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Abstract. In the Planar +k vertex problem the task is to find at
most k vertices whose deletion makes the given graph planar. The graphs
for which there exists a solution form a minor closed class of graphs, hence
by the deep results of Robertson and Seymour [19, 18], there is an O(n3)
time algorithm for every fixed value of k. However, the proof is extremely
complicated and the constants hidden by the big-O notation are huge.
Here we give a much simpler algorithm for this problem with quadratic
running time, by iteratively reducing the input graph and then applying
techniques for graphs of bounded treewidth.

1 Introduction

Planar graphs are subject of wide research interest in graph theory. There are
many generally hard problems which can be solved in polynomial time when
considering planar graphs, e.g., Maximum Clique, Maximum Cut, and Sub-
graph Isomorphism [8, 12]. For problems that remain NP-hard on planar
graphs, we often have efficient approximation algorithms. For example, the prob-
lems Independent Set, Vertex Cover, and Dominating Set admit an ef-
ficient polynomial time approximation scheme (EPTAS) [1, 15]. The research for
efficient algorithms for problems on planar graphs is still very intensive.

Many results on planar graphs can be extended to almost planar graphs,
which can be defined in various ways. For example, we can consider possible
embeddings of a graph in a surface other than the plane. The genus of a graph is
the minimum number of handles that must be added to the plane to embed the
graph without any crossings. Although determining the genus of a graph is NP-
hard [20], the graphs with bounded genus are subjects of wide research. A similar
property of graphs is their crossing number, i.e., the minimum possible number of
crossings with which the graph can be drawn in the plane. Determining crossing
number is also NP-hard [10].

In [3] Cai introduced another notation, based on the number of certain ele-
mentary modification steps. He defines the distance of a graph G from a graph
class F as the minimum number of modifying steps needed to make G a member



of F . Here modification can mean the deletion or addition of edges or vertices.
In this paper we consider the following question: given a graph G and an integer
k, is there a set of at most k vertices in G, whose deletion makes G planar?

Since this problem was proved to be NP-hard in [14], we cannot hope to
find a polynomial-time algorithm for it. Therefore, we study the problem in the
framework of parameterized complexity [7]. This approach deals with problems in
which besides the input I an integer k is also given. The integer k is referred to as
the parameter. In many cases we can solve the problem in time O(nf(k)). Clearly,
this is also true for the problem we consider. Although this is polynomial time
for each fixed k, these algorithms are practically too slow for large inputs, even
if k is relatively small. Therefore, the standard goal of parameterized analysis
is to take the parameter out of the exponent in the running time. A problem is
called fixed-parameter tractable (FPT) if it can be solved in time O(f(k)p(|I |)),
where p is a polynomial not depending on k, and f is an arbitrary function. An
algorithm with such a running time is also called FPT.

The standard parameterized version of our problem is the following: given a
graph G and a parameter k, the task is to decide whether deleting at most k
vertices from G can result in a planar graph. Following Cai [3], we will denote
the class of graphs for which the answer is ’yes’ by Planar + kv. This family
of graphs is closed under taking minors, so thanks to the results of Robertson
and Seymour [19, 18], we know that there exists an algorithm with running time
O(f(k)n3) which can decide membership for this class. However, this result is
inherently non-constructive, and so far there is no direct FPT algorithm known
for this problem. In this paper we present an algorithm, which solves the question
in O(f(k)n2) time. The algorithm also returns a solution, i.e., a set of at most
k vertices whose deletion from G results in a planar graph.

Our algorithm is strongly based on the ideas used by Grohe in [11] for com-
puting crossing number. Grohe uses the fact that the crossing number of a graph
is an upper bound for its genus. Since the genus of a graph in Planar+kv cannot
be bounded by a function of k, we need some other ideas. As in [11], we exploit
the fact that in a graph with large treewidth we can always find a large grid
minor [17]. Examining the structure of the graph with such a grid minor, we can
reduce our problem to a smaller instance. Applying this reduction several times,
we finally get an instance with bounded treewidth. Then we make use of Cour-
celle’s Theorem [4], which states that every graph property that is expressible in
monadic second-order logic can be decided in linear time on graphs of bounded
treewidth.

The paper is organized as follows. Section 2 summarizes our notation, Sect.
3 outlines the algorithm, Sect. 4 and 5 describe the two phases of the algorithm.

2 Notation

Graphs in this paper are assumed to be simple, since both loops and multiple
edges are irrelevant in the Planar + k vertex problem. The vertex set and
edge set of a graph G are denoted by V (G) and E(G), respectively. The edges of



Fig. 1. The hexagonal grids H1, H2, and H3.

a graph are unordered pairs of its vertices. If G′ is a subgraph of G then G−G′
denotes the graph obtained by deleting G′ from G. For a set of vertices S in G,
we will also use G− S to denote the graph obtained by deleting S from G.

A graph H is a minor of a graph G, if it can be obtained from a subgraph of
G by contracting some of its edges. Here contracting an edge e with endpoints
a and b means deleting e, and then identifying vertices a and b.

A graph H is a subdivision of a graph G, if G can be obtained from H by
contracting some of its edges that have at least one endpoint of degree 2. A
graph H is a topological minor of G, if G has a subgraph that is a subdivision
of H . G and G′ are topologically isomorphic if they both are subdivisions of a
graph H . If G is a subdivision of H , then an edge-path of G with respect to H
is a path of G corresponding to exactly one edge of H in the natural way (i.e., a
path with inner points only of degree 2, whose vertices are all identified with an
endpoint of a certain edge when obtaining H from G as a topological minor).

The g × g grid is the graph Gg×g where V (Gg×g) = {vij | 1 ≤ i, j ≤ g} and
E(Gg×g) = {vijvi′j′ | |i− i′|+ |j − j′| = 1}.

Instead of giving a formal definition for the hexagonal grid of radius r, which
we will denote by Hr, we refer to the illustration shown in Fig. 1. A cell of a
hexagonal grid is one of its cycles of length 6.

A tree decomposition of a graph G is a pair (T, (Vt)t∈V (T )) where T is a tree,
Vt ⊆ V (G) for all t ∈ V (T ), and the following are true:

– for all v ∈ V (G) there exists a t ∈ V (T ) such that v ∈ Vt,
– for all xy ∈ E(G) there exists a t ∈ V (T ) such that x, y ∈ Vt,
– if t lies on the path connecting t′ and t′′ in T , then Vt ⊇ Vt′ ∩ Vt′′ .

The width of such a tree decomposition is the maximum of |Vt| − 1 taken
over all t ∈ V (T ). The treewidth of a graph G is the smallest possible width of
a tree decomposition of G.

3 Problem Definition and Overview of the Algorithm

We are looking for the solution of the following problem:



Planar + k vertex problem:

Input: A graph G = (V,E) and an integer k.
Task: Find a set X of at most k vertices in V such that G − X is

planar.

Here we give an algorithm A which solves this problem in time O(f(k)n2) for
some function f , where n is the number of vertices in the input graph. Algorithm
A works in two phases. In the first phase (Sect. 4) we compress the given graph
repeatedly, and finally either conclude that there is no solution for our prob-
lem or construct an equivalent problem instance with a graph having bounded
treewidth. In the latter case we solve the problem in the second phase of the
algorithm (Sect. 5) by applying Courcelle’s Theorem concerning the evaluation
of MSO-formulae on bounded treewidth graphs.

According to [17, 2, 16] we know that there is a linear-time algorithm which
can solve the following problem, for fixed integers w and r:

Input: A graph G.
Task: If tw(G) ≤ w then find a tree decomposition of width w, or if

tw(G) > w then find an r × r grid minor in G if there is one.

It is a well-known fact that if a graph of maximum degree 3 is a minor of
another graph, then it is also contained in it as a topological minor. Hence, it will
be convenient to work with hexagonal grids instead of grids. Since a hexagonal
grid with radius i is a subgraph of the (4i−1)×(4i−1) grid, we can conclude that
for each fixed w and r there is a linear-time algorithm that solves the following
modified version of the above problem:

Input: A graph G.
Task: If tw(G) ≤ w then find a tree decomposition of width w, or if

tw(G) > w then find a subdivision of Hr in G if there is one.

According to [17] every planar graph with no minor isomorphic to the r × r
grid has treewidth ≤ 6r−5. Therefore, it is also true that every planar graph with
no minor isomorphic to Hr has treewidth ≤ 6(4r−1)−5 = 24r−11. But adding
k vertices to a graph can increase the treewidth of the graph only by at most k,
so if G ∈ Planar + kv and Hr is not a minor of G, then tw(G) ≤ 24r − 11 + k.
We can summarize this in the following simple claim.

Lemma 1. For arbitrary integers r and k there is a linear-time algorithm B,
which can be run with input graph G, and does the following:

– it either produces a tree decomposition of G of width w(r) = 24r−11 +k, or

– finds a subdivision of Hr in G, or

– correctly concludes that G /∈ Planar + kv.



In algorithm A we will run B several times. As long as we get a hexagonal
grid of radius r as topological minor as a result, we will run Phase I of algorithm
A, which compresses the graph G. If at some step algorithm B gives us a tree
decomposition of width w(r), we run Phase II. (The constant r will be fixed
later.) And of course if at some step B finds out that G /∈ Planar + kv, then
algorithm A can stop with the output ”No solution.”

Clearly, we can assume without loss of generality that the input graph is
simple, and it has at least k + 3 vertices. So if G ∈ Planar + kv, then deleting
k vertices from G (which means the deletion of at most k(|V (G)| − 1) edges)
results in a planar graph, which has at most 3|V (G)| − 6 edges. Therefore, if
|E(G)| > (k+ 3)|V (G)| then surely G /∈ Planar + kv. Since this can be detected
in linear time, we can assume that |E(G)| ≤ (k + 3)|V (G)|.

4 Phase I of Algorithm A

In Phase I we assume that after running B on G we get a subgraph H ′r that is
a subdivision of Hr. Our goal is to find a set of vertices X such that G −X is
planar, and |X | ≤ k. Let PlanarDel(G, k) denote the family of sets of vertices
that have these properties, i.e., let PlanarDel(G, k) = {X ⊆ V (G) | |X | ≤ k and
G−X is planar}. Since the case k = 1 is very simple we can assume that k > 1.

Reduction A: Flat zones. In the following we regard the grid H ′r as a
fixed subgraph of G. Let us define z zones in it. Here z is a constant depending
only on k, which we will determine later. A zone is a subgraph of H ′r which is
topologically isomorphic to the hexagonal grid H2k+5. We place such zones next
to each other in the well-known radial manner with radius q, i.e., we replace each
hexagon of Hq with a subdivision of H2k+5. It is easy to show that in a hexagonal
grid with radius (q − 1)(4k + 9) + (2k + 5) we can define this way 3q(q − 1) + 1
zones that only intersect in their outer circles. So let r = (q−1)(4k+9)+(2k+5),
where we choose q big enough to get at least z zones, i.e., q is the smallest integer
such that 3q(q − 1) + 1 ≥ z. Let the subgraph of these z zones in H ′r be R.

Let us define two types of grid-components. An edge which is not contained
in R is a grid-component if it connects two vertices of R. A subgraph of G is
a grid-component if it is a (maximal) connected component of G − R. A grid-
component K is attached to a vertex v of the grid R if it has a vertex adjacent
to v, or (if K is an edge) one of its endpoints is v. The core of a zone is the
(unique) subgraph of the zone which is topologically isomorphic to H2k+3 and
lies in the middle of the zone. Let us call a zone Z open if there is a vertex in
its core that is connected to a vertex v of another zone, v /∈ V (Z), through a
grid-component. A zone is closed, if it is not open.

For a subgraph H of R let T (H) denote the subgraph of G spanned by the
vertices of H and the vertices of the grid-components which are only attached
to H . Let us call a zone Z flat if it is closed and T (Z) is planar. Let Z be such a
flat zone. A grid-component is an edge-component if it is either only attached to
one edge-path of Z or only to one vertex of Z. Otherwise, it is a cell-component,
if it is only attached to vertices of one cell. As a consequence of the fact that



all embeddings of a 3-connected graph are equivalent (see e.g. [6]), and Z is a
subdivision of such a graph, every grid-component attached to some vertex in
the core of Z must be one of these two types. Note that we can assume that in
an embedding of T (Z) in the plane, all edge-components are embedded in an
arbitrarily small neighborhood of the edge-path (or vertex) which they belong
to.

Let us define the ring Ri (1 ≤ i ≤ 2k + 4) as the union of those cells in Z
that have common vertices both with the i-th and the (i + 1)-th concentrical
circle of Z. Let R0 be the cell of Z that lies in its center. The zone Z can be
viewed as the union of 2k+ 5 concentrical rings, i.e., the union of the subgraphs
Ri for 0 ≤ i ≤ 2k + 4. Let Qi denote T (

⋃i
j=0 Rj).

Lemma 2. Let Z be a flat zone in R, and let G′ denote the graph G − T (R0).
Then X ∈ PlanarDel(G′, k) implies X ∈ PlanarDel(G, k).

Proof. Since G − T (R0) − X is planar, we can fix a planar embedding φ of it.
If Ri ∩ X = ∅ for some i (2 ≤ i ≤ 2k + 2) then let Wi denote the maximal
subgraph of G − T (R0) − X for which φ(Wi) is in the region determined by
φ(Ri) (including Ri). If Ri ∩X is not empty then let Wi be the empty graph.
Note that if 2 ≤ i ≤ 2k then Wi and Wi+2 are disjoint. Therefore, there exists
an index i for which Wi ∩X = ∅. Let us fix this i.

We prove the lemma by giving an embedding for G − X ′ where X ′ = X \
V (Qi−1). The region φ(Ri) divides the plane in two other regions. We can assume
that in the finite region only vertices of Qi−1 are embedded, so G−X ′− (Qi−1∪
Wi) is entirely embedded in the infinite region. Let U denote those vertices in
Qi−1 which are adjacent to some vertex in G−Qi−1. Observe that the restriction
of φ to G−X ′ − (Qi−1 − U) has a face whose boundary contains U .

Now let θ be a planar embedding of T (Z), and let us restrict θ to Qi−1. Note
that U only contains vertices which are either adjacent to some vertex in Ri or
are adjacent to cell-components belonging to a cell of Ri. But θ embeds Ri and
its cell-components also, and therefore the restriction of θ to Qi−1 results in a
face whose boundary contains U . Here we used also that Ri is a subdivision of
a 3-connected graph whose embeddings are equivalent.

Now it is easy to see that we can combine θ and φ in such a way that we embed
G−X ′− (Qi−1−U) according to φ, and similarly Qi−1 according to θ, and then
”connect” them by identifying φ(u) and θ(u) for all u ∈ U . This gives the desired
embedding of G − X ′. Finally, we have to observe that X ′ ∈ PlanarDel(G, k)
implies X ∈ PlanarDel(G, k), since X ′ ⊆ X and |X | ≤ k. ut

This lemma has a trivial but crucial consequence: X ∈ PlanarDel(G, k) if and
only if X ∈ PlanarDel(G− T (R0), k), so deleting T (R0) reduces our problem to
an equivalent instance. Let us denote this deletion as Reduction A.

Note that the closedness of a zone Z can be decided by a simple breadth first
search, which can also produce the graph T (Z). Planarity can also be tested in
linear time [13]. Therefore we can test whether a zone is flat, and if so, we can
apply Reduction A on it in linear time.



Later we will see that unless there are some easily recognizable vertices in our
graph, which must be included in every solution, then a flat zone can always be
found (Lemma 7). This yields an easy way to handle graphs with large treewidth:
compressing our graph by repeatedly applying Reduction A we can reduce the
problem to an instance with bounded treewidth.

Reduction B: Well-attached vertices. A subgraph of R is a block, if it
is topologically isomorphic to Hk+3. A vertex of a given block is called inner
vertex, if it is not on the outer circle of the block.

Lemma 3. Let X ∈ PlanarDel(G, k). Let x and y be inner vertices of the dis-
joint blocks Bx and By, respectively. If P is an x − y path that (except its end-
points) doesn’t contain any vertex from Bx or By, then X must contain a vertex
from Bx, By or P .

Proof. Let Cx and Cy denote the outer circle of Bx and By, respectively. Let us
notice that since Bx and By are disjoint blocks, there exist at least k+ 3 vertex
disjoint paths between their outer circles, which—apart from their endpoints—
do not contain vertices from Bx and By. Moreover, it is easy to see that these
paths can be defined in a way such that their endpoints that lie on Cx are on the
border of different cells of Bx. To see this, note that the number of cells which
lie on the border of a given block is 6k + 12.

At least three of these paths must be in G−X also. Since x can lie only on
the border of at most two cells having common vertices with Cx, we get that
there is a path P ′ in G − X whose endpoints are ax and ay (lying on Cx and
Cy, resp.), and there exist no cell of Bx whose border contains both ax and x.

Let us suppose that Bx∪By∪P is a subgraph of G−X . Since all embeddings
of a 3-connected planar graph are equivalent, we know that if we restrict an
arbitrary planar embedding of G − X to Bx, then all faces having x on their
border correspond to a cell in Bx. Since x and y are connected through P
and V (P ) ∩ V (Bx) = {x}, we get that y must be embedded in a region F
corresponding to a cell CF of Bx. But this implies that By must entirely be
embedded also in F .

Since V (P ′ − ax − ay) ∩ V (Bx) = ∅ and P ′ connects ax ∈ V (Bx) and ay ∈
V (By) we have that ay must lie on the border of F . But then CF is a cell of Bx
containing both ax and x on its border, which yields the contradiction. ut

Using this lemma we can identify certain vertices that have to be deleted.
Let x be a well-attached vertex in G if there exist paths P1, P2, . . . , Pk+2 and
disjoint blocks B1, B2, . . . , Bk+2 such that Pi connects x with an inner vertex of
Bi (1 ≤ i ≤ k + 2), the inner vertices of Pi are not in R, and if i 6= j then the
only common vertex of Pi and Pj is x.

Lemma 4. Let X ∈ PlanarDel(G, k). If x is well-attached then x ∈ X.

Proof. If x /∈ X , then after deleting X from G (which means deleting at most k
vertices) there would exist indices i and j such that no vertex from Pi, Pj , Bi,
and Bj was deleted. But then the disjoint blocks Bi and Bj were connected by
the path Pi − x− Pj , and by the previous lemma, this is a contradiction. ut



We can decide whether a vertex v is well-attached in time O(f ′(k)e) using
standard flow techniques, where e = |E(G)|. This can be done by simply testing
for each possible set of k + 2 disjoint blocks if there exist the required disjoint
paths that lead from x to these blocks. Since the number of blocks in R depends
only on k, and we can find p disjoint paths starting from a given vertex of a
graph G in time O(p|E(G)|), we can observe that this can be done indeed in
time O(f ′(k)e).

Finding flat zones. Now we show that if there are no well-attached vertices
in the graph G, then a flat zone exists in our grid.

Lemma 5. Let X ∈ PlanarDel(G, k), and let G not include any well-attached
vertices. If K is a grid-component then there cannot exist (k+1)2 disjoint blocks
such that K is attached to an inner vertex of each block.

Proof. Let us assume for contradiction that there exist (k + 1)2 such blocks.
Since X = k, at least (k + 1)2 − k of these blocks do not contain any vertex of
X . So let x1, x2, . . .x(k+1)2−k be adjacent to K and let B1, B2, . . . , B(k+1)2−k
be disjoint blocks of G−X such that xi is an inner vertex of Bi.

Since G−X is planar, it follows from Lemma 3 that a component of K −X
cannot be adjacent to different vertices from {xi|1 ≤ i ≤ (k + 1)2 − k}. So let
Ki be the connected component of K − X that is attached to xi in G − X .
K is connected in G, hence for every Ki there is a vertex of T = K ∩ X that
is adjacent to it in G. Since there are no well-attached vertices in G, every
vertex of T can be adjacent to at most k + 1 of these subgraphs. But then
|T | ≥ ((k + 1)2 − k)/(k + 1) > k which is a contradiction since T ⊆ X . ut

Let us now fix the constant d = (k + 1)((k + 1)2 − 1).

Lemma 6. Let X ∈ PlanarDel(G, k), let G not include any well-attached ver-
tices, and let x be a vertex of the grid R. Then there cannot exist B1, B2, . . . , Bd+1

disjoint blocks such that for all i (1 ≤ i ≤ d+ 1) an inner vertex of Bi and x are
both attached to some grid-component Ki.

Proof. As a consequence of Lemma 5 each of the grid-components Ki can be
attached to at most (k+1)2−1 disjoint blocks. But since x is not a well-attached
vertex, there can be only at most k+1 different grid-components among the grid-
components Ki, 1 ≤ i ≤ d + 1. So the total number of disjoint blocks that are
attached to x through a grid-component is at most (k+ 1)((k+ 1)2−1) = d. ut

Lemma 7. Let X ∈ PlanarDel(G, k), and let G not include any well-attached
vertices. Then there exists a flat zone Z in G.

Proof. Let Z be an open zone which has a vertex z in its core that is attached
to a vertex v of another zone (v /∈ V (Z)) through a grid-component K. By the
choice of the size of the zones we have disjoint blocks Bz and Bv containing z
and v respectively as inner points. We can also assume that Bz is a subgraph of
Z which does not intersect the outer circle of Z.



By Lemma 3 we know that Bz, Bv or K contains a vertex from X . Let Z1

denote the set of zones with a core vertex in X , let Z2 denote the set of open
zones with a core vertex to which a grid-component, having a common vertex
with X , is attached, and finally let Z3 be the set of the remaining open zones.
Since |X | ≤ k and a grid-component can be attached to inner vertices of at most
(k+1)2 disjoint blocks by Lemma 5, we have that |Z1| ≤ k and |Z2| ≤ k(k+1)2.

Let us count the number of zones in Z3. To each zone Z in Z3 we assign a
vertex u(Z) of the grid not in Z, which is connected to the core of Z by a grid-
component. First let us bound the number of zones in Z3 to which we assigned
a vertex in X . Lemma 6 implies that v ∈ X can be connected this way to at
most d zones, so we can have only at most kd such zones.

Now let U = {v | v = u(Z), Z ∈ Z3}. Let a and b be different members of U ,
and let a be connected through the grid-component Ka with the core vertex za
of Za ∈ Z3. Let Ba denote a block which only contains vertices that are inner
vertices of Za, and contains za as inner vertex. Such a block can be given due to
the size of a zone and its core. Let us define Kb, zb, Zb, and Bb similarly. Note
that V (Za) ∩X = V (Zb) ∩X = ∅.

Now let us assume that a and b are in the same component of R −X . Let
P be a path connecting them in R −X . If P has common vertices with Ba (or
Bb) then we modify P the following way. If the first and last vertices reached
by P in Za (or Zb, resp.) are w and w′, then we swap the w − w′ section of P
using the outer circle of Za (or Zb, resp.). This way we can fix a path in R−X
that connects a and b, and does not include any vertex from Ba and Bb. But
this path together with Ka and Kb would yield a path in G −X that connects
two inner vertices of Ba and Bb, contradicting Lemma 3.

Therefore, each vertex of U lies in a different component of R −X . But we
can only delete at most k vertices and each vertex in a hexagonal grid has at
most 3 neighbors, thus we can conclude that |U | ≤ 3k. As for different zones Z1

and Z2 we cannot have u(Z1) = u(Z2) (which is also a consequence of Lemma
3) we have that |Z3| ≤ 3k. So if we choose the number of zones in R to be
z = 7k + k(k + 1)2 + kd + 1 we have that there are at least 3k + 1 zones in
R, which are not contained in Z1 ∪ Z2 ∪ Z3, indicating that they are closed.
Since a vertex can be contained by at most 3 zones, |X | ≤ k implies that there
exist a closed zone Z∗, which does not contain any vertex from X , and all grid-
components attached to Z∗ are also disjoint from X . This immediately implies
that T (Z∗) is a subgraph of G−X , and thus T (Z∗) is planar. ut

Algorithm for Phase I. The exact steps of Phase I of the algorithm A
are shown in Fig. 2. It starts with running algorithm B on the graph G and
integers w(r) and r. If B returns a hexagonal grid as a topological minor, then
the algorithm proceeds with the next step. If B returns a tree decomposition T
of width w(r), then Phase I returns the triple (G,W, T ). Otherwise G does not
have Hr as minor and its treewidth is larger than w(r), so by Lemma 1 we can
conclude that G /∈ Planar + kv.

In the next step the algorithm tries to find a flat zone Z. If such a zone
is found, then the algorithm executes a deletion whose correctness is implied



Phase I of algorithm A:

Input: G = (V,E).

Let W = ∅.
1. Run algorithm B on G, w(r), and r.

If it returns a subgraph H ′r topologically isomorphic to Hr then go to
Step 2. If it returns a tree decomposition T of G, then output(G, W , T ).
Otherwise output(”No solution.”).

2. For all zones Z do:
If Z is flat then G := G− T (R0), and go to Step 1.

3. Let U = ∅. For all x ∈ V : if x is well-attached then U := U ∪ {x}.
If |U | = ∅ or |W |+ |U | > k then output(”No solution.”).
Otherwise W := W ∪ U , G := G− U and go to Step 1.

Fig. 2. Phase I of algorithm A.

by Lemma 2. Note that after altering the graph the algorithm must find the
hexagonal grid again, and thus has to run B several times.

If no flat zone was found in Step 2, the algorithm removes well-attached
vertices from the graph in Step 3. The vertices already removed this way are
stored in W , and U is the set of vertices to be removed in the actual step. By
Lemma 4, if X ∈ PlanarDel(G, k) then W ∪ U ⊆ X , so |W | + |U | > k means
that there is no solution. By Lemma 7 the case U = ∅ means also that there
is no solution for the problem instance. In these cases the algorithm stops with
output ”No solution.” Otherwise it proceeds with updating the variables W and
G, and continues with Step 1.

The output of the algorithm can be of two types: it either refuses the instance
(outputting ”No solution.”) or it returns an instance for Phase II. For the above
mentioned purposes the new instance is equivalent with the original problem
instance in the following sense:

Theorem 1. Let (G′,W, T ) be the triple returned by A at the end of Phase I.
Then for all X ⊆ V (G) it is true that X ∈ PlanarDel(G, k) if and only if W ⊆ X
and (X \W ) ∈ PlanarDel(G′, k − |W |).

Now let us examine the running time of this phase. The first step can be
done in time O(f ′′(k)n) according to [17, 2, 16] where n = |V (G)|. Since the
algorithm only runs algorithm B again after reducing the number of the vertices
in G, we have that B runs at most n times. This takes O(f ′′(k)n2) time. The
second step requires only linear time (a breadth first search and a planarity
test). Deciding whether a vertex is well-attached can be done in time O(f ′(k)e)
(where e = |E(G)|), so we need O(f ′(k)ne) time to check every vertex at a given
iteration in Step 3. Note that the third step is executed at most k + 1 times,
since in each iteration |W | increases. Hence, this phase of algorithm A uses total
time O(f ′′(k)n2 + f ′(k)kne) = O(f(k)n2) as the number of edges is O(kn).



5 Phase II of Algorithm A
At the end of Phase I of algorithm A we either conclude that there is no solution,
or we have a triple (G′,W, T ) for which Theorem 1 holds. Here T is a tree
decomposition for G′ of width at most w(r). This bound only depends on r
which is a function of k. From the choice of the constants r, q, z, and d we can
easily derive that tw(G′) ≤ w(r) ≤ 100(k + 2)7/2.

In order to solve our problem we only have to find out if there is a set
Y ∈ PlanarDel(G′, k′) where k′ = k − |W |. For such a set, Y ∪W would yield a
solution for the original Planar + k vertex problem.

A theorem by Courcelle states that every graph property defined by a formula
in monadic second-order logic (MSO) can be evaluated in linear time if the input
graph has bounded treewidth. Here we consider graphs as relational structures of
vocabulary {V,E, I}, where V and E denote unary relations interpreted as the
vertex set and the edge set of the graph, and I is a binary relation interpreted
as the incidence relation. We will denote by UG the universe of the graph G, i.e.,
UG = V (G) ∪ E(G). Variables in monadic second-order logic can be element or
set variables. For a survey on MSO logic on graphs see [5].

Following Grohe [11], we use a strengthened version of Courcelle’s Theorem:

Theorem 2. ([9]) Let ϕ(x1, . . . , xi, X1, . . . , Xj , y1, . . . , yp, Y1, . . . , Yq) denote an
MSO-formula and let w ≥ 1. Then there is a linear-time algorithm that, given a
graph G with tw(G) ≤ w and b1, . . . , bp ∈ UG, B1, . . . , Bq ⊆ UG, decides whether
there exist a1, . . . , ai ∈ UG, A1, . . . , Aj ⊆ UG such that

G � ϕ(a1, . . . , ai, A1, . . . , Aj , b1, . . . , bp, B1, . . . , Bq),

and, if this is the case, computes such elements a1, . . . , ai and sets A1, . . . , Aj .

It is well-known that there is an MSO-formula ϕplanar which describes the

planarity of graphs, i.e., for every graph G the statement G � ϕplanar holds if

and only if G is planar. This can be easily seen thanks to the simple characteri-
zation of planar graphs by Kuratowski’s Theorem: a graph is planar if and only
if it does not contain any subgraph topologically isomorphic to K5 or K3,3. The
existence of these subgraphs can be formulated using vertex sets as variables.

It is easy to modify ϕplanar so that we obtain a formula ϕ∗(x1, . . . , xk′ ) that

expresses the following: if we delete the vertices x1, . . . , xk′ from the graph, then
the resulting graph is planar. All we have to ensure is that the subgraphs that
we obstruct in ϕplanar (i.e., the subdivisions of the graphs K5 and K3,3) are

disjoint from the vertices x1, . . . , xk′ . So we can state the following:

Theorem 3. There exists an MSO-formula ϕ∗(x1, . . . , xk′) for which the state-
ment G � ϕ∗(v1, . . . , vk′ ) holds if and only if G− {v1, . . . , vk′} is planar.

Now let us apply Theorem 2. Let C be the algorithm which, given a graphG of
bounded treewidth, decides whether there exist v1, . . . , vk′ ∈ UG such that G �
ϕ∗(v1, . . . , vk′) is true, and if possible, also produces such variables. By Theorem
3, running C on G′ either returns a set of vertices U ∈ PlanarDel(G′, k′), or



reports that this is not possible. Hence, we can finish algorithmA in the following
way: if C returns U then output(U ∪W ), otherwise output(”No solution”).

The running time of Phase II is O(g(k)n) for some function g.

Remark 1. Phase II of the algorithm can also be done by applying dynamic
programming, using the tree decomposition T returned by B. This also yields a
linear-time algorithm, with a double exponential dependence on tw(G′). Since
the proof is quite technical and detailed, we omit it.
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