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Abstract
We study the following general disjoint paths problem:
given a supply graph G, a set T ⊆ V (G) of terminals,
a demand graph H on the vertices T , and an integer
k, the task is to find a set of k pairwise vertex-disjoint
valid paths, where we say that a path of the supply
graph G is valid if its endpoints are in T and adjacent
in the demand graph H. For a class H of graphs, we
denote by Maximum Disjoint H-Paths the restriction
of this problem when the demand graph H is assumed
to be a member of H. We study the fixed-parameter
tractability of this family of problems, parameterized by
k. Our main result is a complete characterization of the
fixed-parameter tractable cases of Maximum Disjoint H-
Paths for every hereditary class H of graphs: it turns out
that complexity depends on the existence of large induced
matchings and large induced skew bicliques in the demand
graph H (a skew biclique is a bipartite graph on vertices
a1, . . . , an, b1, . . . , bn with ai and bj being adjacent if
and only if i ≤ j). Specifically, we prove the following
classification for every hereditary class H.

• If H does not contain every matching and does
not contain every skew biclique, then Maximum
Disjoint H-Paths is FPT.

• If H does not contain every matching, but contains
every skew biclique, then Maximum Disjoint H-
Paths is W[1]-hard, admits an FPT approximation,
and the valid paths satisfy an analog of the Erdős-
Pósa property.

• If H contains every matching, then Maximum Dis-
joint H-Paths is W[1]-hard and the valid paths do
not satisfy the analog of the Erdős-Pósa property.

1 Introduction

Given an undirected graph G and pairs of vertices
(s1, t1), . . . , (sk, tk), the Disjoint Paths problem
asks for pairwise vertex-disjoint paths P1, . . . , Pk
such that Pi has endpoints si and ti. A celebrated
result of Robertson and Seymour [28] (see also [12])
states that Disjoint Paths can be solved in time
f(k)n3 for some function f depending only on k, that
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is, there is a cubic-time algorithm for every fixed k.
Therefore, Disjoint Paths is not only polynomial-
time solvable for every fixed k, but fixed-parameter
tractable parameterized by k. Recall that a problem
is fixed-parameter tractable (FPT) parameterized by
k if it can be solved in time f(k)nO(1) for some
computable function f depending only on k.

Theorem 1.1. (Robertson and Seymour [28])
Disjoint Paths can be solved in time f(k) · nO(1).

The main focus of the present paper is a natural
maximization version of Disjoint Paths. Given an
undirected graph G, pairs of vertices (s1, t1), . . . ,
(sm, tm), and an integer k, the Maximum Disjoint
Paths problem asks for a set of k pairwise vertex-
disjoint valid paths, where we say that a path is valid
if its endpoints are sj and tj for some 1 ≤ j ≤ m. We
will typically refer to the graph G as the supply graph
and the graph with vertex set {s1, . . . , sm, t1, . . . , tm}
and edge set siti for 1 ≤ i ≤ m as the demand
graph. The Maximum Disjoint Paths problem
remains NP-complete even with strong restrictions
on the input: it is NP-complete when restricted to
problem instances with supply graph G and demand
graph H such that G ∪H is planar [20]. See [22] for
an in depth discussion of variants of the problem that
are known to be computationally hard, as well as [13]
for surveys on the problem.

In contrast, for every fixed k it is easy to see that
Maximum Disjoint Paths is polynomial-time solv-
able: we guess k integers 1 ≤ j1 < j2 < · · · < jk ≤ m,
and then solve the Disjoint Paths instance on G
with pairs (sj1 , tj2), . . . , (sjk , tjk) using the algorithm
of Theorem 1.1. Clearly, the Maximum Disjoint
Paths instance has a solution if and only if at least
one of the instances of Disjoint Paths has. As
there are mO(k) different ways of selecting the k in-
tegers j1, . . . , jk, this results in an f(k)nO(k) time
algorithm. But is Maximum Disjoint Paths fixed-
parameter tractable? As we shall see later in this pa-
per, Maximum Disjoint Paths is W[1]-hard, which
means that it is not FPT under standard complex-
ity assumptions. The hardness result holds even if
G is a planar graph whose treewidth is bounded by



a function of k. This indicates that two fundamen-
tal algorithmic ideas underlying the Disjoint Paths
algorithm of Robertson and Seymour [28] cannot be
used for Maximum Disjoint Paths: finding irrele-
vant vertices exploiting properties of graphs embed-
ded on surfaces (or excluding minors) and using dy-
namic programming to solve bounded-treewidth in-
stances.

Despite the hardness of the general problem,
there are easier special cases of Maximum Disjoint
Paths: classic results yield polynomial time algo-
rithms even with k as part of the input when the prob-
lem is restricted to certain types of demand graphs.
Suppose that S and T are two sets of vertices and the
set of pairs given in the input is S × T (that is, every
pair (s, t) with s ∈ S, t ∈ T is listed in the input;
note that the problem definition does not require the
pairs to be disjoint). Then the valid paths are the
paths connecting S and T , hence it can be checked
in polynomial time if there are k valid paths by solv-
ing a maximum flow problem with vertex capacities.
The demand graphs in this case are complete bipar-
tite graphs. A result of Mader [15] generalizes this ob-
servation by giving a min-max theorem for the maxi-
mum number of disjoint valid paths when the demand
graph is a multi-partite graph. Mader’s theorem is ex-
istential, but a maximal set of disjoint valid paths can
be algorithmically found in polynomial time as an ap-
plication of Lovász’ matroid matching algorithm [14].
In a recent paper, Hirai and Pap [10] exactly char-
acterized which demand graphs make a more general
version of the weighted edge-disjoint paths problem
polynomial time solvable.

It is possible to use the Robertson-Seymour al-
gorithm for the Disjoint Paths problem to find in-
stances that are FPT parameterized by the number
k of paths, but NP-complete when k is part of the
input. Consider for example the case when the set of
pairs is (S1×T1)∪ (S2×T2) for pairwise disjoint sub-
sets S1, S2, T1, T2 ⊆ V (G). This case of the problem
is a restatement of the node-capacitated 2-commodity
flow problem and is NP-complete when k is included
in the input [5]. To show that this case is FPT, we
can proceed in the following way. First, we guess the
number 0 ≤ k1 ≤ k of paths in the solution that
connect S1 and T1 (and hence k2 = k− k1 paths con-
nect S2 and T2). Let us introduce k1 vertices s11, . . . ,
s1k1 , all of them fully connected to S1; another k1 ver-
tices t11, . . . , t1k1 , all of them fully connected to T1.
Similarly, we introduce k2 vertices s21, . . . , s2k2 fully
connected to S1 and k2 vertices t21, . . . , t2k2 fully con-
nected to T2. Then the required k1 +k2 paths exist if
the Disjoint Paths instance with pairs (s11, t
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) has a solution. There-

fore, we can reduce the problem to k+ 1 instances of
Disjoint Paths, implying that this special case of
Maximum Disjoint Paths is FPT.

Our main goal is to understand which demand
patterns make Maximum Disjoint Paths fixed-
parameter tractable. The formal setting of our
investigations is the following. First, we introduce a
slightly different formulation of Maximum Disjoint
Paths. Let G be the supply graph, T ⊆ V (G) be a
set of terminals, and H be the demand graph defined
on the vertices T . We say that a path in G is valid if
both of its endpoints are in T and they are adjacent in
H. The task is now to find k pairwise vertex-disjoint
valid paths. The examples above can be expressed by
an instance where H is a biclique (complete bipartite
graph) or the disjoint union of two bicliques. For
a class H of graphs, we define Maximum Disjoint
H-Paths as the special case Maximum Disjoint
Paths when H is restricted to be a member of H.

For example, as we have seen, if H is the class
of all bicliques, then Maximum Disjoint H-Paths
is polynomial-time solvable and if every graph in H
is the disjoint union of two bicliques, then Maximum
Disjoint H-Paths is fixed-parameter tractable. One
can observe that the argument can be generalized
to the case when the two bicliques are not disjoint
(i.e., the demand graph H graph is obtained by
fully connecting S1 with T1 and S2 with T2, where
these four sets are not necessarily disjoint), or to the
case where every graph in H is the (not necessarily
disjoint) union of c bicliques for some constant c, or to
the case where every graph H ∈ H has the property
that the vertices in H have at most c different
neighborhoods for some constant c. Therefore, there
are fairly complicated demand patterns that make the
problem FPT.

Formally, our goal is to identify every class H
for which Maximum Disjoint H-Paths is FPT. For
technical reasons, we restrict our attention to classes
H that are hereditary, that is, closed under taking
induced subgraphs. Intuitively, if H ′ is an induced
subgraph of some H ∈ H, then adding H ′ toH should
not make the problem any harder: given an instance
with demand pattern H ′, we can easily express it with
demand pattern H by introducing dummy isolated
terminals into the supply graph G to represent the
vertices V (H)\V (H ′). Therefore, it seems justified to
study only graph classes that are closed under taking
induced subgraphs. However, there is no formal
reduction showing that if every graph in H′ is an
induced subgraph of a member of H, then the fixed-
parameter tractability of the problem with H implies
the fixed-parameter tractability of the problem with
H′. There are at least two technical issues with



the simple reduction described above: first, adding
the isolated vertices may increase the size of the
instance if H is much larger than H ′ and, second,
even if we know that H ′ ∈ H′ is a subgraph of some
H ∈ H, finding such an H may be computationally
hard. Therefore, to avoid the discussion of artificial
technicalities, we consider only hereditary classes.

Our results. First, we investigate a purely
combinatorial question. A classical result of Erdős
and Pósa [4] states that in every undirected graph
G, the minimum number of vertices needed to cover
every cycle in G can be bounded by a function of
the maximum number of vertex-disjoint cycles. This
result motivates the following definition: we say that
a set C of graphs has the Erdős-Pósa property if
there is a function f(k) such that every graph G
has either k vertex-disjoint subgraphs that belong
to C or a set X of at most f(k) vertices such that
G−X has no subgraph that belongs to C; the result
of Erdős and Pósa [4] can be stated as saying that
the set of all cycles has this property. The literature
contains numerous results proving that the Erdős-
Pósa property holds for variants of the disjoint cycle
problem such as disjoint long cycles [1], directed
cycles [25], cycles of length 0 mod m [30], as well as
characterizing when the Erdős-Pósa property holds
for odd cycles [24, 31, 23, 11] and cycles of non-zero
length mod m [32]. Further study has considered
whether sets C defined by other containment relations
such as minors also have the Erdős-Pósa property
[26, 3].

We investigate the natural analog of the Erdős-
Pósa property in the context of the Maximum Dis-
joint Paths problem: Is it true that the valid paths
have the Erdős-Pósa property, that is, is it true that
either there are k valid paths or a set of at most f(k)
vertices covering every valid path? Besides its com-
binatorial interest, we explore this question because
the Erdős-Pósa property of some objects is often cor-
related with good algorithmic behavior of the corre-
sponding packing/covering problems, especially from
the viewpoint of fixed-parameter tractability. How-
ever, in general, the answer to this question is no.
The standard counterexample is an n× n grid graph
with the vertices s1, . . . , sn appearing in the top row
from left to right, and the vertices t1, . . . , tn appear-
ing in the bottom row from right to left. Then every
si− ti path intersects every sj− tj path for i 6= j, but
we need n− 1 vertices to cover all such paths. There-
fore, the Erdős-Pósa property does not hold for valid
paths in general, but may hold for the Maximum
Disjoint H-Paths problem for certain (hereditary)
classes H. For example, if H contains only bicliques,
then Menger’s Theorem states that the Erdős-Pósa

property holds in a tight way with f(k) = k− 1; if H
contains only cliques, then a classical result of Gallai
[8] states that the the Erdős-Pósa property holds with
f(k) = 2k − 2.

Let Mr be the graph consisting of a matching of
size r (i.e., Mr has 2r vertices and r edges). The
counterexample above shows that if the hereditary
class H contains Mr for every r ≥ 1, then the Erdős-
Pósa property surely does not hold. Surprisingly, this
is the only obstacle: our first result states that if
H is a hereditary class of graphs not containing Mr

for every r ≥ 1, then the valid paths in Maximum
Disjoint H-Paths have the Erdős-Pósa property.
Our proof is algorithmic and gives an algorithm that
either produces a set of disjoint valid paths or a
hitting set Z covering every valid path.

Theorem 1.2. Let H be a hereditary class of graphs,
and assume there exists an integer r ≥ 1 such that
Mr /∈ H. There exists an algorithm which given a
graph G, T ⊆ V (G), integer k ≥ 1, and H ∈ H with
V (H) = T , returns one of the following:

1. a set of k pairwise disjoint valid paths, or
2. a set Z of at most 2O(k+r) vertices such that

every valid path intersects Z.

Moreover, the algorithm runs in time

22
O(k+r)

(|V (G)|+ |E(G)|)O(1).

By a well-known observation (cf. [17]), the algorithm
of Theorem 1.2 can be turned into an FPT approxi-
mation algorithm of the following form.

Corollary 1.1. Let H be a set of graphs closed
under taking induced subgraphs, and assume there is
an integer r ≥ 1 such that Mr /∈ H. Then there is
a polynomial-time algorithm that, given an instance
of Maximum Disjoint H-Paths, finds a solution
with Ω(log logOPT ) disjoint valid paths, where OPT
is the maximum size of a set of pairwise disjoint valid
paths.

Can we improve the algorithm of Theorem 1.2 to
an exact FPT algorithm that either finds a set of k
disjoint valid paths or correctly states that there is no
such set? It seems that we need one more property
of H for the existence of such algorithms. A skew
biclique of size n + n is the bipartite graph Sn on
vertices a1, . . . , an, b1, . . . , bn such that ai and bj
are adjacent if and only if i ≤ j. Even though the
(hereditary closure of) the set H of all skew bicliques
has the Erdős-Pósa property by Theorem 1.2 (as
skew bicliques do not have large induced matchings),
disjoint paths problems with skew biclique demand
patterns can be hard. Our main result states that
large induced matchings and large skew bicliques are



the only demand patterns that make the Maximum
Disjoint H-Paths problem hard.

Theorem 1.3. Let H be a hereditary set of graphs.
If there is an integer r ≥ 1 such that Mr, Sr 6∈ H, then
Maximum Disjoint H-Paths is FPT; otherwise,
Maximum Disjoint H-Paths is W[1]-hard.

Therefore, we have obtained a tight characterization
of the fixed-parameter tractable cases of Maximum
Disjoint H-Paths. Observe that the algorithmic
part of Theorem 1.3 covers the FPT cases we dis-
cussed above: if the vertices in every H ∈ H have at
most c different neighborhoods, then H cannot con-
tain every matching and every skew biclique. How-
ever, Theorem 1.3 gives some more general FPT cases
as well: for example, if every graph in H is a biclique
minus a matching of arbitrary size, then clearly there
are no large induced matchings or skew bicliques in
H, but the number of different neighborhoods can be
arbitrarily large. Observe also that Corollary 1.1 and
Theorem 1.3 exhibit a large class of problems that
are W[1]-hard, but admit an FPT approximation: if
H contains every skew biclique Sr, but does not con-
tain some matching Mr, then Maximum Disjoint
H-Paths is such a problem. There is only a handful
of known problems with this property (see [17, 9, 2]),
thus this may be of independent interest.

Our techniques. The first observation in the
proof of Theorem 1.2 is that if there is a small set
Z of vertices such that more than one component
of G − Z contains valid paths, then we can solve
the problem recursively. Therefore, we may assume
that the valid paths are quite intertwined, giving us
a notion of connectivity similar to tangles. Our first
goal is to find a certain number of pairs (s1, t1), . . . ,
(sh, th) such that si and ti are adjacent in H and the
set {s1, . . . , sh, t1, . . . , th} is highly connected in our
notion of connectivity. In particular, the connectivity
ensures that there are many disjoint paths between
{s1, . . . , sh} and {t1, . . . , th}. This is not quite what
we need: all we know is that si and ti are adjacent in
H, but we have no information about the adjacency
of si and tj for i 6= j. This is the point where we
exploit the assumption that there are no large induced
matchings in H. A simple Ramsey-type argument
shows that if a graph has a large (not necessarily
induced) matching, then it either has a large induced
matching or a large biclique. By assumption, there
is no large induced matchings in H, which means
that H contains a large biclique on the vertices
{s1, . . . , sh, t1, . . . , th}. Then by the connectivity of
this set, we can realize k disjoint paths with endpoints
in this biclique.

The fixed-parameter tractability part of Theo-
rem 1.3 is proved the following way. First, we boot-
strap the algorithm with the approximation of The-
orem 1.2: we obtain either k disjoint valid paths (in
which case we are done) or a set Z of bounded size
covering every valid path. In the latter case, we solve
the problem by analyzing the components of G−Z: as
there are no valid paths in any component C of G−Z,
essentially what we need to understand is how subsets
of terminals in C can be connected to Z. However,
each component of G − Z can contain a large num-
ber of terminals and there can be a large number of
components of G − Z. First, in each component C
of G− Z, we reduce the number of terminals so that
their number is bounded: we identify terminals that
are irrelevant, that is, we can prove that if there is
a solution, then there is a solution not using these
terminals. To identify irrelevant terminals, we use
the concept of representative sets, which were already
used in the design of FPT algorithms, mostly for path
and matroid problems [21, 18, 6, 7, 29]. While the
concept is the same as in previous work, the reason
why we can give a bound on the size of representative
sets is very different: as shown by a simple Ramsey-
type argument, it is precisely the lack of large induced
matchings and skew bicliques in H that makes the
argument work. (More precisely, we need to exclude
large cliques as well, but we have a separate argument
for that.) Our algorithm can be seen as a generaliza-
tion of the ideas in the data structure of Monien [21],
but it does not use any of the more advanced matroid-
based techniques of more recent work [18, 6, 7, 29].
After reducing the number of terminals to a constant
in each component of G−Z, next we use elementary
arguments to show that every terminal in all but a
bounded number of components is irrelevant. Thus
we have a bound on the total number of terminals
and then we can use the algorithm of Robertson and
Seymour [28] on every set of k pairs of terminals.

The hardness part of Theorem 1.3 states W[1]-
hardness for infinitely many classes H. However, we
need to prove only the following two concrete W[1]-
hardness results: when the pattern is a matching and
when the pattern is a skew biclique. We prove these
hardness result in a slightly stronger form: the supply
graph G is restricted to be planar and we show that
the problems are hard even when parameterized by
both the number of paths k to be found and the
treewidth w of the supply graph, that is, even an
algorithm with running time f(k,w) · nO(1) seems
unlikely.

Theorem 1.4. If H contains Mr for every r ≥ 1,
then Maximum Disjoint H-Paths is W[1]-hard
with combined parameters k and w (where w is the



treewidth of G), even when restricted to instances
where G is planar.

Theorem 1.5. If H contains Sr for every r ≥ 1,
then Maximum Disjoint H-Paths is W[1]-hard
with combined parameters k and w (where w is the
treewidth of G), even when restricted to instances
where G is planar.

These hardness proofs will appear in the full version
of the paper. Note that Theorem 1.5 actually im-
plies Theorem 1.4: if H contains the matching Mr

for every r ≥ 1, then it is easy to simulate any de-
mand pattern, including skew bicliques. The reduc-
tion is as follows. First, if vertex v has degree d in
H, then let us attach d degree-1 neighbors to v and
make them terminals. Then replace each edge (x, y)
of H with an edge connecting a degree-1 neighbor of
x and a degree-1 neighbor of y not incident to any
demand edge yet. This way the new demand graph
becomes a matching of |E(H)| edges. Therefore, giv-
ing a separate proof for Theorem 1.4 is redundant.
Nevertheless, we give a self-contained W[1]-hardness
proof of Maximum Disjoint Paths with no restric-
tion on the demand pattern, which, by the reduction
described above, proves Theorem 1.4 (but not Theo-
rem 1.5). We believe that the W[1]-hardness of Maxi-
mum Disjoint Paths can be already of independent
interest and the proof is much simpler and cleaner
than the highly technical proof of Theorem 1.5.

2 Excluding induced matchings: Erdős-Pósa
property and FPT approximation

In this section, we give the proof of Theorem 1.2.
We begin with a more technical statement which will
facilitate the recursive step of the algorithm.

Theorem 2.1. Let G be a graph, T ⊆ V (G), k, r ≥ 1
integers, and H a graph with V (H) = T . Assume
that T is an independent set and degG(v) = 1 for all
v ∈ T . There exists an algorithm which takes as input
G, T , k, r, and H and returns one of the following:

1. k pairwise disjoint valid paths, or
2. a set X of at most 4 · 520(k+r) vertices such that

every valid path intersects X.
3. a subset Z ⊆ T with |Z| = 2r such that H[Z] is

an induced matching.

Moreover, the algorithm runs in time

43·5
10(k+r)

(|V (G) \ T |+ |E(G)|)O(1).

Theorem 1.2 follows easily from Theorem 2.1.
The proof of Theorem 2.1 will occupy the remainder
of the section; we outline how the proof will proceed.
Consider for a moment a more general problem.

Assume we are trying to show that the Erdős-Pósa
property holds for a set C of connected graphs: i.e.
that there exists a function f such that for every
positive integer k and graph G, either G has k
disjoint subgraphs in C or there exists f(k) vertices
intersecting every subgraph of G in C. If we consider
a minimal counterexample, then there cannot exist
a separation (X,Y ) of small order such that each
of X and Y contain a subgraph in C. Otherwise,
by minimality, we can either find k − 1 disjoint C
subgraphs in X − Y or a set of f(k − 1) vertices in
X − Y intersecting all such subgraphs. If we found
k − 1 subgraphs, along with the graph in Y , we
would have k subgraphs in C, contradicting our choice
of counterexample. Thus, we may assume there is
hitting set ZX of size f(k − 1) intersecting every C
subgraph in X−Y . Similarly, there exists a bounded
hitting set ZY in Y −X. By our assumption that C
consists of only connected subgraphs, every subgraph
of G in C must be contained in either X or Y . Thus,
ZX ∪ZY ∪V (X∩Y ) is a hitting set of all C subgraphs
in G of size 2f(k−1)+|X∩Y |. If the function f grows
sufficiently quickly, this will yield a contradiction.

The conclusion is that for every small order
separation (X,Y ), only one of X or Y can contain
a subgraph in C. This defines a tangle in the graph
G. Tangles are a central concept in the Robertson-
Seymour theory of graph minors [27]. We will not
need the exact definitions here, as we do not use
any technical tangle results. However, this argument
shows how tangles arise naturally in proving Erdős-
Pósa type results; see [32] for another example. The
proof of Theorem 2.1 is not presented in terms of
tangles for two reasons. First, the tangle defined
above only exists in a minimal counterexample to
the theorem. While this suffices for an existential
proof of an Erdős-Pósa bound, we are also interested
in an algorithm. We need to consider all possible
problem instances and then we will not always have
such a tangle to work with. Second, the proof does
not use any technical tangle theorems; in the interest
of simplicity of the presentation, we do not introduce
tangles although they inform and motivate how the
proof proceeds.

Now return to the specific problem at hand.
Consider a graph G, k, r, T ⊆ V (G), and demand
graph H with V (H) = T . A subset X ⊆ T is well-
linked if for any U,W ⊆ X with |U | = |W |, there
exist |U | disjoint paths from U to W . We attempt to
find a large subset T ′ ⊆ T such that

1. H[T ′] contains a perfect matching, and
2. T ′ is well-linked in G.

Given a large set T ′ satisfying 1 and 2, the argument



is fairly straightforward. By a simple Ramsey-type
argument, either H[T ′] contains an induced matching
of size r or there exist two sets U and W in T ′, each
of size k, such that every vertex in U is adjacent every
vertex in W (in H). As we are assuming T ′ is well-
linked in G, given such a U and W , we can find k
disjoint paths from U to W and these will necessarily
be valid paths.

How can we find such a subset T ′ of T? It is
easy to find such a subset T ′ of size two — take two
vertices in T which are adjacent in H and connected
by a path. Thus, the difficulty will lay in showing
we can find T ′ sufficiently large to apply the desired
Ramsey-type argument. The property of being well-
linked is a standard certificate that a graph has a large
tangle. We proceed by effectively showing that we
either have a tangle as in a minimal counterexample
to the Erdős-Pósa property as in the above paragraph,
or alternatively, finding a separation separating two
valid paths and then recurse on the smaller graphs.
More explicitly, we replace property 2 above by:

2′. there does not exist a separation (X,Y ) of G −
(T \ T ′) of order < |T ′| with T ′ ⊆ V (X) and Y
containing a valid path.

Property 2′ forces a similar behavior to well-
linkedness in a tangle without requiring the techni-
cal properties of a tangle. We show that either we
can grow T ′ by two vertices and satisfy 1 and 2′, or
alternatively find a separation where we can recurse.
We proceed by showing several technical lemmas in
Subsections 2.1 and 2.2 in preparation for the proof
of Theorem 2.1 which follows in Subsection 2.3.

2.1 P-tight separations We begin by introducing
what we will call tight separations.

Definition 1. (P-tight) Let G be a graph and T ⊆
V (G). Let P be a set of connected subgraphs in G−T .
We say a separation (U,W ) is P-tight for the pair
(G,T ) if

i. T ⊆ V (U);
ii. there exists P ∈ P with P ⊆W − U ;

iii. there does not exist a separation (U ′,W ′) and
element P ∈ P with |U ′∩W ′| ≤ |U∩W |, U ( U ′,
and P ⊆W ′ − U ′.

When there can be no confusion as to the set P,
we will simply say a separation is tight for the pair
(G,T ).

Thus a separation is tight if the portion not contain-
ing T is made as small as possible while not increasing
the order of the separation and maintaining the prop-
erty that it still contains an element of P. Note that

a tight separation may have order greater than |T |.
However, a tight separation of order at most |T | al-
ways exists if P is non-empty. To see this, let (U,W )
to be a separation of minimum order satisfying i and
ii, and subject to that, to maximize |V (U)|+ |E(U)|.
Such a separation always exists as the trivial sepa-
ration (T,G) satisfies i and ii with T treated as the
graph with vertex set T and no edges. Then (U,W )
will be of order at most |T | and satisfy i − iii. A
similar argument yields the following observation.

Observation 1. Let G be a graph, T ⊆ V (G), and
P a non-empty set of connected graphs in G − T .
Let (U,W ) be a separation satisfying i and ii in the
definition of tight for the pair (G,T ). There exists a
separation (U ′,W ′) of order at most |U ∩W | which
is tight for (G,T ) and U ⊆ U ′. Let T ′ ⊆ T . If
(U,W ) is a P-tight separation for the pair (G,T ),
then (U−(T \T ′),W−(T \T ′)) is a P-tight separation
for the pair (G− (T \ T ′), T ′).

Let G be a graph, T ⊆ V (G), and P a set of
connected subgraphs in G−T . We say that the set T
is P-free if there does not exist a separation (U,W )
of order strictly less than |T | and P ∈ P such that
T ⊆ U and V (P ) ⊆W − U .

Lemma 2.1. Let G be a graph, T, T ′ ⊆ V (G) with
T ′ ⊆ T and let G′ = G − (T \ T ′). Let P a set
of connected subgraphs in G − T . Assume that T ′ is
P-free in G′. Let t ≥ 1 be a positive integer. Let
(U ′,W ′) be a P-tight separation of the pair (G′, T ′)
of order t, and let (U1,W1) and (U2,W2) be distinct
P-tight separations of the pair (G,T ), each of order
t+ 1. Then one of the following holds:

1. V (U ′∩W ′)∪V (U1∩W1)∪V (U2∩W2) is a hitting
set for P.

2. There exists P ∈ P such that P is contained in
one of the graphs U ′, U1, or U2.

3. V (U1) ∩ V (U2) = V (U ′) ∪ T .

Proof. We may assume there exists P ∈ P which is
disjoint from the set V (U ′∩W ′)∪V (U1∩W1)∪V (U2∩
W2). Lest we satisfy 2, we may assume as well that
P ⊆ W1 ∩W2 ∩W ′. Note by construction that P is
disjoint from U1 ∪ U2 ∪ U ′.

Fix i ∈ {1, 2}. We first show that U ′ ⊆ Ui. We
would like to consider the two pairs (U ′ ∩ Ui,W ′ ∪
Wi) and (U ′ ∪ Ui,W ′ ∩ Wi) with the first being a
separation of G′ and the second being a separation
of G. However, there is a slight technicality, namely
possible vertices in the set (T \ T ′) ∩ V (Wi). Fix
X = (T \ T ′) ∩ V (Wi). The pair (U ′ ∩ Ui,W ′ ∪Wi)
may not be a separation of G′ as there may be vertices
of T \ T ′ in Wi, however (U ′ ∩ Ui, (W ′ ∪Wi)−X) is



a separation of G′. Similarly, (U ′ ∪Ui,W ′ ∩Wi) may
not be a separation of G as vertices in X may have
neighbors in (W ′∩Wi)−(U ′∪Ui). Let (W ′∩Wi)+X
be the subgraph of G formed by W ′ ∩ Wi along
with the vertex set X and any edge of G with an
end in X and an end in W ′ ∩ Wi. It follows that
(U ′ ∪ Ui, (W ′ ∩ Wi) + X) is a separation of G. A
counting argument shows that the sum of the orders
of the separations (U ′ ∩ Ui, (W ′ ∪ Wi) − X) and
(U ′ ∪ Ui, (W ′ ∩Wi) + X) is equal to the sum of the
orders of the two separations (U ′,W ′) and (Ui,Wi),
namely 2t+ 1.

The separation (U ′ ∩ Ui, (W ′ ∪ Wi) − X) is a
separation of G′ with T ′ ⊆ V (U ′∩Ui). Moreover, the
path P is contained in ((W ′ ∪Wi)−X)− (U ′ ∩ Ui).
We conclude from the fact that T ′ is P-free that the
separation has order at least t.

It follows that (U ′ ∪ Ui, (W ′ ∩ Wi) + X) is a
separation of G of order at most t + 1 with P ⊆
((W ′∩Wi)+X)−(U ′∪Ui). It follows that U ′∪Ui = Ui
by property iii in the definition of tight for (Ui,Wi)
and thus U ′ ⊆ Ui as desired.

We conclude that V (U ′) ∪ T ⊆ V (U1) ∩ V (U2).
The separation (U1∪U2,W1∩W2) must be of order at
least t+2, lest we violate iii for one of the separations
(U1,W1) or (U2,W2). Note that here we are using
the fact that the separations (U1,W1) and (U2,W2)
are distinct. It follows that (U1 ∩ U2,W1 ∪ W2)
is a separation of order at most t. Consequently,
((U1 ∩ U2) − (T \ T ′), (W1 ∪ W2) − (T \ T ′)) is a
separation of order at most t of the graph G′ with
V (U ′) ⊆ V (U1 ∩ U2) − (T \ T ′). By iii in the
definition of tight for (U ′,W ′), we have that V (U ′) =
V (U1 ∩ U2)− (T \ T ′), completing the proof. �

2.2 Algorithms for P-free sets and P-tight
separations In this section, we consider the algo-
rithmic problem of finding tight separations. If we
were given P as a list of subgraphs, one could use
standard flow algorithms to find a minimum order
separation separating the terminals T from each ele-
ment of P. A suitably minimal separator will deter-
mine if T is P-free. However, in the applications to
come, the we will not have any reasonable bound on
the size of P. Thus, we assume P is given by an ora-
cle and bound the runtime in the size of the terminal
set T . The algorithms will be based on the idea of
finding important separators.

Definition 2. (separator) Let G be an undirected
graph and let X,Y ⊆ V (G) be two disjoint sets. A set
S ⊆ V (G) of vertices is an X − Y separator if S is
disjoint from X ∪ Y and there is no component K of
G− S with both V (K) ∩X 6= ∅ and V (K) ∩ Y 6= ∅.

Definition 3. (important separators) Let
X,Y ⊆ V (G) be disjoint sets of vertices, S ⊆ V (G)
be an X − Y separator, and let K be the union of the
vertex sets of every component of G − S intersecting
X. We say that S is an important X − Y separator
if it is inclusionwise minimal and there is no X − Y
separator S′ with |S′| ≤ |S| such that K ′ ) K,
where K ′ is the union of every component of G − S′
intersecting X.

Lemma 2.2. ([19]) Let X,Y ⊆ V (G) be disjoint sets
of vertices in a graph G. For every p ≥ 0, there are at
most 4p important X−Y separators of size at most p.
Furthermore, we can enumerate all these separators
in time 4p · p · (|E(G)|+ |V (G)|).

Let G be a graph, T ⊆ V (G), and P a set of
connected subgraphs of G − T . We will show that
there is an algorithm for efficiently testing whether T
is P-free or not for sets T of bounded size. In the
applications to come, the set P will typically have
a super-polynomial number of elements. Thus, we
will typically assume that P is given by an oracle. A
P-oracle is a function f such that for any subgraph
H ⊆ G, f responds “yes” if there is an element P ∈ P
such that P ⊆ H and “no” otherwise. A certificate
that T is not free is a separation (X,Y ) of order
strictly less than |T | such that T ⊆ V (X) and there
exists P ∈ P with P ⊆ Y −X.

Test P-Free
Input: A graph G, T ⊆ V (G), P-oracle f for a
set P of connected subgraphs of G− T .
Find: either

• confirm that T is P-free or
• output a separation (X,Y ) which is a certifi-

cate that T is not free; moreover, (X,Y ) is of
minimum order among all such separations.

Lemma 2.3. (Testing if a separation is P-free)
There exists an algorithm solving Test P-Free run-
ning in time 4|T ||V (G)|O(1) utilizing O(|V (G)|4|T |)
calls of the P-oracle.

Proof. Let G, T , and an oracle f for the set P be
given. Let n = |V (G)| and m = |E(G)|. There
is a slight technical issue which we must address.
We want to proceed by calculating all separations
(X,Y ) where T ⊆ X and X ∩ Y is an important
separator for some vertex y ∈ Y . However, we will
additionally need to consider such separations where
X ∩Y intersects the set T . However, in the definition
of important separator, we do not consider separators
which intersect one of the two sets. Thus, we define an



auxiliary graph G′ formed by adding a new vertex a′

adjacent to every vertex of T and consider important
separators separating a vertex from a′ in G′.

Fix a vertex y ∈ V (G) \ T . Enumerate all
important y−a′ separators inG′ of size at most |T |−1.
For each separator S, let KS be the component of
G′ − S containing y. Using the P-oracle f , check if
there exists an element P ∈ P with P ⊆ KS . We do
this for every y ∈ V (G) \ T . By Lemma 2.2, this can
be done in time O(4|T ||T |(n+m)n ·m) with at most
n4|T | calls to to the P-oracle, as desired.

Assume, as a case, we find a vertex y ∈ V (G) \ T
and an important y − a′ separator S such that the
subgraph induced by KS contains an element of P.
Pick y and S over all such vertices and important
separators to minimize |S|. We return the separation
((G−V (KS))−E(G[S]), G[V (KS)∪S]) as a certificate
that T is not P-free. If we find no such important
separator, we return that T is P-free.

To see correctness, first observe that if we return
a separation, it must be the case that T is not P-free.
Thus, we must only show that if T is not P-free, we
correctly find a minimum order separation certifying
so. Assume that T is not free, and let (X,Y ) be a
separation such that:

i. T ⊆ V (X) and there exists P ∈ P such that
P ⊆ Y −X.

ii. Subject to i, the size of |X ∩ Y | is minimized.
iii. Subject to i and ii, |Y | is minimized.

Moreover, assume that the algorithm finds no impor-
tant separator S such of order at most |X ∩ Y | such
that S separates a′ from an element of P. Note, by
iii, we may assume that Y −X is connected.

Let y be a vertex of Y −X. The set X∩Y is an y−
a′ separator in G′. If X∩Y is an important separator,
then we returned the separation ((G − V (KS)) −
E(G[S]), G[V (KS)∪S]) for some important separator
S. Thus, we correctly identified that T is not free.
Moreover, it must be the case that |S| ≤ |X ∩Y |, and
therefore, ((G−V (KS))−E(G[S]), G[V (KS)∪S]) is
a minimum order separation certifying that T is not
free, contrary to our assumption.

Thus, we have that X ∩ Y is not an important
y − a′ separator. By our choice of (X,Y ) to satisfy
ii, we have that X ∩Y is a minimal (by containment)
y − a′ separator. We conclude that there exists an
important y−a′ separator S of order |X∩Y | such that
the component of G′ − S containing y contains all of
Y−X. Note that here we are using the fact that Y−X
is connected. Thus, the separator S separates a′ from
an element of P, contradicting our assumptions. This
completes the proof. �

Next we turn our attention to finding a P-tight
separation.

Find P-tight
Input: A graph G, T ⊆ V (G), P-oracle f for a
set P of connected subgraphs of G− T .
Find: A separation (X,Y ) of order at most
|T | which is P-tight for the pair (G,T ) and of
minimum order among all such tight separations.

Lemma 2.4. There exists an algorithm solving Find
P-tight running in time 4|T |nO(1) utilizing O(|T | ·
|V (G)|24|T |) calls of the P-oracle.

Proof. Let G, T ⊆ V (G), and a P-oracle f for a set of
connected subgraphs P in G be given. Observe that
for any X ⊆ V (G), the function f is a P ′-oracle for
the subset P ′ ⊆ P of elements of P contained in the
subgraph G[X].

We first use the algorithm given in Lemma 2.3
to check if T is P-free. If T is not free, let (X1, Y1)
be the separation returned by the algorithm. If T
is free, let (X1, Y1) be the trivial separation (T,G)
with T treated as the graph with vertex set T and
no edges. Let P1 = {P ∈ P : P ⊆ Y1}. Note that
X1∩Y1 is P1-free in Y1 by the guarantee that (X1, Y1)
is a minimum order separation separating T from an
element of P.

We now define inductively define separations
(Xi, Yi) with the following properties.

1. (Xi, Yi) is a separation of G of order |X1 ∩ Y1|
with V (Xi−1) ( V (Xi).

2. There exists P ∈ P with P ⊆ Yi.

Given (Xi, Yi), for i = 1, . . . , k, we now describe
how to either construct (Xk+1, Yk+1) or determine
that (Xk, Yk) satisfies the desired properties for the
output.

First, consider the case when Yk − (Xk ∩ Yk)
has multiple connected components. Let C be a
component of Yk − (Xk ∩ Yk) such that C contains
an element of P. Then the separation (Xk+1, Yk+1) =
(G−C,G[V (C)∪V (Xi∩Yi)]−E(G[Xi∩Yi])) satisfies
1 and 2.

Assume now that Yk − (Xk ∩ Yk) has exactly one
component. For every x ∈ Xk ∩ Yk, x is adjacent
a vertex of Yk − Xk by the fact that no smaller
order separation separates T from an element of P.
Arbitrarily fix a neighbor x′ of x in Yk−Xk. We apply
the algorithm of Lemma 2.3 on the graph Yk, subset of
vertices V (Xk∩Yk)∪{x′}, and the set P ′ = {P ∈ P :
P ⊆ Yk−(V (Xk∩Yk)∪{x′})} of connected subgraphs.
Assume we get a separation (X ′, Y ′) certifying that
V (Xk ∩ Yk) ∪ {x′} is not P ′-free in Yk. It must hold



that (X ′, Y ′) is of order exactly |Xk ∩ Yk| and that
there is an element P ∈ P such that P ⊆ Y ′ − X ′.
Thus, (Xk+1, Yk+1) = (Xk ∪ X ′, Y ′) satisfies 1 and
2 above. We arbitrarily fix (Xk+1, Yk+1) among all
such possibilities and continue.

To define (Xk+1, Yk+1) given (Xk, Yk) takes at
O(4|T ||T |2(n+m)n ·m) time and at most n · |T | · 4|T |
calls to to the P-oracle. As |V (Xk+1)| > |V (Xk)|, in
time O(4|T ||T |2(n+m)n2 ·m) with at most n2 ·|T |·4|T |
calls to to the P-oracle, we find (Xk, Yk) such that
Yk− (Xk ∩Yk) has exactly one component and for all
x ∈ Xk ∩ Yk, the set V (Xk ∩ Yk) ∪ {x′} is free in Yk.
Without loss of generality, we may assume that the
edges of G[V (Xk ∩ Yk)] are contained in Xk

To complete the proof, it suffices to show that
(Xk, Yk) is a tight separation. If not, there exists
a separation (U,W ) with Xk ( U and an element
P ∈ P with V (P ) ⊆ W − U . Note that the
order of (U,W ) must be the same as (Xk, Yk) and
V (Xk) ( V (U). We have that U ∩ W 6= Xk ∩ Yk,
lest Yk = (Xk ∩ Yk) have multiple components. Thus
there exists a vertex x ∈ Xk ∩ Yk which is contained
in U−W . The separation (U,W ) contradicts the fact
that V (Xk ∩ Yk) ∪ {x′} is free in Yk. This completes
the proof of the lemma. �

2.3 Proof of Theorem 2.1 Before proceeding
with the proof, we will need several lemmas. Let us
first recall Ramsey’s theorem.

Lemma 2.5. (Ramsey’s Theorem) Let c, r, and n
be positive integers with n ≥ crc. Given a c-coloring
of the edges of an n-clique, we can find in polynomial
time a monochromatic r-clique in the coloring.

As an easy corollary, we show that a large (not
necessarily induced) matching implies the existence
of either a large clique, or a large induced biclique, or
a large induced matching.

Lemma 2.6. Let H be a graph and r ≥ 1 a positive
integer. If H contains M510r as a subgraph, then
H either contains Mr as an induced subgraph or H
contains Kr,r as a subgraph. Moreover, we can find
the desired subgraph in polynomial time.

Proof. By Lemma 2.5, every clique with c := 510r

vertices such that the edges are colored one of five
colors contains a clique subgraph of size 2r where all
the edges are the same color.

Let H contain Mc as a subgraph, and let {xi, yi}
for 1 ≤ i ≤ c form the edges of the matching.
Consider the clique on c vertices, with the vertices
labeled 1, . . . , c. We define a 5-coloring of the edges
as follows. For an edge of the clique ij with i < j, we
color the edge:

1. color 1 if no edge of H has one end in {xi, yi}
and one end in {xj , yj},

2. color 2 if xi is adjacent xj ,
3. color 3 if yi is adjacent yj and xi � xj ,
4. color 4 if xi is adjacent yj and xi � xj , yi � yj ,
5. color 5 if yi is adjacent xj and xi � xj , yi � yj ,
xi � yj

where all adjacencies are in the graph H. This defines
a 5-coloring of the edges of the clique. By our choice
of c, there exists a subset of vertices of size 2r inducing
a monochromatic subclique, and we can identify it in
polynomial time. Without loss of generality, we may
assume that the vertices 1 ≤ i ≤ 2r of the clique
induce such a monochromatic clique. If the subclique
has color 1, then H contains an induced matching of
size 2r. If the monochromatic clique has color 2 or 3,
then H contains a clique subgraph of size 2r. Finally,
if the subclique has color 4 (respectively, 5), then the
vertices {x1, . . . , xr} ∪ {yr+1, . . . , y2r} (respectively,
{y1, . . . , yr}∪{xr+1, . . . , x2r}) induce a Kr,r subgraph
of H. �

Let G be a graph. Let T ⊆ V (G) be an
independent set where degG(v) = 1 for all v ∈ T ,
and let H be a graph with V (H) = T . We define the
set of truncated valid paths to be the set

P = {P − T : P is a valid path.}

Note that by our assumptions on T , every element of
P is a path. Note as well that given G, T , and H, for
any setX ⊆ V (G), we can test whetherG[X] contains
an element of P in time O(|V (G)|+ |E(G)|+ |E(H)|).

Lemma 2.7. Let G be a graph. Let T ⊆ V (G) be an
independent set where degG(v) = 1 for all v ∈ T , and
let H be a graph with V (H) = T . Let P be the set
of truncated valid paths. Let T ′ ⊆ T be a subset such
that

i. H[T ′] contains a perfect matching and
ii. T ′ is P-free in G− (T \ T ′).

There exists an algorithm which takes as input G,
T , H, and T ′ and produces in output one of the
following:

1. a subset Z of at most |T ′|(|T ′| + 3) vertices
intersecting every valid path in G;

2. a separation (X,Y ) of G − T of order at most
|T ′| + 2 such that both X and Y contain an
element of P;

3. a subset T̄ such that T ′ ⊆ T̄ ⊆ T , |T̄ | = |T ′|+ 2,
H[T̄ ] contains a perfect matching, and T̄ is P-
free in G− (T \ T̄ ).



The algorithm runs in time 4|T
′|((|V (G) − T | +

|E(G)|)O(1).

Proof. Let G, T , H, and T ′ be given. Let |V (G) −
T | = n, |E(G)| = m, |E(H)| = m′, and |T ′| = t.
By our assumptions on T , P − T is a (non-empty)
path for every valid path P . Thus, any set of vertices
intersecting every element of P also intersects every
valid path.

Let G′ denote the graph G − (T \ T ′). We first
find a separation (X,Y ) of G′ which is tight for the
pair (G′, T ′) of minimal order. By assumption, (X,Y )
has order t. Lemma 2.4 allows us to do this in time
4t(n+t)O(1). Note, we are using here that we can test
for elements of P in time O(n+m+m′). Without loss
of generality, we may assume that E(G[V (X ∩Y )]) is
contained in E(X).

We can determine in time O(n + m + m′) if the
separation (X−T, Y−T ) ofG′−T contains an element
of P in X − T as well as Y − T . If so, we return the
separation (X − T, Y − T ) satisfying 2.

We determine in time O(n + m + m′) if X ∩ Y
intersects every element of P. If it does, we return
X ∩ Y satisfying 1. Thus, we may assume that all
elements of P intersect a vertex of Y −X and at least
one element of P is contained in Y −X.

Let the vertices of X∩Y be {x1, x2, . . . , xt}. Each
vertex xi has a neighbor in Y−X, lest (X,Y−xi) form
a separation of order t − 1 violating our assumption
that T ′ is free. Arbitrarily fix x′i to be a neighbor
of xi in Y − X for all i = 1, . . . , t. Let P ′i be the
set of elements of P contained in Y − (V (X)∪ {x′i}).
For each i = 1, . . . , t, we find a P ′i-tight separation
(Ui,Wi) for the pair (Y, V (X ∩ Y ) ∪ x′i) of minimal
order using the algorithm of Lemma 2.4. We can do
this in time 4t(n+ t)O(1).

Let Z :=
⋃t

1(Ui ∩ Wi) ∪ (X ∩ Y ) ∪ T ′. Then
|Z| ≤ t(t+1)+2t = t(t+3). If Z intersects every valid
path, we return Z to satisfy 2. We can check this in
time O(n+m+m′), and therefore proceed assuming
that there exists an valid path P̄ which is disjoint from
Z. Fix such a path P̄ for the remainder of the proof;
let P = P̄ − T and let T̄ = T ′ ∪ {V (P̄ ) ∩ T}. Given
that the endpoints of P̄ are H-adjacent, it follows
that H[T̄ ] contains a perfect matching. We test in
time 4t(n+m)O(1) if T̄ is P-free in G− (T \ T̄ ). If it
is, we return T̄ satisfying 3.

Assume, to reach a contradiction, that T̄ is not
P-free in G− (T \ T̄ ). In time 4t(n+m)O(1), we find
a tight separation (C̄, D̄) for the pair (G− (T \ T̄ ), T̄ )
of minimum order. It follows from Observation 1 that
(C̄, D̄) is a separation of order either t or t + 1 with
T̄ ⊆ V (C̄). We check in time O(m + n + m′) if
C̄ contains an element of P. If it does, we return
(C̄−T, D̄−T ) as a separation satisfying 2. Thus, we

may assume that no element of P is contained in C̄.
Let (C,D) be the separation (C̄ − (T̄ \ T ′), D̄ −

(T̄ \T ′)) of the graph G′ after deleting the two vertices
T̄ \ T ′. By Observation 1, (C,D) is P-tight for the
pair (G′, T ′). Thus (C,D) as well has order either t
or t+1, implying that at most one of the two vertices
T̄ \ T ′ is contained in C̄ ∩ D̄. We conclude that since
the path P is not contained in C that it intersects
C ∩D in at least one vertex, and if the intersection is
exactly one vertex, then (C,D) has order strictly less
than the order of (C̄, D̄), namely the order of (C,D)
is equal to t.

We now show that (C,D) has order t + 1 and
X ⊆ C. We check in time O(n + m + m′) whether
(C ∩ D) ∪ (X ∩ Y ) intersects every element of P.
If so, we return a set satisfying 1. Thus, we may
assume that there exists an element P ′ ∈ P which
is contained in (D − C) ∩ (Y − X). The separation
(X∩C, Y ∪D) separates T ′ from the element P ′ of P;
thus it has order at least t. It follows that the order
of the separation (X ∪C, Y ∩D) must be of the same
order as the separation (C,D). If (X ∪C, Y ∩D) has
order t, it follows that (C,D) = (X,Y ); but this is a
contradiction as P intersects C ∩ D and was chosen
to be disjoint from X ∩ Y . We conclude that (C,D)
has order t + 1. If C ( X ∪ C, then (X ∪ C, Y ∩D)
contradicts the tightness of (C,D). This proves the
claim that (C,D) has order t+ 1 and X ⊆ C.

The path P intersects C ∩ D in at least two
vertices since some internal vertex of P must intersect
D − C; it follows that there is at least one vertex
of X ∩ Y which is contained in C − D, say xi, and
therefore x′i is contained in C as well. Consider the
separation (Ui,Wi). By Lemma 2.1, Ui ∩ C = X.
However, we have just showed that vertex x′i is also
an element of Ui ∩ C.

This contradiction shows that T̄ is P-free in
G − (T \ T̄ ), completing the proof of correctness for
the algorithm. The total runtime is 4t(n+m)O(1), as
desired. �

We are now ready to proceed with the proof of
Theorem 2.1.

Proof. (of Theorem 2.1.) Let G, T , H, k, and r
be given. Let n = |V (G) − T |, m = |E(G)|, and
m′ = |E(H)|. Let P be the set of truncated valid
paths.

Beginning with T ′ = ∅, we reiterate the algorithm
from Lemma 2.7 up to 510(k+r) times to find one of
the following:

1. a subset Z of at most 4 · 520(k+r) vertices in-
tersecting every path in G whose endpoints are
H-adjacent;



2. a separation (X,Y ) of G − T of order at most
2 · 510(k+r) such that both X and Y contain an
element of P;

3. a subset T ′ such that T ′ ⊆ T , |T ′| = 2 · 510(k+r),
H[T ′] contains a perfect matching, and T ′ is P-
free in G− (T \ T ′).

At each iteration of the algorithm from Lemma 2.7,
note that |T ′| ≤ 2 · 510(k+r) − 2, so that if we ever
find the hitting set Z in outcome 1 of Lemma 2.7,
|Z| ≤ (2 · 510(k+r) − 2)(2 · 510(k+r) + 1) ≤ 4 · 520(k+r),
as desired.

Given the runtime of the algorithm from Lemma
2.7, we find one of the outcomes 1-3 above in time

42·5
10(k+r)

(n+m)O(1) · 510(k+r). If we find the hitting
set in outcome 1, we return Z and the algorithm
terminates. Thus, we may assume we find either
outcome 2 or 3.

Assume, as a case, we find a separation (X,Y )
of G − T satisfying outcome 2. We find valid paths
PX and PY such that PX − T (resp. PY − T ) is
contained in X (resp. Y ). This can be done in time
O(n + m + m′). Define the graphs GX with vertex
set V (X) \ V (Y ) along with the vertices of T − PY
with a neighbor in X − Y and edge set consisting of
every edge with at least one end in V (X) \ V (Y ).
We analogously define GY . Let TX = V (GX) ∩ T
and similarly define TY . We can find GX , GY ,
TX , and TY in time O(n + m). Similarly, we find
the induced subgraphs HX and HY with vertex sets
T ∩V (GX) (T ∩V (GY ), respectively) in time O(m′).
Let nX and mX (nY and mY ) be |V (GX) \ T | and
|E(GX)| (resp. |V (GY )\T | and |E(GY )|). Note that
nX + nY ≤ n and mX + mY ≤ m. We recursively
run the algorithm on GX , HX , TX , k − 1 and on
GY , HY , TY , k − 1. The runtime of the recursive

calls is 43·5
10(k+r)

[(nX + mX)O(1) + (nY + mY )O(1)].
If we find k − 1 valid paths in X or Y , we return
these paths along with either the path PX or PY and
the algorithm terminates. If we find sets ZX and ZY
hitting all the valid paths in the respective subgraphs,
we return the set ZX ∪ ZY ∪ V (X ∩ Y ). Note that

|ZX ∪ ZY ∪ V (X ∩ Y )|
≤ 4 · 520(k−1+r) + 4 · 520(k−1+r) + 2 · 510(k+r)

≤ 4 · 520(k+r)

as desired. Finally, if we find a subset of TX or TY
inducing a matching of size r, we return the subset to
satisfy outcome 3.

We conclude that we find the set T ′ satisfying
outcome 3 in the repeated iterations of the algorithm
of Lemma 2.7. By Lemma 2.6, in polynomial time we
can either find a subset of T ′ inducing a matching of

size t in H, or find subsets B1, B2 ⊆ T ′, B1 ∩B2 = ∅,
and |B1| = |B2| = k such that every vertex in B1 is
H-adjacent every vertex in B2. If we find an induced
matching of size t in H, we return that subgraph; thus
we may assume we have subsets B1 and B2 as above.

We attempt to find k disjoint paths linking B1

and B2 in G− (T \ T ′). If such paths exist, then we
have found k disjoint valid paths as desired. Thus,
we may assume there exists a separation of order at
most k − 1 separating the sets B1 and B2. Assume
we include all the vertices of T ′ \ V (B1 ∪ B2) in
the separator, and we conclude that there exists a
separation (X ′, Y ′) of order at most |T ′ \ V (B1 ∪
B2)| + k − 1 with B1 ⊆ V (X ′) and B2 ⊆ V (Y ′) and
T ′ \V (B1∪B2) ⊆ X ′∩Y ′. Moreover, we can find the
separation (X ′, Y ′) in polynomial time. We check in
time O(n + m + m′) whether X ′ − (B1 ∪ (X ′ ∩ Y ′))
and Y ′ − (B2 ∪ (X ′ ∩ Y ′)) contain an element of P.
If not, we return (X ′ ∩ Y ′) ∪ B1 ∪ B2 as a set of at
most |T ′|+ k− 1 vertices intersecting all valid paths.
Otherwise, without loss of generality, we assume
Y ′ − (B1 ∪ (X ′ ∩ Y ′)) contains an element of P. The
separation (X ′∪B2, Y

′) is a separation of G−(T \T ′)
of order at most |T ′| − 1 with T ′ ⊆ V (X ′ ∪ B2)
separating T ′ from an element of P, contrary to our
assumptions on T ′. �

3 Excluding induced matchings and skew
bicliques: the exact FPT algorithm

The goal of this section is to prove the algorithmic
part of Theorem 1.3: an FPT algorithm for Maxi-
mum Disjoint H-Paths if H does not contain ar-
bitrarily large induced matchings and skew bicliques.
We state the algorithm in a robust way: even if the
demand graph H contains large induced matchings
and skew bicliques, the algorithm works, but either
returns a correct answer or returns a large induced
matching or a skew biclique of the demand graph H.

Theorem 3.1. There is an algorithm that, given an
instance (G,T,H, k) of Maximum Disjoint Paths
and an integer r, in time f(k, r) · nO(1) either

• finds k pairwise vertex-disjoint valid paths,
• correctly states that there is no set of k pairwise

vertex-disjoint valid paths,
• returns an induced matching of size r in H, or
• returns an induced skew biclique of size 2r in H.

We do not estimate the function f(k, r) of Theo-
rem 3.1 here, but as the algorithm eventually depends
on the Disjoint Paths algorithm (Theorem 1.1), it
is a tower of some number of exponentials.

Similarly to Section 2, by attaching a new degree-
1 vertex to every terminal and moving the endpoints



of the demand edges to these vertices, we may assume
that T is an independent set of degree-1 vertices.
As an opening step, we invoke the algorithm of
Theorem 2.1 from Section 2. If it returns a solution
with k pairwise disjoint valid paths, then we are done.
Otherwise, the algorithm returns a hitting set Z of
size 2O(k+r) that covers every valid path, that is, for
any connected component C of G−Z, no two vertices
of V (C) are adjacent in H. As every terminal is
degree-1, we may assume that Z is disjoint from T :
if some terminal t is in Z, then we may replace it
with its unique neighbor. In this section, we assume
that such a set Z is available and use the structural
information given by Z to solve the problem.

If the number of terminals can be bounded by a
function of k, then we can enumerate every sequence
(s1, t1), . . . , (sk, tk) of k pairs of terminals such that
si and ti are adjacent in H and invoke the algorithm
of Theorem 1.1 for each such sequence. Therefore, our
goal is to reduce number of terminals to a constant
depending only on k. The main tool for this reduction
is the notion of irrelevant terminals.

Given an instance (G,T,H, k) of Maximum Dis-
joint Paths, we say that a terminal t ∈ T is ir-
relevant if (G,T,H, k) is a yes-instance if and only
(G,T − t,H, k). Note that, formally, if (G,T,H, k)
is a no-instance, then every terminal is irrelevant. In
a yes-instance, if there are more than 2k terminals,
then some terminal is surely irrelevant. However, the
main question is whether we can identify provably ir-
relevant terminals in a reasonable running time. The
main technical result of the section is showing that
if we have a bounded-size hitting set Z of the valid
paths and there are many terminals, then we can iden-
tify an irrelevant terminal in FPT time. Therefore,
we can remove that vertex from the set of terminals
and repeat the process until the number of terminals
becomes bounded by a constant depending only on k.
We formulate the following result in such a way that
the algorithm either finds an irrelevant terminal, a
solution with k disjoint paths, or one of the forbidden
induced subgraphs in H (induced matchings or skew
bicliques).

Lemma 3.1. For every k, r and z, there is a constant
Ik,r,z such that the following holds. Let (G,T,H, k) be
an instance of Maximum Disjoint Paths, let r be
an integer, and let Z ⊆ V (G) \ T be a set of at most
z vertices such that G − Z does not contain a valid
path. If |T | > Ik,r,z, then in time f(k, r, z) ·nO(1), we
can either

• find an irrelevant terminal x ∈ T ,
• a set of k pairwise disjoint valid paths,
• return an induced matching of size r in H, or

• return an induced skew biclique of size 2r in H.

Theorem 3.1 follows easily from Lemma 3.1 and
Theorem 1.1.

Proof. (of Theorem 3.1) Let us modify first the
instance such that T is an independent set of degree-
1 vertices in G. Let us invoke the algorithm of
Theorem 2.1. If it returns a solution with k vertices or
an induced matching of size r in H, then we are done.
Otherwise, we get a set Z of vertices that covers every
valid path. We may assume that Z is disjoint from T ,
as we can replace any terminal in Z with its unique
neighbor: the resulting set still has the property that
covers every valid paths.

If |T | > Ik,r,z, then we invoke the algorithm of
Lemma 3.1. If it returns an induced matching or a
skew biclique in H, then we are done. Otherwise, if
it returns an irrelevant terminal v, then we remove v
from the set of terminals, that is, we continue with the
instance (G,T \ {v}, H − v, k). We repeat this steps
as long as |T | > Ik,r,z holds. If |T | ≤ Ik,r,z, then
we enumerate every sequence (s1, t1), . . . , (sk, tk)
of pairs of vertices from T such that si and ti are
adjacent in H. There are at most |T |2k ≤ I2kk,r,z such
sequences, which is number that can be bounded by a
function of k, z, and r only. For each such sequence,
we use Theorem 1.1 to find disjoint paths connecting
these pairs of vertices. It is clear that the Maximum
Disjoint Paths instance has a solution if and only if
the algorithm of Theorem 1.1 returns k disjoint paths
for at least one of these sequences. �

The proof of Lemma 3.1 appears in Sections 3.1–
3.4. Let us review here the main ideas of the proof.

Handling large cliques in H. As a first step,
we show how to find an irrelevant terminal given a
large clique K of H (Section 3.1). The special case of
the disjoint paths problem when the demand pattern
is a clique is a well-understood problem and we can
use standard polynomial-time algorithms to find k
disjoint paths with endpoints in K. If there are k
such paths, then they form a solution of the instance.
Otherwise, a classical result of Gallai [8] shows that
there is a small set S of vertices that cover every path
with both endpoints in K, or in other words, every
connected component of G− S contains at most one
vertex of K. Then we use this information to identify
a vertex of K that is an irrelevant terminal.

Lemma 3.2. There is polynomial-time algorithm
that, given an instance of Maximum Disjoint
Paths and a clique K of H having size 10k2, either

• returns a set of k pairwise disjoint valid paths,
or



• returns an irrelevant terminal t.

Separations and representative sets. Given
a component C of G− Z, we can define a separation
(A,B) with C = V (A)\V (B), which has the property
that no two vertices of A are adjacent in H. The
main technical part of the proof is showing that if A
contains many terminals in such a separation, then
we can find an irrelevant vertex.

Lemma 3.3. For every k, r and z, there is a constant
Isepk,r,z such that the following holds. Let (A,B) be a

separation of order at most z with |T ∩V (A)| > Isepk,r,z,
V (A) ∩ V (B) disjoint from T , and H has no edge in
V (A). In time f(k, r, z) · nO(1), we can either

• find an irrelevant terminal x ∈ T ∩ V (A),
• return a set of k pairwise disjoint valid paths,
• return an induced matching of size r in H, or
• return an induced skew biclique of size 2r in H.

Given a solution and a separation (A,B), let us
focus on the part of the solution inside A. An obvious
and standard way of approaching the problem would
be to define an equivalence relation on these partial
solutions, where two partial solutions are equivalent
if any way of extending one of them to a full solution
with edges in B is also a valid extension of the
other partial solution. Let us enumerate one partial
solution from each equivalence class. If a terminal
t in A is not used by any of the enumerated partial
solutions, then it is irrelevant: if a partial solution is
using t, then there is an equivalent partial solution
not using t, hence the solution can be modified not to
use t. If the number of equivalence classes is bounded
by a constant, then this gives a way of finding an
irrelevant terminal if the number of terminals in A is
larger than a constant.

Unfortunately, in our problem, the number of
equivalence classes cannot be bounded by any func-
tion of k and the size of the separation. A partial
solution contains paths connecting a subset T ′ of ter-
minals in A to the separator V (A) ∩ V (B), and the
equivalence class of the partial solution depends on
what exactly this subset is, as it determines which
terminals can complete these paths to valid paths
of the solution. Therefore, the number of different
types a partial solution can have cannot be bounded
by a function of k and the order z of the separa-
tion only: it depends also on the number |T | of ter-
minals and can be as large as Ω(|T |z). For exam-
ple, let G be a star with center v and 2n leaves a1,
. . . , an, b1, . . . , bn. Let A = G[{v, a1, . . . , an}] and
B = G[{v, b1, . . . , bn}]. Now (A,B) is a separation of
order 1. Let T = V (G)\{v} and let H be the match-
ing with edges a1b1, . . . , anbn. Let k = 1. Now for

1 ≤ i ≤ n, the partial solutions consisting of the single
edge aiv are in different equivalence classes: the edge
vbi extends aiv to a solution, but it does not extend
ajv for any j 6= i. Therefore, there are n equivalence
classes of partial solutions. By taking disjoint unions
of such stars, the reader may modify this example for
larger k = z such that the number of terminals is 2kn
and the number equivalence classes is nk.

One may hope that by excluding large induced
matchings and large skew bicliques, the number of
equivalence classes can be bounded by a constant.
Let us point out by a simple example that this is not
the case. Let us modify the example in the previous
paragraph such that H is now a complete bipartite
graph minus the edges aibi for 1 ≤ i ≤ n. Observe
that H does not contain large induced matchings and
large induced skew bicliques. Again, for 1 ≤ i ≤ n,
the partial solutions consisting of the single edge
aiv are in different equivalence classes: the edge vbi
extends ajv to a solution for any j 6= i, but it does not
extend aiv. Therefore, again we have n equivalence
classes of partial solutions.

We get around this problem using the idea of rep-
resentative sets. We show that, even though the valid
partial solutions in a small separation may form an
unbounded number of equivalence classes, they have a
bounded-size subset that is representative in the sense
that if any partial solution can be extended to a cor-
rect solution, then one of the partial solutions in the
representative set can also be extended to a correct
solution. Continuing our example from the previous
paragraph, even though there are n incomparable par-
tial solutions, there is a representative set consisting
of only two partial solutions, the edge a1v and the
edge a2v. Indeed, if a solution contains the edge vb1,
then the part of the solution in A can be replaced with
a2v; if a solution contains the edge vbi for 1 < i ≤ n,
then the part of the solution in B can be replaced by
a1v. We show how to find a representative set of par-
tial solutions of bounded size. Then any terminal in A
that is not used by any of these partial solutions can
be considered to be irrelevant. The bound and the
algorithm relies heavily on the assumption that the
graph H does not contain large cliques, large induced
matchings, skew bicliques graphs; or more precisely,
the algorithm either works correctly, or returns one
such graph. If we find a clique, then we can invoke
Lemma 3.2. By the specification of Lemma 3.1, the
induced matchings or skew biclique can be returned.
The concept of representative sets has been used in
the design of FPT algorithms [21, 6, 7, 18, 16], but
our application does not follow from any of the ear-
lier technical statements; in particular, the fact that
this approach works precisely when there are no larges



cliques, bicliques, or matchings is quite specific to our
problem.

On a high level, the proof of Lemma 3.3 goes the
following way. Consider those paths of the solution
that cross the separator and have one endpoint in A
and one in B. The endpoints in A form a vector a and
the endpoints in B form a vector b. These two vectors
are compatible in the sense that the j-th coordinate
of a is adjacent in H with the j-th coordinate of
b. The partial solution connects the vertices in a
to the separator V (A) ∩ V (B). If we want to replace
the partial solution with another partial solution that
connects a different set a′ of vertices to the separator,
then we have to make sure that the new vector a′ is
also compatible with the vector b. Therefore, if we
classify the partial solution according to the vector of
terminals connected to the separator, then we have
to find a representative subset of these vectors in the
sense that if some vector a is compatible with some
vector b, then the representative subset also contains
a vector a′ compatible with b. In Section 3.2, we
consider this abstract problem on vectors, and show
(assuming that H has no large induced matching or
induced skew biclique) how we can find a bounded-
size representative set of vectors. Of course, our
problem is more complicated than just matching these
vectors, for example, a path in the solution can cross
the separator several times. In Section 3.3, we address
these issues by classifying the partial solutions into a
bounded number of types according (mostly) to what
happens at the separator. We conclude the proof of
Lemma 3.3 in Section 3.3.

Reducing the number of components. Fi-
nally, after we reduced the number of terminals in
each component of G− Z with repeated applications
of Lemma 3.3, our goal is to reduce the number of
components of G−Z that contain terminals. In Sec-
tion 3.4, we show that this can be done quite easily by
a simple marking procedure. The proof relies on the
fact that the number of terminals is bounded in each
component. Thus it does not seem to be easy to do
the reduction of the number of components before the
reduction of the number terminals in the components.

3.1 Handling cliques In this section, we discuss
how to find an irrelevant vertex if we have a large
clique in the demand graph H (Lemma 3.2 above).
The reason why we are treating this special case
separately is that a combinatorial argument of the
following section (Lemma 3.4) works only if we can
assume that there are no large induced matchings,
skew bicliques, and cliques in the demand graph H.
By the specification of Theorem 3.1, if we encounter
large induced matchings or skew bicliques, then we

may stop, but there is no reason why large cliques
cannot appear in the demand graph H. Therefore,
we need some argument to handle large cliques, and
this is what we provide in this section. Note that
even if we have a procedure handling large cliques,
we cannot say the we apply it exhaustively on every
sufficiently large clique of H and after that it can
be assumed that H has no large cliques: finding a
clique of size k is W[1]-hard. Instead, what we do
is whenever the algorithm described in the following
section fails because it finds a a large clique, then we
invoke this procedure.

The following result was proved by Gallai [8]
in a combinatorial form, the algorithmic version is
folklore:

Theorem 3.2. (Gallai [8]) Given an undirected
graph G, a set A ⊆ V (G) of vertices, and an inte-
ger k, we can find in polynomial time either

• a set of k pairwise vertex-disjoint paths with
endpoints in A, or

• a set S of at most 2k−2 vertices such that every
component of G− S contains at most one vertex
of A \ S.

Using Theorem 3.2 on a sufficiently large clique
K of H, we may either find k valid paths forming a
solution or we can identify a terminal of K that can
be always avoided in a solution.

Proof. (of Lemma 3.2) By Theorem 3.2 applied to
graph G, vertices K, and integer k, we can find
in polynomial time either k pairwise vertex-disjoint
paths with endpoints in K, or a set S of size at most
2k−2 such that every component of G−S contains at
most one vertex of K. In the former case, we return
this set of k paths as a valid solution. In the later
case, let S′ ⊆ S contain a vertex v ∈ S if there are at
least 5k + 1 components of G − S that are adjacent
to v and intersect K (in exactly one terminal). This
means that there are at most 5k|S \ S′| ≤ 5k|S| ≤
5k · (2k − 2) = 10(k2 − k) components C of G − S
with C ∩K 6= ∅ and N(C) 6⊆ S′. As |K| ≥ 10k2 and
hence |K \S| ≥ 10k2−(2k−2) > 10(k2−k)+k, there
exists k components C1, . . . , Ck with |Ci ∩ K| = 1
and N(Ci) ⊆ S′. If each of these k components fully
contains a valid path, then picking a valid path from
each of them gives a solution that we can return.
Otherwise, there is a component C of G − S with
C ∩K = {t}, N(S) ⊆ S′, and not containing a valid
path.

We claim that removing t from the set of termi-
nals gives an equivalent instance. That is, we show
that any solution containing a path P with endpoint
t can be modified in such a way that it does not use t.



By the choice of C, there is no valid path in C, hence
we know that P is not contained fully in C. Let v
be the vertex of N(C) ⊆ S′ that is closest to t on
P . As v ∈ S′, there are at least 5k + 1 components
of G− S′ intersecting K and adjacent to v. At most
k− 1 of them can contain fully a path of the solution
(different from P ) and at most 2|S| ≤ 4k of them can
contain a path going intersecting |S| (observe that a
path containing x vertices of |S| can intersect at most
x + 1 ≤ 2x components). Therefore, there are two
such a components C1, C2 disjoint from every path
of the solution; let C1∩K = {t1} and C2∩K = {t2}.
Now the path P can be replaced by a path connecting
t1 and t2 via v. This proves the claim that removing t
from the set of terminals gives an equivalent instance.
�

3.2 Representative sets for vectors of vertices
In this section, we prove a statement about represen-
tative sets in an abstract setting of compatible vectors
(Lemma 3.6 below). In Section 3.3, we use this result
to prove a bound on the size of representative sets of
partial solutions, which will allow us to find irrelevant
terminals if a component of G−Z contains too many
terminals.

Definition 4. Let H be an undirected graph and let
d be a positive integer. We say that two d-tuples
(a1, . . . , ad), (b1, . . . , bd) ∈ V (H)d are compatible if
ai and bi are adjacent in H for every 1 ≤ i ≤ d. Let
R ⊆ V (H)d be a set of d-tuples. We say that R′ ⊆ R
is a representative subset of R if for every compatible
pair a ∈ R and b ∈ V (H)d, there is an a′ ∈ R′ such
that a′ and b are compatible.

Note that we do not require that the coordinates
of a vector (a1, . . . , ad) be all distinct, and (a1, . . . , ad)
and (b1, . . . , bd) can be compatible even if ai = bj for
some i 6= j (but ai = bi is clearly impossible, as no
vertex of H is adjacent to itself).

We need the following simple Ramsey argument,
whose proof is very similar to the proof of Lemma 2.6
in Section 2.

Lemma 3.4. Let r and n be positive integers with
n ≥ 44r. Let H be a graph and a1, . . . , an, b1, . . . ,
bn be distinct vertices such that

• ai and bi are adjacent for 1 ≤ i ≤ n, and
• ai and bj are not adjacent for 1 ≤ i < j ≤ n.

Then in polynomial time we can find either

• an induced matching of size r in H,
• an induced skew biclique on 2r vertices in H, or
• a clique of size r in H.

The following lemma states that (assuming there
is no large induced matching, skew biclique, or clique
in H) every set of vectors has a bounded-size repre-
sentative subset.

Lemma 3.5. Let H be an undirected graph, r and d
positive integers, and R ⊆ V (H)d a set of d-tuples.
Suppose that there is no induced matching of size r,
induced skew biclique of size r+ r, or clique of size r
in H. Then there is a representative subset R′ ⊆ R
of size at most Rvec

d,r := (d+ 1)d(4
4r).

We prove an algorithmic version of Lemma 3.5. The
straightforward algorithmic statement would be to
say that, given a set R of vectors, a bounded-size
representative set can be found. However, we would
like to find small representative sets efficiently also
for large, implicitly given sets R that would be too
time consuming to enumerate explicitly. Therefore,
we state the algorithmic version of Lemma 3.5 in
a way that R is given by a query procedure that,
given sets A1, . . . , Ad ⊆ V (H), returns a vector a ∈
(A1 × · · · ×Ad) ∩R, if such a vector exists.

Lemma 3.6. Let H be an undirected graph, r and
d positive integers, and R ⊆ V (H)d a set of d-
tuples. Suppose that the set R is given via a query
procedure that, given sets A1, . . . , Ad ⊆ V (H), returns
an a ∈ (A1 × · · · × Ad) ∩ R, or states that no such
vector a exists. There is an algorithm whose running
time is polynomial in n, in Rvec

d,r := (d+ 1)d(4
4r), and

in the running time of the query procedure, and finds
either

• a representative subset R′ ⊆ R of size at most
Rvec
d,r ,

• an induced matching of size r in H,
• an induced skew biclique on 2r vertices in H, or
• a clique of size r in H.

Proof. The algorithm builds a rooted tree where each
node is either empty or contains a compatible pair
(a,b) with a ∈ R and b ∈ V (H)d. Empty nodes
have no children and each nonempty node has exactly
d ordered children. Initially, we start with a tree
consisting of a single empty node.

For a vector b′ ∈ V (H)d, we define the following
search procedure on the tree. We start the procedure
at the root node. If the current node is empty, then
we say that the procedure fails at this empty node.
Otherwise, let (a,b) be the current node. If a and
b′ are compatible, then we declare the search to be
successful. Otherwise, let 1 ≤ j ≤ d be the first
coordinate such that the j-th coordinates of a and b′

are not adjacent. Then we continue the search at the
j-th child of the current node.



Given an empty node u of the tree, we show
how to check whether there are d-tuples a′ =
(a′1, . . . , a

′
d) ∈ R and b′ = (b′1, . . . , b

′
d) ∈ V (H)d such

that a′ and b′ are compatible and b′ fails at u. Con-
sider the path from the root of the tree to the empty
node u. Let (a,b) be a nonempty node on this path
such that the path continues with the j-th child of this
nonempty node. Then the j-th coordinate of a is not
adjacent to the j-th coordinate of b′, while for every
1 ≤ j′ < j, the j′-th coordinate of a is adjacent to the
j′-th coordinate of b′. These requirements together
give a subset Bj ⊆ V (H) of potential values for the
j-th coordinate of b′. Now a vector b′ ∈ V (H)d fails
at u if and only if b′ ∈ B1 × · · · × Bd. Therefore, we
need to find a vector a′ ∈ R that is compatible with
at least one vector in B1 × · · · × Bd. Let Aj contain
every vertex of H that has at least one neighbor in
Bj . Observe that a vector a′ ∈ V (H)d is compati-
ble with at least one vector in B1 × · · · × Bd if and
only if a′ ∈ A1 × · · · × Ad. Therefore, we can use
the query procedure to check the existence of such a
vector a′ = (a′1, . . . , a

′
d) and then we can construct

b′ = (b′1, . . . , b
′
d) ∈ B1 × · · · × Bd by letting b′j be an

arbitrary neighbor of a′j in Bj .
We consider every empty node u (in arbitrary

order) and use the method described in the previous
paragraph to find an a′ ∈ R and a d-tuple b′

compatible with a′ that fails at u. If there is such
a pair (a′,b′), then we replace u with (a′,b′) and
add d empty children to this node. We repeat this
step until no such b′ can be found for any empty
node u. At this point, let us define the set R′ =
{a | (a,b) appears in a nonempty node}, that is, R′
contains the first part of every pair appearing in
the tree. Clearly, we have R′ ⊆ R from the way
new nonempty nodes are introduced into the tree.
Moreover, we claim that R′ is a representative subset
of R. Indeed, for every adjacent pair a′ ∈ R and
b′ ∈ V (H)d, the search procedure for b′ cannot fail at
any empty node u (otherwise we would have extended
the tree at u) and therefore the tree contains a pair
(a,b) such that a ∈ R′ is compatible with b′.

We prove that if the height h of the tree reaches
d(44r), then we can find an induced matching, a
skew biclique, or a clique of the specified size and we
can stop the algorithm. Otherwise, if the algorithm
terminates without stopping this way, then every path
from the root to a leaf contains less than d(44r)
nonempty nodes, and hence the number of nonempty

nodes is at most
∑d(44r)−1
i=0 di ≤ (d+ 1)d(4

4r) = Rvec
d,r .

Therefore, as showed in the previous paragraph, we
obtain a representative subset R′ of size at most Rvec

d,r .
Consider a path from the root to a leaf with

at least d(44r) nonempty nodes. Then there is a

1 ≤ j ≤ d such that it is true for at least n = 44r

nodes on the path that the path continues with the
j-th child of the node. Let (a1,b1), . . . , (an,bn) be
n such nodes, ordered as they appear on the path
from the root to the leaf. Let ai and bi be the j-th
coordinate of ai and bi, respectively. As the pair
(ai,bi) is compatible, we have that ai and bi are
adjacent. Furthermore, consider the execution of the
search procedure when bi failed and the node (ai,bi)
was added to the tree. Note that the tree is extended
only by replacing leaf nodes, thus the ancestors of
(ai,bi) did not change after they were added to the
tree. Therefore, for every 1 ≤ i′ < i, the search
procedure for bi encountered the node (ai′ ,bi′) and
then continued the search with the j-th child of this
node. This means that the j-th coordinate of bi is not
adjacent to the j-th coordinate of ai′ . That is, we get
that ai′ is not adjacent to bi for every 1 ≤ i′ < i ≤ n.
Therefore, the conditions of Lemma 3.4 hold, and we
can use it to return an induced matching, a skew
biclique, or a clique. �

3.3 Representative sets for disjoint paths We
can describe a solution as a subgraph P of G that
is the union of k pairwise-disjoint valid paths. A
partial solution is any subgraph of G that is the union
of disjoint paths (possibly more than k or possibly
with endpoints not in T ). Given a solution P and
a separation (A,B) of G, the partial solution of P
at (A,B) is the subgraph Π of P induced by V (A).
To define representative sets of partial solutions, we
need to define first what it means to replace a partial
solution with another:

Definition 5. Let P be a solution, let (A,B) be a
separation of G, and let Π be a partial solution at
(A,B). We say that Π is replacable at (A,B) in P
if the subgraph P ′ = (P −E(G[V (A)]))∪Π is a valid
solution. In this case, we say that P ′ is obtained by
replacing Π into P at (A,B).

Definition 6. Let R be a set of partial solutions at
(A,B). We say that R is representative if for every
solution P , there is a Π ∈ R that is replacable into P
at (A,B). We say that a subset R′ ⊆ R represents
R if for every solution P whose partial solution at
(A,B) is in R, there is a Π ∈ R′ that is replacable
into P at (A,B).

The main result of the section is the following:

Lemma 3.7. For every k and z, there is a constant
Rz,r such that the following holds. Let (A,B) be a
separation of order z such that V (A)∩V (B) is disjoint
from T and H has no edge in V (A). Let R contain
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Figure 1: A partial solution at (A,B) (Lemma 3.7).
Set S0 = {b1, b2} contains the vertices of the two
paths of type (C0). There are four paths of class
(C1), connecting {v1, v2, v3, v4} to J = {b3, b4, b5, b6}.
The three paths of type (C2) define the matching
M = {b7b8, b9b12, b10b11}. Assuming the ordering
(b3, b4, b4, b6) of J , the inner vector is (v1, v2, v3, v4)
and the outer vector is (v7, v8, v9, v10).

the partial solution at (A,B) for every solution. In
time f(r, z) · nO(1), we can either

• find a representative set R′ ⊆ R of partial
solutions at (A,B) with |R′| ≤ Rz,r,
• return an induced matching of size r in H,
• return an induced skew biclique on 2r in H, or
• return a clique of r in H.

Proof. Let S = V (A) ∩ V (B). Let P be a solution
and let Π be the partial solution of P at (A,B). As H
has no edge in V (A), every path of the partial solution
contains a vertex of S, hence there are at most z paths
in the partial solution. Each path P can be classified
into exactly one of the following three classes (recall
that S ∩ T = ∅); see Figure 1:

(C0) P consists of single vertex of S.
(C1) P has length at least one and has one endpoint

in T and one endpoint in S.
(C2) P has length at least one and has both endpoints

in S.

The paths of class (C2) define a (not necessarily
perfect) matching M of S the obvious way. We define
the join vertex of a path P of class (C1) to be its
endpoint in S. Let J ⊆ S be the join vertices of the
paths of class (C1). We define the type of a partial
solution ΠA to be the triple τ = (S0, J,M), where

• S0 ⊆ S is the set of vertices used by paths of
class (C0).
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B
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b8 b9 b10 b11b3 b4 b5
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v7 v8 v9
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Figure 2: A partial solution having the same type as
the partial solution in Figure 1, and replacing it at
(A,B). The inner vector is (v′1, v

′
2, v
′
3, v
′
4). Assuming

H contains the edges v′1v7, v′2v8, v′3v9, v′4v10, the
result of the replacement is a valid solution.

• J ⊆ S is the set of join vertices of paths of
class (C1),

• M is the matching of S defined above based on
the paths of class (C2).

Note that the number of types is at most T := 2z ·2z ·
zz. Let Rτ ⊆ R contain every partial solution of type
τ . For every type τ , we construct a representative
subset R′τ ⊆ Rτ . It is clear that the union R′ of R′τ
for every type τ is representative subset of R.

We construct R′τ for a type τ = (S0, J,M)
the following way. Let us fix an ordering of J =
(v1, . . . , vd) (note that d ≤ z). For a partial solution
Π of type τ , let Pj be the path of class (C1) whose
join vertex is vj . Let aj be the other endpoint of Pj .
We define the d-tuple a = (a1, . . . , ad) ∈ V (H)d as
the inner vector of the partial solution Π.

Let Rτ be the inner vectors of the partial solu-
tions in Rτ . We would like to invoke Lemma 3.6 on
the set Rτ . For this purpose, we need to implement
the query procedure. We need to test the existence
of a partial solution of type τ whose inner vector is
in A1 × · · · × Ad. We reduce this question to solv-
ing an instance of the k-disjoint paths problem. As
we have observed earlier, each partial solution of type
τ consist of a set of at most z vertex-disjoint paths.
Let us start with the graph A − S0: we remove the
set S0, as it is reserved for paths of class (C0). For
every pair (v1, v2) in the matching M , we introduce
a corresponding pair in the constructed Disjoint
Paths instance: the paths of the solution connect-
ing these pairs will correspond to the requested paths
of class (C2) in the partial solution. To handle paths
of type (C1), let us introduce a vertex sj adjacent to



every vertex of Aj for every 1 ≤ j ≤ d. Then we
specify the pairs (sj , vj) for every 1 ≤ j ≤ d (recall
that the vj ’s are the vertices of J). Let us use the al-
gorithm of Theorem 1.1 to find vertex-disjoint paths
with the specified endpoints. If such a collection of
disjoint paths exist, then we obtain, after removing
the vertices s1, . . . , sd, a set of disjoint paths in A.
These paths form a partial solution of type τ whose
inner vector is in A1× · · · ×Ad, hence the query pro-
cedure can return this partial solution. Conversely, if
there exists a partial solution Π of type τ having inner
vector in A1 × · · · × Ad, then it gives a solution for
the constructed instance of Disjoint Paths. This
implies that the algorithm of Theorem 1.1 finds a so-
lution for this instance of Disjoint Paths, resulting
in a partial solution Π′ of type τ and inner vector in
A1 × · · · ×Ad.

Using the query procedure described in the pre-
vious paragraph, we may invoke Lemma 3.6 on the
set Rτ . If we get an induced matching, induced skew
biclique, or a clique, then we are done. Otherwise,

we get a representative subset R′τ of Rτ having size
at most Rvec

d,r . Note that each vector a introduced

into R′τ was returned by the query procedure, which
means that the query procedure found a partial solu-
tion of type τ and inner vector a; letR′τ ⊆ Rτ contain
every such partial solution. Finally, we construct the
set R′ as the union of R′τ for every type τ ; as both
the number of types and the size of each R′τ can be
bounded by a function of r and z only, the size of R′
can be bounded by a constant Rz,r depending only
on r and z.

We claim that R′ is also a representative set of
partial solutions at (A,B). Let P be a solution and
let Π ∈ R be its partial solution at (A,B). Suppose
that Π has type τ = (S0,M, J) and let a be the
inner vector of Π. Recall that we fixed an ordering
(v1, . . . , vj) of J , there is a path Pj of type (C1) with
endpoints aj and vj for every 1 ≤ j ≤ d, and the inner
vector is (a1, . . . , aj). For every 1 ≤ j ≤ d, let bj be
the other endpoint of the path of aj in the solution
P . We define b = (b1, . . . , bd) ∈ V (H)d as the outer
vector of the partial solution Π in P . Observe that the
inner vector a and the outer vector b are compatible.

As a ∈ Rτ and R′τ is a representative subset of Rτ ,
there is an a′ ∈ Rτ that is also compatible with b.
Thus there is a partial solution Π′ ∈ R′τ ⊆ R′ having
inner vector a′.

We claim that replacing Π′ at (A,B) in P gives a
valid solution P ′. If a path P of Q has both endpoints
outside V (A), then there is a corresponding valid path
after the modification: as the two partial solutions
have the same type, the set S0 and the matching M
are the same in both of them. Therefore, whenever P

has an x−y subpath in A for some x, y ∈ S, then this
subpath is a path of class (C0) or (C2) in Π, hence
there is a path with the same endpoints in Π′. If a
path of Q has one endpoint in V (A), then the other
endpoint is outside V (A) (as H has no edge in V (A)).
Therefore, the endpoint of Q in V (A) is the endpoint
of a path of class (C1) of Π. Suppose that this path
connects aj to vj ∈ J and the other endpoint of the
pathQ is bj . As the inner vector a′ of Π′ is compatible
with outer vector b, we get that a′j and bj are adjacent
in H. It follows that P ′ contains a valid path from a′j
to bj (note that this path may reenter V (A) several
times, thus we need to use again that S0 and M are
the same in both partial solutions).

We have shown that Π′ is replacable in P , result-
ing in a solution P ′. Thus we have shown that R′ is
a representative set of partial solutions. �

We are now able to present the proof of
Lemma 3.3.

Proof. (of Lemma 3.3) Let r∗ = max{r, 10k2} and
let Isepk,r,z := k · Rz,r∗ , where Rz,r∗ is the constant in
Lemma 3.7. We invoke the algorithm of Lemma 3.7
on the separation (A,B). If it returns an induced
matching of size r∗ or an induced skew biclique on
r∗ + r∗ vertices, then we are done (as r∗ ≥ r). If
Lemma 3.7 returns a clique of size r∗ ≥ 10k2, then
we invoke Lemma 3.2, which either returns k-disjoint
valid paths or an irrelevant terminal; we are done in
both cases. Otherwise, let R be the representative
set of size at most Rz,r∗ returned by the algorithm of
Lemma 3.7. Each partial solution of R uses at most
k terminals of V (A) ∩ T as endpoints. Therefore, if
we let T ∗ contain every terminal that is an endpoint
of a path in one of the partial solutions in R, then
we have |T ∗| ≤ k|R| ≤ k · Rz,r∗ = Isepk,r,z. The

assumption |V (A)∩T | > Isepk,r,z implies that there is a
t ∈ (V (A) ∩ T ) \ T ∗. We claim that removing t from
the set of terminals does not change the solvability
of the instance. Let P be a solution and let Π be its
partial solution at (A,B). If t is not the endpoint of
path in P , then the solution remains a valid even after
removing t from the set of terminals. Otherwise, as
R is representative, there is a partial solution Π′ ∈ R
that is replacable into P ; let P ′ be the resulting
solution. By the definition, if P ′ has a path ending
in V (A)∩ T , then this terminal is endpoint of a path
in Π′ and hence in T ∗. Therefore, t 6∈ T ∗ is not the
endpoint of any of the paths in P ′. This means that
P ′ is a valid solution after removing t from the set of
terminals and hence t is an irrelevant terminal. �

3.4 Reducing the number of components
With repeated applications of Lemma 3.3, we can re-



duce the number of terminals in each component to at
most a constant Isepk,r,z. The final step of the algorithm
is to reduce the number of components that contain
terminals. (We remark that it would be possible to
reduce also the number of components not having any
terminals at all, as their only role is to provide con-
nectivity to Z, but we do not need this stronger claim
here.)

Lemma 3.8. Let Z ⊆ V (G) be a set of vertices
disjoint from T such that for every component C of
G−Z, we have |T ∩ V (C)| ≤ q and the set T ∩ V (C)
is independent in H. If |T | > 100|Z|4q2, then we can
identify an irrelevant terminal in polynomial time.

Proof. For every ordered pair (z1, z2) of vertices in
Z (possibly with z1 = z2), we mark some of the
terminals. We proceed the following way for the pair
(z1, z2). Let T(z1,z2) contain every ordered pair (t1, t2)
of terminals with the following properties:

• t1 and t2 are adjacent in H.
• There is a t1 − z1 path whose internal vertices

are disjoint from Z.
• There is a t2 − z2 path whose internal vertices

are disjoint from Z.

Clearly, the collection T(z1,z2) can be constructed in
polynomial time. Note that by the requirement that
t1 and t2 are adjacent in H, we have that t1 and
t2 are in different components of G − Z for every
(t1, t2) ∈ T(z1,z2).

Let b = 2|Z|q + 1. First, let us select greedily
a maximal collection of pairs from T(z1,z2) such that
every terminal appears in at most one select pair. If
we find b such pairs, then we mark the (exactly) 2b
terminals appearing in these pairs and we are done
with processing (z1, z2). If we do not find b such
pairs, then this means that we can find a set X of
at most 2(b − 1) terminals such that every pair of
T(z1,z2) contains a terminal from X (either at the first
or second coordinate). Let us mark every terminal
in X. Furthermore, for every u ∈ X, let us mark
b terminals t∗ such that (t∗, u) ∈ T(z1,z2) (or all of
them if there are less than b such terminals). This
completes the description of the marking procedure.
We are considering |Z|2 pairs (z1, z2) and for each
pair, we mark at most max{2b, 2(b − 1) · (b + 1)} =
2(b − 1) · (b + 1) terminals. Therefore, if there are
more than 100|Z|4q2 > |Z|2 ·2(b−1)(b+1) terminals,
then there is a unmarked terminal. We claim that
any unmarked terminal is irrelevant.

Let t be an unmarked terminal and consider a
solution to the instance where t is the endpoint of a
path P of the solution; let u be the other endpoint of
P . By assumption, G − Z has no valid path and Z

is disjoint from T , thus path P contains at least one
vertex of Z. Starting at v, let z1 and z2 be the first
and last vertices of P in Z, respectively (it is possible
that z1 = z2). Then path P shows that (t, u) appears
in the collection T(z1,z2). Consider first the case when
the marking procedure for (z1, z2) found b pairs not
sharing any terminals. Observe that the paths of the
solution intersect at most 2|Z| components of G−Z:
each path contains at least one vertex of Z and these
|Z| vertices can break the paths of the solution into
at most 2|Z| subpaths. This means that there are at
most 2|Z|q terminals that are in a component of G−Z
intersected by the solution. Therefore, as we have
found b = 2|Z|q+1 pairs, there is a pair (t1, t2) among
them such that the components of t1 and t2 in G−Z
are disjoint from the solution. As (t1, t2) ∈ T(z1,z2),
the definition of T(z1,z2) implies that t1 and t2 are
adjacent in H (which means that they are in different
components of G− Z). Furthermore, for i = 1, 2, we
can choose a ti − zi path Pi whose internal vertices
are disjoint from Z. This means that the internal
vertices of Pi are in the same component of G−Z as
ti, implying that they are disjoint from the solution.
We modify the solution: we replace the v−z1 subpath
of P with the t1− z1 path P1 and the z2− u subpath
of P with the z2 − t2 path P2. This gives a valid
t1 − t2 path that is disjoint from every other path in
the solution. Therefore, we have found a solution not
involving the terminal t.

Consider now the case when the marking proce-
dure did not find b pairs and hence found a set X of
at most 2(b− 1) terminals. As (t, u) ∈ T(z1,z2), either
t or u is in X. If t is in X, then we marked t, thus
let us assume that u is in X. Then we marked some
terminals t∗ for which (t∗, u) is in T(z1,z1). If t itself
was not marked this way, then we marked b = 2|Z|+1
such terminals t∗. As the solution intersects at most
2|Z| components of G− Z and each component con-
tains at most q terminals, there is a marked terminal
t∗ whose component is disjoint from the solution and
(t∗, u) is in T(z1,z2). By the definition of T(z1,z2), this
means that t∗ and u are adjacent and the component
of t∗ is adjacent to z1. Let us choose a t∗ − z1 path
P ∗ whose internal vertices are in the component of t∗

in G− Z (and hence disjoint from the solution). Let
us modify the path P by replacing the t− z1 subpath
with the t∗ − z1 subpath P . This way, we obtain a
solution not involving the terminal t also in this case,
showing that t is indeed irrelevant. �

We are now ready to prove Lemma 3.1.

Proof. (of Lemma 3.1) Let Ik,r,z := 100z4(Isepk,r,z)
2.

Suppose first that a component C of G− Z contains
more than Isepk,r,z terminals. Then let (A,B) be the



separation of G with V (A) \ V (B) = C and let us
invoke the algorithm of Lemma 3.3. It either returns
an irrelevant terminal, a solution with k paths, an
induced matching in H, or an induced skew biclique
in H; in all cases, we are done. Assume therefore that
every component C of G − Z contains at most Isepk,r,z

terminals. Then the algorithm of Lemma 3.8 gives an
irrelevant terminal. �
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