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Abstract

In the precoloring extension problem we are given a graph with some
of the vertices having a preassigned color and it has to be decided whether
this coloring can be extended to a proper k-coloring of the graph. Answer-
ing an open question of Hujter and Tuza [6], we show that the precoloring
extension problem is NP-complete on unit interval graphs.

1 Introduction

In graph vertex coloring we have to assign colors to the vertices such that neigh-
boring vertices receive different colors. In the precoloring extension problem a
subset W of the vertices have a preassigned color and we have to extend this
to a proper k-coloring of the whole graph. Formally, we will investigate the
following problem:

Precoloring Extension

Input: A graph G(V,E), a subset W ⊆ V , a coloring c′ of W and
an integer k.

Question: Is there a proper k-coloring c of G extending the coloring
c′ (that is, c(v) = c′(v) for every v ∈W )?

Since vertex coloring is the special case W = ∅, the precoloring extension
problem is NP-complete in every class of graphs where vertex coloring is NP-
complete. Therefore we can hope to solve precoloring extension efficiently only
on graphs that are easy to color, for example on perfect graphs. Biró, Hujter
and Tuza [1, 5, 6] started a systematic study of precoloring extension in perfect
graphs. It turns out that for some classes of perfect graphs (e.g., split graphs,
complements of bipartite graphs, cographs) not only coloring is easy, but even
the more general precoloring extension problem can be solved in polynomial
time. On the other hand, for some other classes (bipartite graphs, line graphs
of bipartite graphs) precoloring extension is NP-complete.

A graph is an interval graph if it can be represented as the intersection graph
of a set of intervals. It is a unit interval graph if it can be represented by intervals
of unit length and it is a proper interval graph if it can be represented in such
a way that no interval is properly contained in another. It can be shown that
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these two latter classes of graphs are the same [3], in fact they are exactly the
interval graphs that are claw-free [11] (contain no induced K1,3). These interval
graphs are also called indifference graphs.

Interval graph coloring arises in various applications including scheduling
[2] and single row VLSI routing [10]. There is a simple greedy algorithm that
colors an interval graph with minimum number of colors. However, Biró, Hujter
and Tuza [1] proved that the precoloring extension problem is NP-complete on
interval graphs, even if every color is used at most twice in the precoloring (they
also gave a polynomial time algorithm for the case where every color is used only
once). In [6] they asked what is the complexity of the precoloring extension
problem in the more restricted case of unit interval graphs. In Section 3, we
prove that this problem is also NP-complete. The proof is by reduction from a
disjoint paths problem whose NP-completeness was proved in [7]. In Section 2,
we briefly overview the relevant definitions and results concerning the disjoint
paths problem.

2 The disjoint paths problem

In the disjoint paths problem we are given a graph G and a set of source–
destination pairs (s1, t1), (s2, t2), . . . , (sk, tk) (called the terminals), our task
is to find k disjoint paths P1, . . . , Pk such that path Pi connects vertex si

to vertex ti. There are four basic variants of the problem: the graph can be
directed or undirected, and we can require edge disjoint or vertex disjoint paths.
Here only the directed, edge disjoint problem is considered, ’disjoint’ will mean
edge disjoint throughout this paper. The problem is often described in terms of
a supply graph and a demand graph, as follows:

Disjoint Paths

Input: The directed supply graph G and the directed demand graph
H on the same set of vertices.

Question: Find a path Pe in G for each e ∈ E(H) such that these
paths are edge disjoint and path Pe together with edge e form a
directed circuit.

With a slight abuse of terminology, we say that a demand −→uv ∈ H starts
in v and ends in u (since the directed path satisfying this demand starts in v

and ends in u). An undirected graph is called Eulerian if every vertex has even
degree, and a directed graph is Eulerian if the indegree equals the outdegree at
every vertex. The disjoint paths problem is motivated by practical applications
and the deep theory behind it, see [13, 4] for a survey of the results in this area.

A graph is a grid graph if it is a finite subgraph of the rectangular grid. A
directed grid graph is a grid graph with the horizontal edges directed to the
right and the vertical edges directed to the bottom. Clearly, every directed
grid graph is acyclic. A rectangle is a grid graph with n ×m nodes such that
vi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) is connected to vi′,j′ if and only if |i − i′| = 1 and
j = j′, or i = i′ and |j − j′| = 1. The study of grid and rectangle graphs is
motivated by applications in VLSI-layout.

The undirected edge disjoint paths problem is NP-complete even in the
special case when G is planar (or even if G + H is planar [8]). Vygen proved
that the directed edge disjoint paths problem is NP-complete even if the supply
graph G is planar and acyclic [14] or even if G is a directed grid graph [13]. In
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[7] it is shown that the problem remains NP-complete if G is a directed grid
graph and G+H is Eulerian.

It is noted in [13] that the disjoint paths problem is not easier in rectangle
graphs than in general grid graphs: if we add a new edge −→uv to G and a new
demand from u to v, then the new demand can reach v in the grid only using the
new edge. Thus, without changing the solvability of the problem, we can add
new edges and demands until G becomes a full rectangle. Notice that G + H

remains Eulerian after adding these new edges and new demands.

Theorem 2.1. The disjoint paths problem is NP-complete on directed rectan-
gles even if G+H is Eulerian.

The following observation will be useful:

Lemma 2.2. In the directed case, if G+H is Eulerian, and G is acyclic, then
every solution of the disjoint paths problem uses all the edges of G.

Proof. Assume that a solution is given. Take a demand edge of H and delete
from G+H the directed circuit formed by the demand edge and its path in the
solution. Continue this until the remaining graph contains no demand edges,
then it is a subgraph of G. Since we deleted only directed circuits, it remains
Eulerian, but the only Eulerian subgraph of G is the empty graph, thus the
solution used all the edges. ¥

For purely technical reasons, we introduce the following variant of the dis-
joint paths problem. For every demand, not only the terminals are given, but
here also the first and last edge of the path is also prescribed:

Directed Edge Disjoint Paths with Terminal Edges

Input: The supply graph G and the demand graph H on the same
set of vertices (both of them directed), and for every edge e ∈ H, a
pair of edges (se, te) of G.

Question: Find a path Pe in G for each e ∈ E(H) such that these
paths are edge disjoint, Pe and e form a directed circuit and the
first/last edge of Pe is se, te, respectively.

As shown in the following theorem, this variant of the problem is NP-
complete as well. It will be the basis of the reduction in Section 3.

Theorem 2.3. The Directed Edge Disjoint Paths with Terminal Edges problem
is NP-complete on rectangle graphs, even when G+H is Eulerian.

Proof. It is shown in [7] that the disjoint paths problem is NP-complete on
directed grid graphs with G+H Eulerian. The reduction in [7] constructs grid
graphs with the following additional properties:

• at most one demand ends in each vertex v,

• if a demand ends in v, then exactly one edge of G enters v,

• at most two demands start in each vertex u,

• if a demand stars in u, then no edge of G enters u.
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If two demands α and β start at a vertex u, then we slightly modify G and
H. Two new supply edges −→xu and −→yu are attached to u, there is place for these
edges since no edge enters u in G. Demand graph H is modified such that the
start vertex of demand α is set to x, the start vertex of β is set to y. Clearly,
these modifications do not change the solvability of the instance, and G remains
a grid graph. Moreover, G + H remains Eulerian. Therefore we can assume
that the instance has the following two properties as well:

• At most one demand starts from each vertex u,

• If a demand starts in u, then exactly one edge of G leaves u.

If these properties hold, then in every solution of the disjoint paths problem
a demand going from u to v has to leave u on the unique edge leaving u, and
has to enter v on the unique edge entering v. Therefore prescribing the first
and the last edge of every demand does not change the problem. Thus we can
conclude that the disjoint paths with terminal edges problem is NP-complete
in grid graphs. Furthermore, when we add new edges to G and H to make G

a rectangle (as described in the remark before Theorem 2.1), then obviously it
can be prescribed that the first and the last edge of the new demand is the new
edge, hence it follows that the problem is NP-complete on directed rectangles
as well. ¥

3 Precoloring extension

The aim of this section is to prove the NP-completeness of precoloring exten-
sion on proper interval graphs (recall that proper interval graphs are the same
as unit interval graphs). In [1] the NP-completeness of precoloring extension
on interval graphs is proved by a reduction from circular arc graph coloring. A
similar reduction is possible from proper circular arc coloring to the precoloring
extension of proper interval graphs, but the analogy doesn’t help here, because
proper circular arc coloring can be done in polynomial time [9, 12]. In this sec-
tion, we follow a different path: the NP-completeness of precoloring extension
on proper interval graphs is proved by reduction from a planar disjoint paths
problem investigated in Section 2.

An important idea of the proof is demonstrated on Figure 1. In any k-
coloring of the intervals in (a), for all i, interval I1,i has the same color as I0,i:
interval I1,0 must receive the only color not used by I0,1, I0,2, . . . , I0,k−1; interval
I1,1 must receive the color not used by I1,0, I0,2, I0,3, . . . , I0,k−1, and so on. In
case (b), the intervals are slightly modified. If all the I0,i intervals are colored,
then there are two possibilities: either the color of I1,i is the same as the color
of I0,i for i = 0, . . . , k− 1, or we swap the colors of I1,1 and I1,2. Blocks of type
(a) and (b) will be the building blocks of our reduction.

Theorem 3.1. The precoloring extension problem is NP-complete on proper
interval graphs.

Proof. The reduction is from the Eulerian directed edge disjoint paths with
terminal edges problem on rectangle graphs, whose NP-completeness was shown
in Theorem 2.3. First we modify the given rectangle graph G. As in the remark
before Theorem 2.1, new edges are added to the rectangle KLMN to obtain
the shape shown on Figure 2, without changing the solvability of the instance.
Hereinafter it is assumed that G has such a form. The entire G is contained
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Figure 1: (a) In every k-coloring c of the (open) intervals, I0,i and I1,i receive
the same color for 0 ≤ i ≤ k − 1 (b) In every k-coloring c of the intervals,
c(I0,i) = c(I1,i) for i 6= 1, 2 and either c(I0,1) = c(I1,1), c(I0,2) = c(I1,2) or
c(I0,1) = c(I1,2), c(I0,2) = c(I1,1) holds.

between the two diagonal lines X and Y , the vertices on X have outdegree
1, the vertices on Y have indegree 1 and the vertices of G between X and Y

are Eulerian. If the rectangle KLMN contains r × s vertices, then there are
m = r + s vertices on both X and Y , and every directed path from a vertex
of X to a vertex of Y has length m. Now consider the parallel diagonal lines
A0, A1, . . . , Am−1 as shown on the figure, and denote by Ei the set of edges
intersected by Ai. Clearly this forms a partition of the edges, and every set Ei

has size m. Let Ei = {ei,0, . . . , ei,m−1}, ordered in such a way that ei,0 is the
lower left edge.

We can assume that H is a DAG, otherwise there would be no solution, since
G is acyclic. Exactly one demand starts from each vertex on line X, exactly one
demand terminates at each vertex on Y , and the indegree equals the outdegree
in every other vertex of H, this follows from G+H Eulerian. From these facts,
it is easy to see that H can be decomposed into m disjoint paths D1, . . . , Dm

such that every path connects a vertex on X with a vertex on Y . We assign a
color to each demand: if demand α is in Di, then give the color i to α.

Based on the disjoint paths problem, we define a set of intervals and a
precoloring. Every interval Ii,j corresponds to an edge ei,j ∈ Ei of the supply
graph G. Let vi,j be the tail vertex of ei,j , and denote by δG(vi,j) the outdegree
of vi,j in G. The intervals Ii,j (0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1) are defined as
follows (see Figure 3):

Ii,j =







(

2(im+ j), 2(im+ j) + 2m
)

if δG(vi,j) = 1,
(

2(im+ j) + 2, 2(im+ j) + 2m
)

if δG(vi,j) = 2 and ei,j is vertical,
(

2(im+ j) + 1, 2(im+ j) + 2m
)

if δG(vi,j) = 2 and ei,j is horizontal.

Notice that the intervals are open, hence two intervals that share only an end-
point do not intersect.

If the prescribed start edge and end edge of a demand with color c is e′ and
e′′, then precolor the intervals corresponding to e′ and e′′ with color c. This
assignment is well defined, since it can be assumed that the start and end edges
of the demands are different, otherwise it is trivial that the problem has no
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Figure 2: Partitioning the edges of the extended grid (r = 4, s = 5).
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Figure 3: An example of the reduction with r = s = 2: (a) the grid graph, (b)
the corresponding proper interval graph.
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Figure 4: The edges incident to the tail of ei,j . (a) ei,j is vertical (b) ei,j is
horizontal

solution. This completes the description of the reduction, we claim that the
precoloring of the constructed interval graph can be extended to a coloring with
m colors if and only if the disjoint paths problem has a solution.

First we observe certain properties of the intervals. Let Ii = {Ii,0, . . . , Ii,m−1},
that is, the set of intervals corresponding to Ei. The set Ii forms a clique in
the graph, and the elements of Ii and Ii′ are not intersecting if i′ ≥ i + 2. The
interval Ii,j does not intersect Ii−1,j′ for j′ ≤ j, and it does intersect Ii−1,j′ for
j′ > j + 1. It may or may not intersect Ii−1,j+1.

Assume that P1, . . . , Pn is a solution of the disjoint paths problem. If an
edge ei,j is used by a demand with color c, then color the edge ei,j and the
corresponding interval Ii,j with color c. Since by Lemma 2.2 every edge of
the graph is used by a demand, every interval receives a color. Furthermore,
the demands use the prescribed start and end edges, and so this coloring is
compatible with the precoloring given above. Notice that the set of edges in the
grid graph that receive the color c forms a directed path from a vertex on X to
a vertex on Y . Thus all m colors appear on the intervals in Ii, every interval
has different color in this set.

It has to be shown that this coloring is proper. By the observations made
above, it is sufficient to verify that two intersecting intervals Ii,j and Ii−1,j′ do
not have the same color. Since the edges having color c form a path, if ei−1,j′ and
ei,j have the same color, then the head of ei−1,j′ and the tail of ei,j must be the
same vertex vi,j . Assume first that δG(vi,j) = 1, then j = j′, which implies that
Ii,j and Ii−1,j′ are not intersecting. For the case δG(vi,j) = 2, it will be useful
to refer to Figure 4. If δG(vi,j) = 2 and ei,j is vertical, then ei,j+1 is horizontal
and its tail is also vi,j (see Figure 4a). Moreover, in this case ei−1,j is horizontal,
ei−1,j+1 is vertical, and vi,j is the head of both edges. Therefore if δG(vi,j) = 2
and ei,j is vertical, then j′ = j or j′ = j + 1, which implies that the right
endpoint of Ii−1,j′ is not greater than 2((i− 1)m+ j +1)+2m = 2(im+ j)+ 2,
the left endpoint of Ii,j . If ei,j is horizontal, then j′ = j or j′ = j − 1 (see
Figure 4b), hence intervals Ii−1,j′ and Ii,j are clearly not intersecting.

On the other hand, assume that there is a proper extension of the precoloring
with m colors. Color every edge ei,j of the grid graph with the color assigned
to the corresponding interval Ii,j . First we prove that the set of edges having
color c forms a directed path Rc in the graph. Since the intervals in Ii have
different colors, every one of the m colors appears exactly once on the edges in
Ei. Thus it is sufficient to prove that the tail vi,j of the unique edge ei,j ∈ Ei

having color c is the same as the head of the unique edge ei−1,j′ ∈ Ei−1 having
color c.
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Assume first that δG(vi,j) = 1, then we have to show that j = j ′. Denote
by x = 2(im + j), the left endpoint of Ii,j , which is also the right endpoint
of Ii−1,j (as an example, consider interval I1,3 on Figure 3b). If j′ > j, then
Ii−1,j′ and Ii,j intersect (both of them contain x + ε), which contradicts the
assumption that Ii,j and Ii−1,j′ have the the same color. Assume therefore that
j′ < j. It is clear from the construction that the left endpoint of every interval
Ii,1, . . . , Ii,j−1 is strictly smaller than x (it is not possible that δG(vi,j−1) = 2
and ei,j−1 is vertical, since that would imply vi,j−1 = vi,j and δG(vi,j) = 2).
The right endpoint of every interval Ii−1,j , . . . , Ii−1,m−1 is not smaller than x,
thus {Ii,0, . . . , Ii,j−1, Ii−1,j , Ii−1,j+1, . . . , Ii−1,m−1} is a clique of size m in the
interval graph, since they all contain x − ε. Now Ii,0, . . . , Ii,j−1 intersect Ii,j ,
and Ii−1,j , . . . Ii−1,m−1 intersect Ii,j′ , thus color c cannot appear in this clique,
a contradiction.

Now assume that δG(ei,j) = 2 and ei,j is vertical, we have to show that
j′ = j or j′ = j + 1 holds (see for example I1,1 on Figure 3b). If j′ > j + 1,
then Ii−1,j′ intersects Ii,j , a contradiction. Assume therefore that j ′ < j

and let y = 2(im + j), the right endpoint of Ii−1,j . It can be verified that
{Ii,0, . . . , Ii,j−1, Ii−1,j , . . . , Ii−1,m−1} is a clique of size m, since all of them con-
tain y − ε. Color c cannot appear on Ii,0, . . . , Ii,j−1 because of Ii,j , and it
cannot appear on Ii−1,j , . . . , Ii−1,m−1 because of Ii−1,j′ . Thus there is a clique
of size m without color c, a contradiction.

If δG(ei,j) = 2 and ei,j is horizontal, then we have to show that j ′ is either j or
j−1 (see for example I3,2 on Figure 3b). If j′ ≥ j+1, then Ii,j intersects Ii−1,j′ ,
therefore it can be assumed that j ′ < j − 1. Let z = 2((i− 1)m+ j − 1) + 2m,
the right endpoint of Ii−1,j−1. Point z−ε is contained in each of Ii,0, . . . , Ii,j−2,
Ii−1,j−1, . . . , Ii−1,m−1, hence they form a clique of size m. However, intervals
Ii−1,j′ and Ii,j forbid the use of color c on this clique, a contradiction.

We have shown that the set of edges with color c are contained in a path
Rc. Because of the precoloring, the path Rc goes through the prescribed start
and end edges of every demand with color c. Furthermore, since the demands
with color c correspond to a directed path Dc in H, all these demands can be
satisfied using only the edges of Rc, without two demands using the same edge.
Thus there is solution to the disjoint path problem, proving the correctness of
the reduction.

Since the precoloring extension problem is obviously in NP and the reduction
above can be done in polynomial time, we have proved that it is NP-complete
on unit interval graphs. ¥
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