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Minimum sum multicoloring

Given: a graph G(V, E), and demand function x: V → N

Find: an assignment of x(v) colors (integers) to every vertex v, such that

neighbors receive disjoint sets

Finish time: f(v) of vertex v is the largest color assigned to it in the coloring.

Goal: Minimize
∑

v∈V f(v), the sum of the coloring .
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Sum of the coloring:
5 + 1 + 2 + 4 + 3 + 5 = 20
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Edge coloring version

Assign x(e) colors to each edge e, minimize the sum of the finish times of the edges.

Each color can appear at most once at a vertex.

Line graph: in the line graph of G there is one vertex for each edge of G, vertices
corresponding to adjacent edges are connected.

Edge coloring is the same as coloring the line graph of the graph.
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Approximation schemes

[Halldórsson et al. 2003] PTAS for the minimum sum multicoloring of trees.

[Halldórsson and Kortsarz 2002] PTAS for the minimum sum multicoloring of partial
k-trees and planar graphs.

[M. 2003] PTAS for the minimum sum edge multicoloring of trees.

[This paper] PTAS for the minimum sum edge multicoloring of partial k-trees and

planar graphs.
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Approximation schemes

[Halldórsson et al. 2003] PTAS for the minimum sum multicoloring of trees.

[Halldórsson and Kortsarz 2002] PTAS for the minimum sum multicoloring of partial
k-trees and planar graphs.

[M. 2003] PTAS for the minimum sum edge multicoloring of trees.

bounded degree trees / almost bounded degree trees / arbitrary trees

[This paper] PTAS for the minimum sum edge multicoloring of partial k-trees and

planar graphs.

bounded degree partial k-trees / almost bounded degree partial k-trees /

arbitrary partial k-trees / planar graphs

Definition: a graph has almost bounded degree if it has bounded degree after

deleting the degree 1 nodes.

Minimum sum multicoloring on the edges ofplanar graphs and partial k-trees – p.4/13



Partial k-trees

k-trees are defined recursively:

A k-clique is a k-tree.

Attaching a vertex to a k-clique of a k-tree gives another k-tree.

Every k-tree can be obtained with these two rules.

Partial k-tree: subgraph of a k-tree.

Partial 1-trees = forests

Many problems are efficiently solvable on

partial k-trees using dynamic program-
ming.

A 2-tree:
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Approximate color sets

Idea: A collection of color sets is assigned to each vertex, such that there is a good

approximate coloring using these sets. Then we use dynamic programming to find the
best coloring with these sets.

Dynamic programming can be used for partial k-trees:

Trees X

Partial k-trees X

Line graph of a tree with max degree d ⇒ partial (d − 1)-tree X

Line graph of a partial k-tree with max degree d ⇒ [(k + 1)d − 1]-tree X

There is a more efficient direct algorithm for the edge coloring of trees and

partial k-trees, which works even for almost bounded degree graphs.
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Finding approximate color sets

How to construct these collections of color sets?

Trees: Using some easy properties of bipartite graphs.

Partial k-trees: Sophisticated probabilistic arguments (Chernoff’s Bound).

Edges of trees: Greedy algorithm.

Edges of partial k-trees: we use the following theorem:

Theorem: [Kahn, 1996] For every ǫ > 0, there is a constant D(ǫ) such that if a

multigraph has maximum degree at least D(ǫ), then its chromatic index is at most

(1 + ǫ)-times the fractional chromatic index.
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Rounding the demand

Theorem: If the graph is a tree , then increasing the demand of each edge to the next

power of (1 + ε) increases the sum by at most a factor of (1 + ε).

Weaker property:

Theorem: If the graph is a partial k-tree , then increasing the demand of each edge to
the next power of (1 + ε) increases the sum by at most a factor of (1 + 2(k + 1)ε).

⇒ we can assume that each demand is of the form (1 + ε)i
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The Small, the Large, and the Frequent

We orient the edges such that at most k edges leave every vertex.
The edges entering a node are divided into small, large, and frequent edges.

Every demand is of the form (1 + ε)i .
Number of edges for each demand size:

. . .3210

of edges

number

log1+ε of demand
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The Small, the Large, and the Frequent

We orient the edges such that at most k edges leave every vertex.
The edges entering a node are divided into small, large, and frequent edges.

Every demand is of the form (1 + ε)i .
Number of edges for each demand size:

. . .3210

of edges

number

log1+ε of demand

1/ε5

1/ε2

Total demand of the small edges is very small, they can be thrown away.
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The Small, the Large, and the Frequent

We orient the edges such that at most k edges leave every vertex.
The edges entering a node are divided into small, large, and frequent edges.

Every demand is of the form (1 + ε)i .
Number of edges for each demand size:

. . .3210

of edges

number

log1+ε of demand

1/ε5

1/ε2

Total demand of the small edges is very small, they can be thrown away.

At most a constant number (≤ 1/ε7) of large edges enter each vertex.
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Splitting the graph

We split the frequent edges:

At most a constant number of large
edges enter each vertex.

The graph is split at the frequent

edges.

Almost bounded degree: after
deleting the degree one vertices only

the large edges remain.

Thus the PTAS can be used.
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Conflicts

The following types of conflicts can arise when we restore the frequent edges:

Type 1 Type 2 Type 3 Type 4

frequent–frequent large–frequent frequent–frequent large–frequent

We resolve each type of conflict with only a small increase of the sum.
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Type 1 conflicts

v2

v2

v1

v1

u
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Type 1 conflicts

v2

v2

v1

v1

u

u

f2

. . .
fm

e1 f1
en

. . .e2

Edges e1, . . . , en are identical in every sense, the
colors sets can be randomly reordered (similarly

for f1, . . . , fm ).

Minimum sum multicoloring on the edges ofplanar graphs and partial k-trees – p.12/13



Type 1 conflicts
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Edges e1, . . . , en are identical in every sense, the
colors sets can be randomly reordered (similarly

for f1, . . . , fm ).

Ai : the range of colors assigned to ei . The Ai ’s
do not overlap.
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B4 B5 B1
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B3

A4

B2
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Type 1 conflicts

v2
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. . .
fm

e1 f1
en

. . .e2

Edges e1, . . . , en are identical in every sense, the
colors sets can be randomly reordered (similarly

for f1, . . . , fm ).

Ai : the range of colors assigned to ei . The Ai ’s
do not overlap.

If n and m are large, then with high probability A1

and B1 do not intersect.

With high probability there are only a few conflicts,

which can be handled easily.

colors

A1

B1
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Conclusions

Problem: edge coloring version of minimum sum multicoloring on trees.

A linear time PTAS for edge coloring partial k-trees. First for almost bounded
degree partial k-trees.

PTAS for the edge coloring of planar graphs using Baker’s layering technique.

General techniques useful for multiple problems.
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