
Chordal deletion is fixed-parameter tractable

Dániel Marx

Humboldt-Universität zu Berlin

dmarx@informatik.hu-berlin.de

June 22, 2006

WG 2006

Bergen, Norway

Chordal deletion is fixed-parameter tractable – p.1/17

Graph modification problems

Problems of the following form:

Given a graph G and an integer k, is it possible to add/delete k

edges/vertices such that the result belongs to class G?

Make the graph bipartite by deleting k vertices.

Make the graph chordal by adding k edges.

Make the graph an empty graph by deleting k vertices (VERTEX COVER).

. . .

Chordal deletion is fixed-parameter tractable – p.2/17

Notation for graph classes

A notation introduced by Cai [2003]:

Definition: If G is a class of graphs, then we define the following classes of
graphs:

G + ke: a graph from G with k extra edges.

G − ke: a graph from G with k edges deleted.

G + kv: graphs that can be made to be in G by deleting k vertices.

G − kv: a graph from G with k vertices deleted.

Chordal deletion is fixed-parameter tractable – p.3/17

Notation for graph classes

A notation introduced by Cai [2003]:

Definition: If G is a class of graphs, then we define the following classes of
graphs:

G + ke: a graph from G with k extra edges.

G − ke: a graph from G with k edges deleted.

G + kv: graphs that can be made to be in G by deleting k vertices.

G − kv: a graph from G with k vertices deleted.

Theorem: [Lewis and Yannakakis, 1980] If G is a nontrivial hereditary graph

property, then it is NP-hard to decide if a graph is in G + kv (k is part of the

input).

Chordal deletion is fixed-parameter tractable – p.3/17

Parameterized complexity

As most problems are NP-hard, let us try to find efficient algorithms for small

values of k. (Better than the nO(k) brute force algorithm.)

Definition: A problem is fixed-parameter tractable (FPT) with parameter k if

it can be solved in time f(k) · nO(1) for some function f .

Chordal deletion is fixed-parameter tractable – p.4/17

Parameterized complexity

As most problems are NP-hard, let us try to find efficient algorithms for small

values of k. (Better than the nO(k) brute force algorithm.)

Definition: A problem is fixed-parameter tractable (FPT) with parameter k if

it can be solved in time f(k) · nO(1) for some function f .

Theorem: [Reed et al.] Recognizing bipartite+kv graphs is FPT.

Theorem: Recognizing empty+kv graphs is FPT (VERTEX COVER).

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Theorem: [from Robertson and Seymour] if G is minor closed, then
recognizing G + kv is FPT.

Theorem: [Cai] If G is characterized by a finite set of forbidden induced
subgraphs, then recognizing G + kv is FPT.

Chordal deletion is fixed-parameter tractable – p.4/17

New result

Theorem: [Reed et al.] Recognizing bipartite+kv graphs is FPT.

Theorem: Recognizing empty+kv graphs is FPT (VERTEX COVER).

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Theorem: [from Robertson and Seymour] if G is minor closed, then
recognizing G + kv is FPT.

Theorem: [Cai] If G is characterized by a finite set of forbidden induced
subgraphs, then recognizing G + kv is FPT.

New result: Recognizing chordal+kv graphs is FPT.

Chordal deletion is fixed-parameter tractable – p.5/17

New result

Theorem: [Reed et al.] Recognizing bipartite+kv graphs is FPT.

Theorem: Recognizing empty+kv graphs is FPT (VERTEX COVER).

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Theorem: [from Robertson and Seymour] if G is minor closed, then
recognizing G + kv is FPT.

Theorem: [Cai] If G is characterized by a finite set of forbidden induced
subgraphs, then recognizing G + kv is FPT.

New result: Recognizing chordal+kv graphs is FPT.

Remark: chordal graphs are not minor closed, and cannot be characterized by
finitely many forbidden subgraphs.

Chordal deletion is fixed-parameter tractable – p.5/17

Chordal graphs

A graph is chordal if it does not contain induced cycles longer than 3 (a “hole”).

Interval graphs are chordal.

Intersection graphs of subtrees in a tree ⇔ chordal

graphs.

The maximum clique size is k + 1 in a chordal graph

⇔ the chordal graph has tree width k.

Chordal graphs are perfect.

Chordal deletion is fixed-parameter tractable – p.6/17

Chordal completion

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Using the bounded-height search tree method.

If there is a hole of size greater than k + 3: cannot be made chordal with
the addition of k edges.

If there is a hole of size ℓ ≤ k + 3: at least one chord has to be added.

We branch into ℓ(ℓ − 3)/2 directions.

Chordal deletion is fixed-parameter tractable – p.7/17

Chordal completion

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Using the bounded-height search tree method.

If there is a hole of size greater than k + 3: cannot be made chordal with
the addition of k edges.

If there is a hole of size ℓ ≤ k + 3: at least one chord has to be added.

We branch into ℓ(ℓ − 3)/2 directions.

≤ k(k − 3)/2

≤ k

The size of the search tree can

be bounded by a function of k.
⇓

f(k) · nO(1) algorithm

Chordal deletion is fixed-parameter tractable – p.7/17

Chordal completion

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Using the bounded-height search tree method.

If there is a hole of size greater than k + 3: cannot be made chordal with
the addition of k edges.

If there is a hole of size ℓ ≤ k + 3: at least one chord has to be added.

We branch into ℓ(ℓ − 3)/2 directions.

≤ k(k − 3)/2

≤ k

The size of the search tree can

be bounded by a function of k.
⇓

f(k) · nO(1) algorithm

For chordal deletion we can-

not bound the size of the holes!
Chordal deletion is fixed-parameter tractable – p.7/17

Techniques

New result: Recognizing chordal+kv graphs is FPT.

We use

Iterative compression

Bounded-height search trees

Courcelle’s Theorem for bounded tree width

Tree width reduction

Chordal deletion is fixed-parameter tractable – p.8/17

Iterative compression

Trick introduced by Reed et al. for recognizing bipartite+kv graphs.

Instead of showing that this problem is FPT. . .

CHORDAL DELETION(G, k)

Input: A graph G, integer k

Find: A set X of k vertices such that G \ X is chordal

Chordal deletion is fixed-parameter tractable – p.9/17

Iterative compression

Trick introduced by Reed et al. for recognizing bipartite+kv graphs.

Instead of showing that this problem is FPT. . .

CHORDAL DELETION(G, k)

Input: A graph G, integer k

Find: A set X of k vertices such that G \ X is chordal

. . . we show that the easier “compression” problem is FPT:

CHORDAL COMPRESSION(G, k, Y)

Input:
A graph G, integer k, a set Y of k + 1 vertices
such that G \ Y is chordal

Find: A set X of k vertices such that G \ X is chordal

Chordal deletion is fixed-parameter tractable – p.9/17

Iterative compression (cont.)

How to solve CHORDAL DELETION with CHORDAL COMPRESSION?

Let v1, . . . , vn be the vertices of G, and let Gi be the graph induced by the
first i vertices.

1. Let i := k, X := {v1, . . . , vk}.

2. Invariant condition: |X | = k, Gi \ X is chordal

3. Let i := i + 1, Y := X ∪ {vi}

4. Invariant condition: |Y | = k + 1, Gi \ Y is chordal

5. Call CHORDALCOMPRESSION(Gi, k, Y)

If it returns no, then reject.

Otherwise let X be the set returned.

6. Go to Step 2.

Chordal deletion is fixed-parameter tractable – p.10/17

Small tree width

Given: G and Y with |Y | = k + 1 and G \ Y is chordal.

Two cases:

Tree width of G is small (≤ tk)

Tree width of G is large (> tk)

Chordal deletion is fixed-parameter tractable – p.11/17

Small tree width

Given: G and Y with |Y | = k + 1 and G \ Y is chordal.

Two cases:

Tree width of G is small (≤ tk)

Tree width of G is large (> tk)

If tree width is small, then we use

Courcelle’s Theorem: If a graph property can be expressed in Extended
Monadic Second Order Logic (EMSO) , then for every w ≥ 1, there is a
linear-time algorithm for testing this property in graphs having tree width w.

“G ∈ chordal + kv” can be expressed in EMSO

⇓

If tree width ≤ tk , then the problem can be solved in linear time.

Chordal deletion is fixed-parameter tractable – p.11/17

Small tree width

Extended Monadic Second Order Logic: usual logical connectives,

vertex-vertex adjacency, edges-vertex incidence, quantification over vertex
sets and edge sets.

k-chordal-deletion(V,E) :=∃v1, . . . vk ∈ V, V0 ⊆ V : [chordal(V0)

∧ (∀v ∈ V : v ∈ V0 ∨ v = v1 ∨ · · · ∨ v = vk)]

chordal(V0) :=¬(∃x, y, z ∈ V0, T ⊆ E : adj(x, y) ∧ adj(x, z)∧

¬adj(y, z) ∧ connected(y, z, T, V0))

connected(y, z, T, V0) :=∀Y, Z ⊆ V0 : [(partition(V0, Y, Z) ∧ y ∈ Y ∧ z ∈ Z)

→ (∃y′ ∈ Y, z′ ∈ Z,e ∈ T : inc(e, y′) ∧ inc(e,z′))]

partition(V0, Y, Z) :=∀v ∈ V0 : (v ∈ Y ∨ v ∈ Z) ∧ (v 6∈ Y ∨ v 6∈ Z)

Chordal deletion is fixed-parameter tractable – p.12/17

Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Chordal deletion is fixed-parameter tractable – p.13/17

Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Equivalent definition: A vertex v is irrelevant if whenever |X | = k and

G \ X has a hole, then G \ X has a hole that avoids v.

Chordal deletion is fixed-parameter tractable – p.13/17

Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Equivalent definition: A vertex v is irrelevant if whenever |X | = k and

G \ X has a hole, then G \ X has a hole that avoids v.

X

G

v
Chordal deletion is fixed-parameter tractable – p.13/17

Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Equivalent definition: A vertex v is irrelevant if whenever |X | = k and

G \ X has a hole, then G \ X has a hole that avoids v.

v

X

G

Chordal deletion is fixed-parameter tractable – p.13/17

Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Equivalent definition: A vertex v is irrelevant if whenever |X | = k and

G \ X has a hole, then G \ X has a hole that avoids v.

v

X

G

Chordal deletion is fixed-parameter tractable – p.13/17

How to find an irrelevant vertex?

Consider G \ X .

Y

Kv

Chordal deletion is fixed-parameter tractable – p.14/17

How to find an irrelevant vertex?

Consider G \ X .

Kv

Y

Chordal deletion is fixed-parameter tractable – p.14/17

How to find an irrelevant vertex?

Consider G \ X .

Y

v K

Chordal deletion is fixed-parameter tractable – p.14/17

How to find an irrelevant vertex?

Consider G \ X . Assume that there is a hole going through v.

Kv

Y

Chordal deletion is fixed-parameter tractable – p.14/17

How to find an irrelevant vertex?

Consider G \ X . Assume that there is a hole going through v.

v′

Y

v K

To bypass v, we need a v′ ∈ K that can be connected to a neighbor of • with

a path that does not go through a neighbor of •.

Chordal deletion is fixed-parameter tractable – p.14/17

How to find an irrelevant vertex?

Consider G \ X . Assume that there is a hole going through v.

Kv

Y

v′

To bypass v, we need a v′ ∈ K that can be connected to a neighbor of • with

a path that does not go through a neighbor of •.

Chordal deletion is fixed-parameter tractable – p.14/17

Marking vertices

We mark tk vertices of K such that if there is a “bypass path” in G \ X , then

there is such a path that ends in a marked vertex of K .

⇓

Any non-marked vertex is irrelevant.

Chordal deletion is fixed-parameter tractable – p.15/17

Marking vertices

We mark tk vertices of K such that if there is a “bypass path” in G \ X , then

there is such a path that ends in a marked vertex of K .

⇓

Any non-marked vertex is irrelevant.

Dangerous vertex: A neighbor of •, such that it can be connected to K with
a path going through no other neighbor of •.

For each dangerous vertex, we mark k + 1 vertices of the clique such that

if K can be reached, then it can be reached at a marked vertex.

We can do this even for a clique of dangerous vertices.

The dangerous vertices can be covered by ck cliques.

Chordal deletion is fixed-parameter tractable – p.15/17

Overview

Overview of the algorithm:

Iterative compression: we can assume that there is a solution of size k +1.

Bounded search tree method.

Courcelle’s Theorem if tree width is small.

If tree width is large, then an irrelevant vertex can be found.

Chordal deletion is fixed-parameter tractable – p.16/17

Conclusions

Another graph modification problem proved to be FPT.

General techniques?

Iterative compression.

Edge deletion version.

Interval deletion?

Chordal deletion is fixed-parameter tractable – p.17/17

	Graph modification problems
	Notation for graph classes
	Parameterized complexity
	New result
	Chordal graphs
	Chordal completion
	Techniques
	Iterative compression
	Iterative compression (cont.)
	Small tree width
	Small tree width
	Large tree width
	How to find an irrelevant vertex?
	Marking vertices
	Overview
	Conclusions

