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Graph modification problems

Problems of the following form:

Given a graph G and an integer k, is it possible to add/delete k

edges/vertices such that the result belongs to class G?

Make the graph bipartite by deleting k vertices.

Make the graph chordal by adding k edges.

Make the graph an empty graph by deleting k vertices (VERTEX COVER).

. . .
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Notation for graph classes

A notation introduced by Cai [2003]:

Definition: If G is a class of graphs, then we define the following classes of
graphs:

G + ke: a graph from G with k extra edges.

G − ke: a graph from G with k edges deleted.

G + kv: graphs that can be made to be in G by deleting k vertices.

G − kv: a graph from G with k vertices deleted.
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Notation for graph classes

A notation introduced by Cai [2003]:

Definition: If G is a class of graphs, then we define the following classes of
graphs:

G + ke: a graph from G with k extra edges.

G − ke: a graph from G with k edges deleted.

G + kv: graphs that can be made to be in G by deleting k vertices.

G − kv: a graph from G with k vertices deleted.

Theorem: [Lewis and Yannakakis, 1980] If G is a nontrivial hereditary graph

property, then it is NP-hard to decide if a graph is in G + kv (k is part of the

input).
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Parameterized complexity

As most problems are NP-hard, let us try to find efficient algorithms for small

values of k. (Better than the nO(k) brute force algorithm.)

Definition: A problem is fixed-parameter tractable (FPT) with parameter k if

it can be solved in time f(k) · nO(1) for some function f .
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Parameterized complexity

As most problems are NP-hard, let us try to find efficient algorithms for small

values of k. (Better than the nO(k) brute force algorithm.)

Definition: A problem is fixed-parameter tractable (FPT) with parameter k if

it can be solved in time f(k) · nO(1) for some function f .

Theorem: [Reed et al.] Recognizing bipartite+kv graphs is FPT.

Theorem: Recognizing empty+kv graphs is FPT (VERTEX COVER).

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Theorem: [from Robertson and Seymour] if G is minor closed, then
recognizing G + kv is FPT.

Theorem: [Cai] If G is characterized by a finite set of forbidden induced
subgraphs, then recognizing G + kv is FPT.
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New result
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New result

Theorem: [Reed et al.] Recognizing bipartite+kv graphs is FPT.

Theorem: Recognizing empty+kv graphs is FPT (VERTEX COVER).

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Theorem: [from Robertson and Seymour] if G is minor closed, then
recognizing G + kv is FPT.

Theorem: [Cai] If G is characterized by a finite set of forbidden induced
subgraphs, then recognizing G + kv is FPT.

New result: Recognizing chordal+kv graphs is FPT.

Remark: chordal graphs are not minor closed, and cannot be characterized by
finitely many forbidden subgraphs.

Chordal deletion is fixed-parameter tractable – p.5/17



Chordal graphs

A graph is chordal if it does not contain induced cycles longer than 3 (a “hole”).

Interval graphs are chordal.

Intersection graphs of subtrees in a tree ⇔ chordal

graphs.

The maximum clique size is k + 1 in a chordal graph

⇔ the chordal graph has tree width k.

Chordal graphs are perfect.
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Chordal completion

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Using the bounded-height search tree method.

If there is a hole of size greater than k + 3: cannot be made chordal with
the addition of k edges.

If there is a hole of size ℓ ≤ k + 3: at least one chord has to be added.

We branch into ℓ(ℓ − 3)/2 directions.
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Chordal completion

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Using the bounded-height search tree method.

If there is a hole of size greater than k + 3: cannot be made chordal with
the addition of k edges.

If there is a hole of size ℓ ≤ k + 3: at least one chord has to be added.

We branch into ℓ(ℓ − 3)/2 directions.

≤ k(k − 3)/2

≤ k

The size of the search tree can

be bounded by a function of k.
⇓

f(k) · nO(1) algorithm
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Chordal completion

Theorem: [Cai; Kaplan et al.] Recognizing chordal−ke is FPT.

Using the bounded-height search tree method.

If there is a hole of size greater than k + 3: cannot be made chordal with
the addition of k edges.

If there is a hole of size ℓ ≤ k + 3: at least one chord has to be added.

We branch into ℓ(ℓ − 3)/2 directions.

≤ k(k − 3)/2

≤ k

The size of the search tree can

be bounded by a function of k.
⇓

f(k) · nO(1) algorithm

For chordal deletion we can-

not bound the size of the holes!
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Techniques

New result: Recognizing chordal+kv graphs is FPT.

We use

Iterative compression

Bounded-height search trees

Courcelle’s Theorem for bounded tree width

Tree width reduction

Chordal deletion is fixed-parameter tractable – p.8/17



Iterative compression

Trick introduced by Reed et al. for recognizing bipartite+kv graphs.

Instead of showing that this problem is FPT. . .

CHORDAL DELETION(G, k)

Input: A graph G, integer k

Find: A set X of k vertices such that G \ X is chordal
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Iterative compression

Trick introduced by Reed et al. for recognizing bipartite+kv graphs.

Instead of showing that this problem is FPT. . .

CHORDAL DELETION(G, k)

Input: A graph G, integer k

Find: A set X of k vertices such that G \ X is chordal

. . . we show that the easier “compression” problem is FPT:

CHORDAL COMPRESSION(G, k, Y )

Input:
A graph G, integer k, a set Y of k + 1 vertices
such that G \ Y is chordal

Find: A set X of k vertices such that G \ X is chordal
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Iterative compression (cont.)

How to solve CHORDAL DELETION with CHORDAL COMPRESSION?

Let v1, . . . , vn be the vertices of G, and let Gi be the graph induced by the
first i vertices.

1. Let i := k, X := {v1, . . . , vk}.

2. Invariant condition: |X | = k, Gi \ X is chordal

3. Let i := i + 1, Y := X ∪ {vi}

4. Invariant condition: |Y | = k + 1, Gi \ Y is chordal

5. Call CHORDALCOMPRESSION(Gi, k, Y )

If it returns no, then reject.

Otherwise let X be the set returned.

6. Go to Step 2.
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Small tree width

Given: G and Y with |Y | = k + 1 and G \ Y is chordal.

Two cases:

Tree width of G is small (≤ tk )

Tree width of G is large (> tk )
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Small tree width

Given: G and Y with |Y | = k + 1 and G \ Y is chordal.

Two cases:

Tree width of G is small (≤ tk )

Tree width of G is large (> tk )

If tree width is small, then we use

Courcelle’s Theorem: If a graph property can be expressed in Extended
Monadic Second Order Logic (EMSO) , then for every w ≥ 1, there is a
linear-time algorithm for testing this property in graphs having tree width w.

“G ∈ chordal + kv” can be expressed in EMSO

⇓

If tree width ≤ tk , then the problem can be solved in linear time.
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Small tree width

Extended Monadic Second Order Logic: usual logical connectives,

vertex-vertex adjacency, edges-vertex incidence, quantification over vertex
sets and edge sets.

k-chordal-deletion(V,E) :=∃v1, . . . vk ∈ V, V0 ⊆ V : [chordal(V0)

∧ (∀v ∈ V : v ∈ V0 ∨ v = v1 ∨ · · · ∨ v = vk)]

chordal(V0) :=¬(∃x, y, z ∈ V0, T ⊆ E : adj(x, y) ∧ adj(x, z)∧

¬adj(y, z) ∧ connected(y, z, T, V0))

connected(y, z, T, V0) :=∀Y, Z ⊆ V0 : [(partition(V0, Y, Z) ∧ y ∈ Y ∧ z ∈ Z)

→ (∃y′ ∈ Y, z′ ∈ Z,e ∈ T : inc(e, y′) ∧ inc(e,z′))]

partition(V0, Y, Z) :=∀v ∈ V0 : (v ∈ Y ∨ v ∈ Z) ∧ (v 6∈ Y ∨ v 6∈ Z)

Chordal deletion is fixed-parameter tractable – p.12/17



Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Chordal deletion is fixed-parameter tractable – p.13/17



Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Equivalent definition: A vertex v is irrelevant if whenever |X | = k and

G \ X has a hole, then G \ X has a hole that avoids v.
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Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Equivalent definition: A vertex v is irrelevant if whenever |X | = k and

G \ X has a hole, then G \ X has a hole that avoids v.
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Large tree width

If tree width of G is large ⇒ tree width of G \ Y is large ⇒ G \ Y has a large

clique (since it is chordal)

We show that every large clique has a vertex whose deletion does not make
the problem easier.

Definition: A vertex v ∈ G is irrelevant if for every X such that |X | = k and
(G \ v) \ X is chordal, it follows that G \ X is also chordal.

Equivalent definition: A vertex v is irrelevant if whenever |X | = k and

G \ X has a hole, then G \ X has a hole that avoids v.

v

X

G

Chordal deletion is fixed-parameter tractable – p.13/17



How to find an irrelevant vertex?

Consider G \ X .

Y

Kv
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How to find an irrelevant vertex?

Consider G \ X .

Y

v K
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How to find an irrelevant vertex?

Consider G \ X . Assume that there is a hole going through v.

Kv

Y
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How to find an irrelevant vertex?

Consider G \ X . Assume that there is a hole going through v.

v′

Y

v K

To bypass v, we need a v′ ∈ K that can be connected to a neighbor of • with

a path that does not go through a neighbor of •.
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How to find an irrelevant vertex?

Consider G \ X . Assume that there is a hole going through v.

Kv

Y

v′

To bypass v, we need a v′ ∈ K that can be connected to a neighbor of • with

a path that does not go through a neighbor of •.
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Marking vertices

We mark tk vertices of K such that if there is a “bypass path” in G \ X , then

there is such a path that ends in a marked vertex of K .

⇓

Any non-marked vertex is irrelevant.
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Marking vertices

We mark tk vertices of K such that if there is a “bypass path” in G \ X , then

there is such a path that ends in a marked vertex of K .

⇓

Any non-marked vertex is irrelevant.

Dangerous vertex: A neighbor of •, such that it can be connected to K with
a path going through no other neighbor of •.

For each dangerous vertex, we mark k + 1 vertices of the clique such that

if K can be reached, then it can be reached at a marked vertex.

We can do this even for a clique of dangerous vertices.

The dangerous vertices can be covered by ck cliques.
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Overview

Overview of the algorithm:

Iterative compression: we can assume that there is a solution of size k +1.

Bounded search tree method.

Courcelle’s Theorem if tree width is small.

If tree width is large, then an irrelevant vertex can be found.
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Conclusions

Another graph modification problem proved to be FPT.

General techniques?

Iterative compression.

Edge deletion version.

Interval deletion?
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