the following holds:

{SubDivStar(n) | n ≥ 1} ⊆ F ,
{Fountain(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{LongFountain(s, t, n) | n ≥ 1} ⊆ F for some integer t ≥ 1
and odd integer s ≥ 3,
{2-broom(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3, or
{OperaHouse(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3.

20

Reducion from
Uniform Exact Set Cover

Version of Set Cover where every set has the same size n/k .

Sets

Elements

Reduction to F-Packing if {LongFountain(5, 2, n) | n ≥ 1} ⊆ F .

21

Ramsey arguments

Theorem
If a hereditary class F is not small/thin, then at least one of the
following holds:

{Path(n) | n ≥ 1} ⊆ F ,
{Clique(n) | n ≥ 1} ⊆ F ,
{Biclique(n) | n ≥ 1} ⊆ F ,

{SubdivStar(n) | n ≥ 1} ⊆ F ,
{Fountain(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{LongFountain(s, t, n) | n ≥ 1} ⊆ F for some integer t ≥ 1 and odd
integer s ≥ 3,
{2-broom(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3, or
{OperaHouse(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3.

22

Ramsey-type arguments
A large graph has a large clique or independent set.

vs.

A large c-edge-colored clique has a large monochromatic clique.

vs.vs.vs.

A large c-edge-colored biclique has a large monochromatic
biclique.

vs.vs.vs.

If a graph has a long path, then it has a large induced path, a
clique, or an induced biclique. [Galvin, Rival, Sands 1982]

vs.vs.

23

Ramsey-type arguments
A large graph has a large clique or independent set.

vs.

A large c-edge-colored clique has a large monochromatic clique.

vs.vs.vs.

A large c-edge-colored biclique has a large monochromatic
biclique.

vs.vs.vs.

If a graph has a long path, then it has a large induced path, a
clique, or an induced biclique. [Galvin, Rival, Sands 1982]

vs.vs.

23

Ramsey-type arguments
A large graph has a large clique or independent set.

vs.

A large c-edge-colored clique has a large monochromatic clique.

vs.vs.vs.

A large c-edge-colored biclique has a large monochromatic
biclique.

vs.vs.vs.

If a graph has a long path, then it has a large induced path, a
clique, or an induced biclique. [Galvin, Rival, Sands 1982]

vs.vs.

23

Ramsey-type arguments
A large graph has a large clique or independent set.

vs.

A large c-edge-colored clique has a large monochromatic clique.

vs.vs.vs.

A large c-edge-colored biclique has a large monochromatic
biclique.

vs.vs.vs.

If a graph has a long path, then it has a large induced path, a
clique, or an induced biclique. [Galvin, Rival, Sands 1982]

vs.vs.

23

Ramsey arguments

Need to show: if a connected nonbipartite graph is large, then it
contains a large bad guy.

v = p0

pi∗

X2,i∗

p`−1

w = p`

v = p0

pi∗

X2,i∗

p`−1

w = p`

Case 1.a Case 1.b
z1 z2

w

z1 z2

Case 2.a Case 2.b

C C w
C

C

X3

X3 wq2
q1 q4

q3

C

X3

wq2
q1 q4

q3

C

X3

Observation: if there is no long induced path, then a large
component has to contain a vertex of large degree.

24

Finding subgraphs in polynomial time

Subgraph Isomorphism
Input: two graphs H and G .
Task: decide if G has a subgraph isomorphic to H.

Some classes for which F-Subgraph Isomorphism is
polynomial-time solvable:

F is the class of all matchings
F is the class of all stars
F is the class of all stars, each edge subdivided once
F is the class of all windmills

matching star subdivided star windmill

25

Finding subgraphs
Definition
Class F is matching splittable if there is a constant c such that
every H ∈ F has a set S of at most c vertices such that every
component of H − S has size at most 2.

1

2

3

S

Theorem
Let F be a hereditary class of graphs. If F is matching splittable,
then F-Subgraph Isomorphism is randomized polynomial-time
solvable and NP-hard otherwise.

26

Ingredients for F-Subgraph Isomorphism
polynomial-time dichotomy

Classification
Matching splittable graph families characterize the easy
cases.

Algorithms
Algorithm by guessing a few vertices + reduction to col-
ored matching.

Hard families
Finding cliques, bicliques, n ·P3, and n ·K3 are all NP-hard.

Ramsey arguments
Hereditary F that is not matching splittable contains ei-
ther all cliques, bicliques, n · P3, or n · K3.

27

Ingredients for F-Subgraph Isomorphism
polynomial-time dichotomy

Classification
Matching splittable graph families characterize the easy
cases.

Algorithms
Algorithm by guessing a few vertices + reduction to col-
ored matching.

Hard families
Finding cliques, bicliques, n ·P3, and n ·K3 are all NP-hard.

Ramsey arguments
Hereditary F that is not matching splittable contains ei-
ther all cliques, bicliques, n · P3, or n · K3.

27

Ingredients for F-Subgraph Isomorphism
polynomial-time dichotomy

Classification
Matching splittable graph families characterize the easy
cases.

Algorithms
Algorithm by guessing a few vertices + reduction to col-
ored matching.

Hard families
Finding cliques, bicliques, n ·P3, and n ·K3 are all NP-hard.

Ramsey arguments
Hereditary F that is not matching splittable contains ei-
ther all cliques, bicliques, n · P3, or n · K3.

27

Ingredients for F-Subgraph Isomorphism
polynomial-time dichotomy

Classification
Matching splittable graph families characterize the easy
cases.

Algorithms
Algorithm by guessing a few vertices + reduction to col-
ored matching.

Hard families
Finding cliques, bicliques, n ·P3, and n ·K3 are all NP-hard.

Ramsey arguments
Hereditary F that is not matching splittable contains ei-
ther all cliques, bicliques, n · P3, or n · K3.

27

Finding subgraphs (algorithm)

Theorem
If hereditary class F is matching splittable, then F-Subgraph
Isomorphism is randomized polynomial-time solvable.

Guess the image S ′ of S in G .
Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).
Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

28

Finding subgraphs (algorithm)

Theorem
If hereditary class F is matching splittable, then F-Subgraph
Isomorphism is randomized polynomial-time solvable.

Guess the image S ′ of S in G .

Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).
Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

1
2
3

S ′

28

Finding subgraphs (algorithm)

Theorem
If hereditary class F is matching splittable, then F-Subgraph
Isomorphism is randomized polynomial-time solvable.

Guess the image S ′ of S in G .
Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).

Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

1
2
3

S ′

28

Finding subgraphs (algorithm)

Theorem
If hereditary class F is matching splittable, then F-Subgraph
Isomorphism is randomized polynomial-time solvable.

Guess the image S ′ of S in G .
Classify the edges of H − S
according to their neighborhoods in
S (at most 22c colors).
Classify the edges of G − S ′

according to which edge of H − S
can be mapped into it (use parallel
edges if needed).
Task is to find a matching in
G − S ′ with a certain number of
edges of each color.

H

G

1
2
3

S

1
2
3

S ′

28

Finding subgraphs (algorithm)

Theorem [Mulmuley, Vazirani, Vazirani 1987]

There is a randomized polynomial-time algorithm that, given a
graph G with red and blue edges and integer k , decides if there is a
perfect matching with exactly k red edges.

More generally:

Theorem
Given a graph G with edges colored with c colors and c integers k1,
. . . , kc , we can decide in randomized time nO(c) if there is a
matching with exactly ki edges of color i .

This is precisely what we need to complete the algorithm for
F-Subgraph Isomorphism for matching splittable F .

29

Finding subgraphs (hardness proof)

Lemma
Let F be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

F contains every clique.
F contains every biclique.
For every n ≥ 1, F contains n · K3.
For every n ≥ 1, F contains n · P3
(where P3 is the path on 3 vertices).

In each case, F-Subgraph Isomorphism is NP-hard
(recall that P3-Packing and K3-Packing are NP-hard).

30

Finding subgraphs (hardness proof)

Definition
Class F is matching splittable if there is a constant c such that
every H ∈ F has a set S of at most c vertices such that every
component of H − S has size at most 2.

Equivalently: in every H ∈ F , we can cover every 3-vertex
connected set (i.e., every K3 and P3) by c vertices.

Observation: either
there are r vertex-disjoint copies of K3, or
there are r vertex-disjoint copies of P3, or
we can cover every K3 and every P3 by 6r vertices.

31

Finding subgraphs (hardness proof)
Lemma
Let F be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

F contains every clique.
F contains every biclique.
For every n ≥ 1, F contains n · K3.
For every n ≥ 1, F contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

32

Finding subgraphs (hardness proof)
Lemma
Let F be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

F contains every clique.
F contains every biclique.
For every n ≥ 1, F contains n · K3.
For every n ≥ 1, F contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

32

Finding subgraphs (hardness proof)
Lemma
Let F be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

F contains every clique.
F contains every biclique.
For every n ≥ 1, F contains n · K3.
For every n ≥ 1, F contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

32

Finding subgraphs (hardness proof)
Lemma
Let F be a hereditary class of graphs that is not matching
splittable. Then at least one of the following is true.

F contains every clique.
F contains every biclique.
For every n ≥ 1, F contains n · K3.
For every n ≥ 1, F contains n · P3.

Consider many vertex-disjoint P3’s.
For every i < j , there are 29 possibilities
between {ai , bi , ci} and {aj , bj , cj}.
There is a homogeneous set of many P3’s
with respect to these 29 possibilities.
In each of the 29 cases, we find many disjoint
P3’s, a clique, or a biclique.

a1

a2

a3

a4

a5

b1

a6

b2

b3

b4

b5

b6

c1

c2

c3

c4

c5

c6

32

Finding subgraphs

What did we learn from the polynomial-time dichotomy?

Guessing the locations of a few vertices can
be really important for finding subgraphs!

Turing kernels can guess the locations of a few vertices and
produce a polynomial kernel for each guess.
But this can be a real problem for many-one kernels.

As we shall see, this leads to a difference in power between the two
types of kernelizations.

33

Universal vertices

If every component of H is small/thin, then we can kernelize using
the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing
kernel even if we attach a constant number of universal vertices.

34

Universal vertices

If every component of H is small/thin, then we can kernelize using
the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing
kernel even if we attach a constant number of universal vertices.

34

Universal vertices

If every component of H is small/thin, then we can kernelize using
the marking procedure used for the packing problem.

With Turing kernelization, we can do more: we have a Turing
kernel even if we attach a constant number of universal vertices.

34

Splittable graphs
Definition
A graph H is (a, b, c , d)-splittable if it has a set S of at most c
vertices such that

if H − S is a-small/b-thin, and
each component C of H − S has at most d vertices whose
closed neighborhood in G [C] is not universal to NH(C) ∩ S .

S

F is splittable if ∃a, b, c , d such that every F ∈ F is (a, b, c, d)-
splittable.

35

Splittable graphs
Definition
A graph H is (a, b, c , d)-splittable if it has a set S of at most c
vertices such that

if H − S is a-small/b-thin, and
each component C of H − S has at most d vertices whose
closed neighborhood in G [C] is not universal to NH(C) ∩ S .

Theorem
If F is a splittable hereditary class, then F-Subgraph
Isomorphism admits a polynomial Turing kernel, otherwise it is
W[1]-hard, WK[1]-hard, or Long Path-hard.

35

Ingredients for F-Subgraph Isomorphism Turing
kernelization dichotomy

Classification
Splittable graph families characterize the easy cases.

Algorithms
Algorithm by guessing a few vertices + marking procedure
for small/thin components.

Hard families
Hard families coming from the packing problem + two
new hard families specific for subgraph isomorphism.

Ramsey arguments
Hereditary F that is not splittable contains at least one of
the hard families.

36

Ingredients for F-Subgraph Isomorphism Turing
kernelization dichotomy

Classification
Splittable graph families characterize the easy cases.

Algorithms
Algorithm by guessing a few vertices + marking procedure
for small/thin components.

Hard families
Hard families coming from the packing problem + two
new hard families specific for subgraph isomorphism.

Ramsey arguments
Hereditary F that is not splittable contains at least one of
the hard families.

36

Ingredients for F-Subgraph Isomorphism Turing
kernelization dichotomy

Classification
Splittable graph families characterize the easy cases.

Algorithms
Algorithm by guessing a few vertices + marking procedure
for small/thin components.

Hard families
Hard families coming from the packing problem + two
new hard families specific for subgraph isomorphism.

Ramsey arguments
Hereditary F that is not splittable contains at least one of
the hard families.

36

Ingredients for F-Subgraph Isomorphism Turing
kernelization dichotomy

Classification
Splittable graph families characterize the easy cases.

Algorithms
Algorithm by guessing a few vertices + marking procedure
for small/thin components.

Hard families
Hard families coming from the packing problem + two
new hard families specific for subgraph isomorphism.

Ramsey arguments
Hereditary F that is not splittable contains at least one of
the hard families.

36

Hard families
Hardness results coming from the hardness of packing:

LongFountain(s, t, n)

n vertices

length s

(s = 5, n = 4)

n vertices

length s

length
t

n vertices length s

n
vertices

(s = 5, n = 4)
OperaHouse(s, n)SubDivStar(n)

(s = 5, t = 3, n = 4) (n = 4)
Fountain(s, n)

n vertices

n vertices
length `

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)
Path(`) Biclique(n) 2-broom(s, n)Clique(n)
(` = 5) (n = 4) (n = 3)

If {LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then F-Packing is WK[1]-
hard.

37

Hard families
Hardness results coming from the hardness of packing:

LongFountain(s, t, n)

n vertices

length s

(s = 5, n = 4)

n vertices

length s

length
t

n vertices length s

n
vertices

(s = 5, n = 4)
OperaHouse(s, n)SubDivStar(n)

(s = 5, t = 3, n = 4) (n = 4)
Fountain(s, n)

n vertices

n vertices
length `

length s

n
ve

rt
ic

es

n
vertices

(s = 4, n = 5)
Path(`) Biclique(n) 2-broom(s, n)Clique(n)
(` = 5) (n = 4) (n = 3)

If {n · LongFountain(5, 2, n) | n ≥ 1} ⊆ F , then F-Subgraph
Isomorphism is WK[1]-hard.

37

Hard families

Two new types of hard families:

length
s

n vertices

n vertices

SubDivTree(s, n) DiamondFan(n)
(n = 4)(s = 3, n = 3)

We prove that F-Subgraph Isomorphism is WK[1]-hard if
{DiamondFan(n) | n ≥ 1} ⊆ F or
{SubDivTree(s, n) | n ≥ 1} ⊆ F for some s ≥ 1.

38

Ramsey arguments

Theorem
If a hereditary class F is not splittable, then at least one of the
following holds:

{Path(n) | n ≥ 1} ⊆ F ,
{Clique(n) | n ≥ 1} ⊆ F ,
{Biclique(n) | n ≥ 1} ⊆ F ,
{n · SubDivStar(n) | n ≥ 1} ⊆ F ,
{n · Fountain(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{n · LongFountain(s, t, n) | n ≥ 1} ⊆ F for some integer t ≥ 1 and
odd integer s ≥ 3,
{n · 2-broom(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{n · OperaHouse(s, n) | n ≥ 1} ⊆ F for some odd integer s ≥ 3,
{SubDivTree(s, n) | n ≥ 1} ⊆ F for some integer s ≥ 1, or
{DiamondFan(n) | n ≥ 1} ⊆ F .

39

Many-one kernels for Subgraph Isomorphism

The landscape of many-one kernels is very confusing.

Fountain(3, n) n · K3

SubDivStar(n) n · P3

Polynomial kernel

SubDivStar(n) n · K3

2 · SubDivStar(n) n · P3

No polynomial kernel

40

Summary

Goal: dichotomies for Packing and Subgraph
Isomorphism from the viewpoints of

polynomial-time algorithms,
many-one kernels,
and Turing kernels.

The project was doable, except for many-one kernelization for
Subgraph Isomorphism

For Packing, Turing kernels do not give us more power than
many-one kernels.
Guessing a few vertices seems to be a very basic step for
Subgraph Isomorphism.
Why was not the polynomial-time dichotomy for Subgraph
Isomorphism known earlier?

41

