
Tractable hypergraph properties for constraint
satisfaction and conjunctive queries

Dániel Marx

Tel Aviv University, Israel

May 16, 2010

Foundations of Computer Science Seminar

Weizmann Institute, Israel

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.1/44

Overview

Main question: How does the graph/hypergraph describing the structure of a

constraint satisfaction instance influence the complexity?

Already well-understood if every constraint is binary (i.e., involves 2 variables):
complexity is closely connected with treewidth.

New result: understanding it in the case of arbitrary arities. Large arity

constraints can make the problem very different.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.2/44

Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

variables,

domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.3/44

Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

variables,

domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Examples:

3SAT: 2-element domain, every constraint is ternary

VERTEX COLORING: domain is the set of colors, binary constraints

k -CLIQUE (in graph G): k variables, domain is the vertices of G ,
(

k

2

)

binary
constraints

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.3/44

Conjunctive Queries

A relational database contains some number of relational tables:

enrolled(Person, Course, Date)

teaches(Person, Course, Year)

parent(Person1, Person2)

A conjunctive query creates a new table by joining and projecting relations:

Q : ans(P)← enrolled(P,C , D) ∧ teaches(P2,C , Y) ∧ parent(P2,P).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.4/44

Conjunctive Queries

A relational database contains some number of relational tables:

enrolled(Person, Course, Date)

teaches(Person, Course, Year)

parent(Person1, Person2)

A conjunctive query creates a new table by joining and projecting relations:

Q : ans(P)← enrolled(P,C , D) ∧ teaches(P2,C , Y) ∧ parent(P2,P).

The Boolean Conjunctive Query Evaluation problem asks if the answer relation

is empty or not.

⇒ This is a CSP problem!

Note: For such CSPs, the number of variables is typically small, while the domain

size is large.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.4/44

Graphs and hypergraphs related to CSP

Gaifman/primal graph: vertices are the variables, two variables are adjacent if

they appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and constraints.

Hypergraph: vertices are the variables, constraints are the hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C3C1

C2

Primal graph HypergraphIncidence graph

C2C1

x3

x3

x3

x2

x2

x2

x1 x1x1 x4

x4x4
C3

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.5/44

CSP and hypergraphs

Big question:

What are the easy hypergraphs?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.6/44

CSP and hypergraphs

Big question:

What are the easy hypergraphs?
Trivial answer: For every fixed hypergraph, the problem can be solved in

polynomial time (every hypergraph has a constant number of vertices).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.6/44

CSP and hypergraphs

Big question:

What are the easy hypergraphs?
Trivial answer: For every fixed hypergraph, the problem can be solved in

polynomial time (every hypergraph has a constant number of vertices).

More precisely:

What are the easy classes of hypergraphs?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.6/44

CSP and hypergraphs

Big question:

What are the easy hypergraphs?
Trivial answer: For every fixed hypergraph, the problem can be solved in

polynomial time (every hypergraph has a constant number of vertices).

More precisely:

What are the easy classes of hypergraphs?
Even more precisely:

CSP(H): restriction of the problem such that the hypergraph is from the class H.

What are the classes H that make CSP(H)
polynomial-time solvable?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.6/44

Representation of constraints

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.7/44

Representation of constraints

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle

If the arity of every constraint is bounded by a constant, then the representations

are polynomially equivalent, but if there is no bound there can be exponential
difference between different representations.

The choice of representation changes the length of the input, thus can change the

complexity of the problem.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.7/44

Representation of constraints

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle

In this talk: Each constraint is given by listing all the tuples that satisfy it.

Motivation: Applications in database theory (Conjunctive Query Evaluation,

Conjunctive Query Containment)

Constraints are known databases, “satisfying” means “appears in the database.”

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.7/44

Tractability

Definition: CSP(H) is polynomial-time solvable if there is an algorithm solving

every instance I of CSP(H) in time ‖I‖c for some constant c .

Definition: CSP(H) is fixed-parameter tractable (FPT) if there is an algorithm
solving every instance I of CSP(H) in time f (H)‖I‖c for some function f

depending only on the hypergraph H and a constant c .

Note: The definition does not change if we replace f (H) with a function f ′(k)

depending on the number of variables.

Goal: Characterize those classes H for which
CSP(H) is polynomial-time
solvable/fixed-parameter tractable.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.8/44

Some positive results

CSP(H) is known to be polynomial-time solvable...

... if H has bounded treewidth (a result in the AI literature).

... if H contains “acyclic” hypergraphs (a result from the database literature,

late 70s).

... if H has bounded query width/hypertree width/fractional edge cover
number/fractional hypertree width (1997–2009)

Can we prove more general positive results?

Can we prove negative results?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.9/44

Main result

Main result: [M. 2010] Let H be a recursively enumerable set of hyper-
graphs. Assuming ETH,

CSP(H) is FPT ⇐⇒ H has bounded submodular width.

Exponential Time Hypothesis (ETH): There is no 2o(n) time algorithm for n-

variable 3SAT (known to be equivalent with “There is no 2o(m) time algorithm for

m-clause 3SAT”).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.10/44

Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded

Bounded submodular width

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.11/44

Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded

Bounded submodular width

PTIME

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.11/44

Tractable classes

Bounded submodular width

Bounded

Bounded (generalized)

Bounded fractional hypertree width

hypertree width

Bounded fractional

edge cover number

tree width

PTIME

FPT

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.11/44

Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded

Bounded submodular width
FPT

PTIME

not FPT

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.11/44

Overview

Next:

Brief review of treewidth.

Previous results for the special case of binary CSP: each constraint involves

two variables, i.e., H is a class of graphs.

General case: H is a class of hypergraphs.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.12/44

Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v , the bags containing v form a con-

nected subtree.

dcb

a

ge f h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.13/44

Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v , the bags containing v form a con-

nected subtree.

dcb

a

ge f h

b, e, f

b, c, f

a, b, c

c, d , f

d , f , g

g , h

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.13/44

Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v , the bags containing v form a con-

nected subtree.

dcb

a

ge f h

b, e, f

d , f , g

c, d , f

b, c, f

a, b, c g , h

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.13/44

Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v , the bags containing v form a con-

nected subtree.

Width of the decomposition: size of the largest bag

minus 1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest

dcb

a

ge f h

b, e, f

d , f , g

c, d , f

b, c, f

a, b, c g , h

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.13/44

Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v , the bags containing v form a con-

nected subtree.

Width of the decomposition: size of the largest bag

minus 1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest

dcb

a

e f hg

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.13/44

Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v , the bags containing v form a con-

nected subtree.

Width of the decomposition: size of the largest bag

minus 1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest

h

dcb

a

e f g

a, b, c g , hb, e, f

d , f , gb, c, f

c, d , f

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.13/44

Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.14/44

Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k .

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.14/44

Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k .

Fact: Treewidth does not increase if we delete edges/vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.14/44

Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k .

Fact: Treewidth does not increase if we delete edges/vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .

Fact: [Excluded Grid Theorem] If the treewidth of G is at least k4k2(k+2), then G

has a k × k grid minor.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.14/44

Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k .

Fact: Treewidth does not increase if we delete edges/vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the treewidth of G .

Fact: [Excluded Grid Theorem] If the treewidth of G is at least k4k2(k+2), then G

has a k × k grid minor.

Fact: For every clique K , there is a bag B with K ⊆ B

⇒ In the primal graph of a CSP instance, the scope of each constraint is a clique,

hence it is fully contained in a bag.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.14/44

Treewidth and CSP

Fact: For every fixed k , CSP can be solved in polynomial time if the primal graph

of the instance has treewidth at most k .

Proof sketch:

A tree decomposition of width k can be found in linear time for every fixed k .

For each bag, enumerate every assignment of the bag that satisfies every
constraint fully contained in the bag. Each bag has at most k + 1 variables,

thus there are at most |D|k+1 such assignments for each bag.

Use bottom-up dynamic programming to find a satisfying assignment.

Each constraint induces a clique in the primal graph, thus each constraint is
fully contained in one of the bags.

Running time of DP is polynomial in |D|k+1 and the number of variables.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.15/44

Dichotomy for binary CSP

We know that CSP(G) is polynomial-time solvable for every class G of graphs with

bounded treewidth. Are there other polynomial cases?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.16/44

Dichotomy for binary CSP

We know that CSP(G) is polynomial-time solvable for every class G of graphs with

bounded treewidth. Are there other polynomial cases?

Theorem: [Grohe-Schwentick-Segoufin 2001] Let G be a recursively enumerable
class of graphs. Assuming FPT 6= W[1], the following are equivalent:

Binary CSP(G) is polynomial-time solvable.

Binary CSP(G) is FPT.

G has bounded treewidth.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.16/44

Dichotomy for binary CSP

We know that CSP(G) is polynomial-time solvable for every class G of graphs with

bounded treewidth. Are there other polynomial cases?

Theorem: [Grohe-Schwentick-Segoufin 2001] Let G be a recursively enumerable
class of graphs. Assuming FPT 6= W[1], the following are equivalent:

Binary CSP(G) is polynomial-time solvable.

Binary CSP(G) is FPT.

G has bounded treewidth.

Note: FPT 6= W[1] is the standard assumption of parameterized complexity.

Note: Fixed-parameter tractability does not give us more power here than
polynomial-time solvability.

Note: We cannot hope a P vs. NP-complete dichotomy: there are classes G for

which the problem is equivalent to LOGCLIQUE.
Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.16/44

Proof outline

Suppose that G has unbounded treewidth, but CSP(G) is FPT.

Assuming FPT 6= W[1], there is no f (k)nc time algorithm for k-CLIQUE. But

we can solve k-CLIQUE the following way:

Formulate k-CLIQUE as a binary CSP instance on the k × k grid.

Find a Gk ∈ G containing a k × k minor (there is such a Gk by the Excluded
Grid Theorem).

Reduce CSP on the k × k grid to CSP with graph Gk , which is an instance of

CSP(G).

Use the assumed algorithm for CSP(G).

The running time is f (k)nc : the nonpolynomial factors in the running time
depend only on k (finding Gk , size of Gk , solving CSP(G))
⇒ k-CLIQUE is FPT, contradicting the hypothesis FPT 6= W[1].

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.17/44

Can you beat treewidth?

If G has unbounded treewidth, then there is no polynomial algorithm for binary

CSP(G), but it can be solved in time ‖I‖O(k), where k is the treewidth of the primal
graph.

Is there a class G where we can do much better, for example, there is a ‖I‖O(
√

k) or
even ‖I‖O(log log log k) algorithm for CSP(G)?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.18/44

Can you beat treewidth?

If G has unbounded treewidth, then there is no polynomial algorithm for binary

CSP(G), but it can be solved in time ‖I‖O(k), where k is the treewidth of the primal
graph.

Is there a class G where we can do much better, for example, there is a ‖I‖O(
√

k) or
even ‖I‖O(log log log k) algorithm for CSP(G)?

Theorem: [M. 2007] If G is a recursively enumerable class of graphs such that

binary CSP(G) can be solved in time f (G) · ‖I‖o(k/ log k) (where G is the primal
graph and k = tw(G)), then the Exponential Time Hypothesis fails.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.18/44

Embeddings

The previous proof is based on embedding the k-CLIQUE problem into a CSP

instance using the grid whose existence is guaranteed by the Excluded Grid
Theorem. However, this theorem is very weak: a k × k grid minor exists, if

treewidth is exponentially large in k .

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.19/44

Embeddings

The previous proof is based on embedding the k-CLIQUE problem into a CSP

instance using the grid whose existence is guaranteed by the Excluded Grid
Theorem. However, this theorem is very weak: a k × k grid minor exists, if

treewidth is exponentially large in k .

Definition: A q-embedding φ of graph F in graph G maps a subset of V (G) to

each vertex of F such that

For every v ∈ V (F), φ(v) is connected.

If u, v ∈ V (F) are adjacent in F , then φ(u) and φ(v) touch: either they

intersect or there is an edge connecting them.

Every w ∈ V (G) appears in the images of at most q vertices of F .

Note: F is a minor of G ⇐⇒ there is a 1-embedding from F to G .

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.19/44

An embedding result

Lemma: [M. 2007] If m = |E(F)| is sufficiently large and k = tw(G), then there is

a q-embedding of F in G for q = O(m log k/k).

Note: A q-embedding for q = O(m) is trivial, thus treewidth k means that we can
gain a factor of Ω(k/ log k) compared to the trivial embedding.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.20/44

An embedding result

Lemma: [M. 2007] If m = |E(F)| is sufficiently large and k = tw(G), then there is

a q-embedding of F in G for q = O(m log k/k).

Note: A q-embedding for q = O(m) is trivial, thus treewidth k means that we can
gain a factor of Ω(k/ log k) compared to the trivial embedding.

Main ingredients of the proof:

if treewidth is large, there is a set having no balanced separator (well-known),

if there is a set having no balanced separator, then there is set having no
sparse cut (well-known),

O(log k) integrality gap between sparsest cut and concurrent multicommodity

flows (well-known),

the q-embedding is constructed using the paths appearing in the flows (new).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.20/44

Proof

Theorem: [M. 2007] If G is a recursively enumerable class of graphs such that

binary CSP(G) can be solved in time f (G) · ‖I‖o(k/ log k) (where G is the primal
graph and k = tw(G)), then the Exponential Time Hypothesis fails.

Proof outline:

Given a 3SAT instance with m clauses and n variables, we turn it into a CSP

instance I1 with 3m binary constraints.

We use the embedding result to find a q-embedding of the primal graph of I1

into some Gk ∈ G (chosen appropriately).

We simulate I1 by an instance I2 whose primal graph is Gk : each variable of I2

simulates at most q variables of I1.

Now the 3SAT problem can be solved by solving I2. Calculation of the running

time shows that that a “too fast” algorithm for CSP(G) would give a 2o(m)

algorithm for m-clause 3SAT, violating ETH.
Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.21/44

Back to hypergraphs ...

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying

the following properties:

1. For every hyperedge e, there is a bag containing the vertices of e.

2. For every vertex v , the bags containing v form a connected subtree.

Standard definitions:

Width of the decomposition: size of the largest bag minus 1.

Tree width: width of the best decomposition.

Equivalent: Treewidth of the hypergraph H is the treewidth of the graph underlying

H (where every edge is a clique).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.22/44

CSP and treewidth of hypergraphs

Unbounded treewidth does not imply hardness for CSP(H).

Example: Let H contain every hypergraph having only one edge.

H has unbounded treewidth.

CSP(H) is trivial to solve.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.23/44

CSP and treewidth of hypergraphs

Unbounded treewidth does not imply hardness for CSP(H).

Example: Let H contain every hypergraph having only one edge.

H has unbounded treewidth.

CSP(H) is trivial to solve.

Example: Same for the class H containing those hypergraphs that can be
covered by one edge.

Unlike in the binary case, the complexity is not monotone: adding hyperedges can
make the problem easier!

Task: generalize treewidth in a way that takes this “non-monotonicity” into ac-

count.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.23/44

Width measures for decompositions

Definition: Let f : 2V (H) → R
+ be a function assigning values to the vertex

subsets of H.

The f -width(T) of a tree decomposition T is the maximum of f (B) over all

bags B.

The f -width(H) of hypergraph H is the minimum of f -width(T) over all tree
decompositions T of H.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.24/44

Width measures for decompositions

Definition: Let f : 2V (H) → R
+ be a function assigning values to the vertex

subsets of H.

The f -width(T) of a tree decomposition T is the maximum of f (B) over all

bags B.

The f -width(H) of hypergraph H is the minimum of f -width(T) over all tree
decompositions T of H.

Previous results: We can define treewidth, query width, hypertree width,

fractional hypertree width this way (details omitted).

But we take a different approach here...

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.24/44

Width measures for decompositions

Definition: Let f : 2V (H) → R
+ be a function assigning values to the vertex

subsets of H.

The f -width(T) of a tree decomposition T is the maximum of f (B) over all

bags B.

The f -width(H) of hypergraph H is the minimum of f -width(T) over all tree
decompositions T of H.

Definition: Let F be a set of functions from 2V (H) to R
+. The F-width of H is the

maximum of f -width(H) over every f ∈ F .

F-width(H) ≤ w ⇐⇒
for every f ∈ F
exists a tree decomposition T of F such that
for every bag B of T , f (B) ≤ w .

Note: the tree decomposition T can be different for different functions f ∈ F .

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.24/44

Submodular width

Definition: The submodular width of H is F-width(H), where F is the set of all

monotone, edge-dominated, submodular functions on the vertices of H.

Monotone: b(X) ≤ b(Y) for every X ⊆ Y .

Edge-dominated: b(e) ≤ 1 for every hyperedge e of H.

Submodular: For arbitrary sets X ,Y

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.25/44

Main result

Main result: [M. 2010] Let H be a recursively enumerable set of
hypergraphs. Assuming ETH,

CSP(H) is FPT ⇐⇒ H has bounded submodular width.

Algorithmic side: If H has bounded submodular width, then CSP(H) is FPT.

How does it help if we know that every submodular function has a good tree
decomposition?

Hardness: If H has bounded submodular width, then CSP(H) is not FPT.

To simulate 3SAT by CSP(H), we need an efficient embedding of a graph into

a hypergraph. We know that certain submodular functions do not have good
tree decompositions. How does that help in finding good embeddings?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.26/44

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.27/44

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.27/44

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.27/44

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.27/44

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.27/44

Number of solutions

sol(B) : number of solutions of the instance projected to subset B of variables.

The projection of instance I to B ⊆ V is an instance on B such that for every

constraint c of I with scope S such that S ∩ B 6= ∅, there is a constraint on S ∩ B

that is satisfied if it can be extended to a satisfying tuple of c .

Example:
Projection to
{v1, v2, v3}

s = (v2, v3, v4, v5), R =

(1,4,1,1)
(2,3,2,4)
(2,3,5,1)
(5,5,1,1)
(5,5,2,5)

⇒ s = (v2, v3), R =

(1,4)
(2,3)
(5,5)

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.28/44

Number of solutions

sol(B) : number of solutions of the instance projected to subset B of variables.

The projection of instance I to B ⊆ V is an instance on B such that for every

constraint c of I with scope S such that S ∩ B 6= ∅, there is a constraint on S ∩ B

that is satisfied if it can be extended to a satisfying tuple of c .

Example:
Projection to
{v1, v2, v3}

s = (v2, v3, v4, v5), R =

(1,4,1,1)
(2,3,2,4)
(2,3,5,1)
(5,5,1,1)
(5,5,2,5)

⇒ s = (v2, v3), R =

(1,4)
(2,3)
(5,5)

Fact: If we are given a tree decomposition of the hypergraph of instance I

together with a list (having length ≤ C) of all solutions of the projection to B for
each bag B, then I can be solved in time polynomial in ‖I‖ and C .

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.28/44

A crazy idea

Let I be a CSP instance with hypergraph H. Let N := ‖I‖ and suppose that the

submodular width of H is at most w .

Let b(B) := logN sol(B), which is edge-dominated.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.29/44

A crazy idea

Let I be a CSP instance with hypergraph H. Let N := ‖I‖ and suppose that the

submodular width of H is at most w .

Let b(B) := logN sol(B), which is edge-dominated.

Crazy assumption: b is monotone and submodular.

Then by the definition of submodular width, there is a tree decomposition where

sol(B) ≤ Nw for every bag
⇒ FPT algorithm!

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.29/44

A crazy idea

Let I be a CSP instance with hypergraph H. Let N := ‖I‖ and suppose that the

submodular width of H is at most w .

Let b(B) := logN sol(B), which is edge-dominated.

Crazy assumption: b is monotone and submodular.

Then by the definition of submodular width, there is a tree decomposition where

sol(B) ≤ Nw for every bag
⇒ FPT algorithm!

Problems:

b is not necessarily monotone.

b is not necessarily submodular.

we don’t even know the function b.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.29/44

Small sets

Definition: Let X be M-small if sol(Y) ≤ M for every Y ⊆ X .

Fact: In time f (H) · (‖I‖ ·M)O(1), we can identify all M-small sets and compute

sol(X) for every such set X .

We will care about the value of b only on the Nw -small sets, every other set will be

“too large.”

By introducing further constraints, we can ensure that b is monotone on Nw -small
sets: if an assignment Y ⊂ X is not extendible to X , then we forbid it.

Now we know b and it is monotone on the sets we care about. But what about

submodularity?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.30/44

Uniformity

Definition: max(A|B) is the maximum number of extensions of a solution on B to

a solution on A. Instance I is c-uniform, if max(A|B) ≤ c · sol(A)/sol(B) for every
B ⊆ A.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.31/44

Uniformity

Definition: max(A|B) is the maximum number of extensions of a solution on B to

a solution on A. Instance I is c-uniform, if max(A|B) ≤ c · sol(A)/sol(B) for every
B ⊆ A.

Fact: If I is 1-uniform, then b is submodular.

b(X) + b(Y) = logN |sol(X)|+ logN

(

|sol(X ∩ Y)| · |sol(Y)|
|sol(X ∩ Y)|

)

= logN |sol(X)|+ logN (|sol(X ∩ Y)| ·max(Y |X ∩ Y))

≥ logN |sol(X)|+ logN (|sol(X ∩ Y)| ·max(X ∪ Y |X))

= logN

(

|sol(X)| · |sol(X ∪ Y)|
|sol(X)|

)

+ logN |sol(X ∩ Y)|

= b(X ∩ Y) + b(X ∪ Y)

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.31/44

Uniformity

Definition: max(A|B) is the maximum number of extensions of a solution on B to

a solution on A. Instance I is c-uniform, if max(A|B) ≤ c · sol(A)/sol(B) for every
B ⊆ A.

Fact: If I is 1-uniform, then b is submodular.

b(X) + b(Y) = logN |sol(X)|+ logN

(

|sol(X ∩ Y)| · |sol(Y)|
|sol(X ∩ Y)|

)

= logN |sol(X)|+ logN (|sol(X ∩ Y)| ·max(Y |X ∩ Y))

≥ logN |sol(X)|+ logN (|sol(X ∩ Y)| ·max(X ∪ Y |X))

= logN

(

|sol(X)| · |sol(X ∪ Y)|
|sol(X)|

)

+ logN |sol(X ∩ Y)|

= b(X ∩ Y) + b(X ∪ Y)

If I is Nǫ-uniform on Nw -small sets, then with some tweaking (adding low order

terms) we can make b submodular.
Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.31/44

Decomposition into uniform instances

Suppose that two Nw -small sets B ⊆ A violate Nǫ-uniformity: there are

assignments on B having more than Nǫ · sol(A)/sol(B) extensions.

By adding a new constraint, we split the instance in two cases:

in Ismall every assignment on B has at most
√

Nǫ · sol(A)/sol(B) extensions,

in Ilarge every assignment has more than that many extensions.

Repeat if necessary (idea from [Alon et al. 2006]).

We can show that the number of instances created by the procedure can be

bounded by a function of the number of variables (independent of the size of the
domain and the relations!).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.32/44

Decomposition into uniform instances

Suppose that two Nw -small sets B ⊆ A violate Nǫ-uniformity: there are

assignments on B having more than Nǫ · sol(A)/sol(B) extensions.

By adding a new constraint, we split the instance in two cases:

in Ismall every assignment on B has at most
√

Nǫ · sol(A)/sol(B) extensions,

in Ilarge every assignment has more than that many extensions.

Repeat if necessary (idea from [Alon et al. 2006]).

The following measure decreases by at least ǫ/2 in Ismall and Ilarge:

W =
∑

∅⊆B⊆A⊆V
A, B are Nw -small

logN max(A|B).

Ismall: max(A|B) decreases by a factor of
√

Nǫ.

Ilarge: sol(B) = max(B|∅) decreases by a factor of
√

Nǫ.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.32/44

The algorithm

Algorithm for hypergraphs with submodular with at most w :

Locate the Nw -small sets.

Decompose the instance into a bounded number of Nǫ-uniform instances

⇒ b = logN sol(B) is submodular (after some tweaking).

For each new instance, try every tree decomposition — there has to be one
where b(B) ≤ w and hence sol(B) ≤ Nw for every bag b.

Solve the new instance using this tree decomposition.

This completes the algorithmic part of the main result.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.33/44

The algorithm

Algorithm for hypergraphs with submodular with at most w :

Locate the Nw -small sets.

Decompose the instance into a bounded number of Nǫ-uniform instances

⇒ b = logN sol(B) is submodular (after some tweaking).

For each new instance, try every tree decomposition — there has to be one
where b(B) ≤ w and hence sol(B) ≤ Nw for every bag b.

Solve the new instance using this tree decomposition.

This completes the algorithmic part of the main result.

Idea #1: The decomposition depends not only on the hypergraph of the
instance, but on the actual constraint relations.

Idea #2: We branch on adding further restrictions, and apply different tree

decompositions to each resulting instance.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.33/44

Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

An embedding provides
a way of simulating
3SAT with CSP

Connection between fractional
separators and submodular
cost functions

In uniform CSP instances
a submodular function
describes the number
of solutions

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.34/44

Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

An embedding provides
a way of simulating
3SAT with CSP

Connection between fractional
separators and submodular
cost functions

In uniform CSP instances
a submodular function
describes the number
of solutions

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.34/44

Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Fact: If tw(G) = Ω(k), then there is a set W of O(k) vertices such that for every

disjoint A, B ⊆W , there is no (A, B)-separator of less than min{|A|, |B|} vertices.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.35/44

Highly connected sets

Fact: If tw(G) = Ω(k), then there is a set W of O(k) vertices such that for every

disjoint A, B ⊆W , there is no (A, B)-separator of less than min{|A|, |B|} vertices.

Separator-based approach:

W

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.35/44

Highly connected sets

Fact: If tw(G) = Ω(k), then there is a set W of O(k) vertices such that for every

disjoint A, B ⊆W , there is no (A, B)-separator of less than min{|A|, |B|} vertices.

Separator-based approach:

BSA

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.35/44

Highly connected sets

Fact: If tw(G) = Ω(k), then there is a set W of O(k) vertices such that for every

disjoint A, B ⊆W , there is no (A, B)-separator of less than min{|A|, |B|} vertices.

Separator-based approach:

B

B

S

S S

A

A

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.35/44

Highly connected sets

Fact: If tw(G) = Ω(k), then there is a set W of O(k) vertices such that for every

disjoint A, B ⊆W , there is no (A, B)-separator of less than min{|A|, |B|} vertices.

Separator-based approach:

A

A B

B

S

S S

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.35/44

Highly connected set

Definition: A set W is b-connected, if for every disjoint X , Y ⊆W , there is no

(X , Y)-separator S with b(S) < min{b(X), b(Y)}.

If b-width is at least w for some submodular function b, the separator-based

approach of finding tree decompositions almost gives us (there is one major
technical difficulty) a set b-connected set W with b(W) = Ω(w).

But we want a notion of highly connected set that is determined only by the hyper-

graph H and is not related to any submodular function.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.36/44

Highly connected set

Definition: A fractional independent set of H is an assignment

µ : V (H)→ {0, 1} such that µ(e) ≤ 1 for every hyperedge e (we define
µ(X) =

∑

v∈X µ(v)).

Definition: A fractional (X , Y)-separator is an assignment E(H)→ {0, 1} such
that every X − Y path is covered by total weight at least 1.

Definition: Let λ > 0 be a constant (say, 0.01) and let µ be a fractional

independent set. A set W is (µ, λ)-connected if for every disjoint X ,Y ⊆W ,
there is no fractional (X , Y)-separator of weight less than λ ·min{µ(X), µ(Y)}.

We need to connect somehow the notions of “fractional (X , Y)-separator having

small weight” and “(X , Y)-separator S with b(S) small.”

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.37/44

Result on separation

What does it mean that there is a fractional (X , Y)-separator of small weight?

Lemma: If there is a fractional (X , Y)-separator of weight w , then for every

edge-dominated monotone submodular function b, there is an (X , Y)-separator S

with b(S) = O(w).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.38/44

Result on separation

What does it mean that there is a fractional (X , Y)-separator of small weight?

Lemma: If there is a fractional (X , Y)-separator of weight w , then for every

edge-dominated monotone submodular function b, there is an (X , Y)-separator S

with b(S) = O(w).

Definition: (repeated) A set W is b-connected, if for every disjoint X ,Y ⊆W ,
there is no (X ,Y)-separator S with b(S) < min{b(X), b(Y)}.

If there is no (X , Y)-separator S with b(S) < min{b(X), b(Y)}, then there is no

fractional separator of weight λ ·min{b(X), b(Y)} for some λ > 0.

So we have obtained a set W that is “highly connected” in the sense that certain

fractional separators do not exist, and this takes us into the domain of pure hyper-

graph properties, separators, flows, etc.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.38/44

Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP

In uniform CSP instances
a submodular function
describes the number
of solutions

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.39/44

Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP

In uniform CSP instances
a submodular function
describes the number
of solutions

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.39/44

Embeddings

Definition: A q-embedding of graph F in hypergraph H maps a subset of V (H)

to each vertex of H such that

For every v ∈ V (F), φ(v) is connected.

If u, v ∈ V (F) are adjacent in F , then φ(u) and φ(v) touch: there is a

hyperedge intersecting both of them

Every hyperedge e of H intersects the images of at most q vertices of F .

Lemma: [M. 2007] For graphs F and G , if m = |E(F)| is sufficiently large and
k = tw(G), then there is a q-embedding of F in G for q = O(m log k/k).

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.40/44

Embeddings

Definition: A q-embedding of graph F in hypergraph H maps a subset of V (H)

to each vertex of H such that

For every v ∈ V (F), φ(v) is connected.

If u, v ∈ V (F) are adjacent in F , then φ(u) and φ(v) touch: there is a

hyperedge intersecting both of them

Every hyperedge e of H intersects the images of at most q vertices of F .

Lemma: [M. 2007] For graphs F and G , if m = |E(F)| is sufficiently large and
k = tw(G), then there is a q-embedding of F in G for q = O(m log k/k).

We show:

Lemma: For a graph F and hypergraph H, if m = |E(F)| is sufficiently large and H

has submodular width w , then there is a q-embedding of F in H for q = O(m/w
1
4).

Proof: Flows, multicuts on hypergraphs, LP duality etc.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.40/44

Hardness proof

Theorem: If H is a recursively enumerable class of hypergraphs with unbounded

submodular width, then CSP(H) is not fixed-parameter tractable (assuming ETH).
Proof outline:

Given a 3SAT instance with m clauses and n variables, we turn it into a CSP

instance I1 with 3m binary constraints, and domain size 3.

We use the embedding result to find a q-embedding of the primal graph F of I1

into some Hk ∈ H (chosen appropriately).

We simulate I1 by an instance I2 whose primal graph is Hk : each edge of I2

“sees” at most q variables of I1, thus each constraint relation has size ≤ 3q .

Now the 3SAT problem can be solved by solving I2. Calculation of the running

time shows that that an FPT algorithm for CSP(H) would give a 2o(m) algorithm
for m-clause 3SAT, violating ETH.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.41/44

Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.42/44

Conclusions

Characterization of CSP(H) with respect to fixed-parameter tractability.

Main new definition: submodular width.

Why fixed-parameter tractability?

What happens in the “gray zone”?

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.43/44

Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded

Bounded submodular width
FPT

PTIME

not FPT

Tractable hypergraph properties for constraint satisfaction and conjunctive queries – p.44/44

	Overview
	Constraint Satisfaction Problems (CSP)
	Conjunctive Queries
	Graphs and hypergraphs related to CSP
	CSP and hypergraphs
	Representation of constraints
	Tractability
	Some positive results
	Main result
	Tractable classes
	Overview
	Treewidth
	Properties of treewidth
	Treewidth and CSP
	Dichotomy for binary CSP
	Proof outline
	Can you beat treewidth?
	Embeddings
	An embedding result
	Proof
	Back to hypergraphs$ldots $
	CSP and treewidth of hypergraphs
	Width measures for decompositions
	Submodular width
	Main result
	Three battlefields
	Number of solutions
	A crazy idea
	Small sets
	Uniformity
	Decomposition into uniform instances
	The algorithm
	Three battlefields
	Highly connected sets
	Highly connected set
	Highly connected set
	Result on separation
	Three battlefields
	Embeddings
	Hardness proof
	Three battlefields
	Conclusions
	Tractable classes

