
Searching the k-change neighborhood for TSP is

W[1]-hard

Dániel Marx
∗

Abstract

We show that searching the k-change neighborhood is W[1]-hard for
metric TSP, which means that finding the best tour in the k-change neigh-
borhood essentially requires complete search (modulo some complexity-
theoretic assumptions).

Keywords: Traveling Salesperson Problem, W[1]-hardness, parame-
terized complexity, local search

1 Introduction

The Traveling Salesperson Problem (TSP) is one of the most studied optimiza-
tion problems. Given the NP-hardness of this practically important problem,
many heuristic approaches were proposed in the literature (c.f., [8, 9]). Many
of these algorithms are based on local search, which means that the algorithm
produces better and better solutions by iteratively improving the current best
solution. The improvement is local: only those tours are considered that are
“close” to the current tour, that is, those tours that can be reached by ap-
plying certain operations on the current tour. The effectiveness of this search
procedure will largely depend on the set of allowed operations that is used to
find the improved tour. Presumably, having a larger set of operations increases
our chances of finding a better tour, but the time required to search the local
neighborhood increases.

Perhaps the most studied local search heuristic is the k-change neighborhood
rule, where those tours are considered that can be reached from the current
tour by replacing at most k arcs. Computational experiments are mostly done
for k = 2, 3, or 4. For larger k, however, the method becomes impractical,
as there are nO(k) possible tours that have to be considered for improvement.
A brute force search of the k-change neighborhood is not feasible for large k;
therefore, unless we have a more efficient algorithm for finding the best tour in
the local neighborhood, local search based on the k-change neighborhood cannot

∗Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099

Berlin, Germany. dmarx@informatik.hu-berlin.de

1

be implemented efficiently. On the other hand, an algorithm with running time
of the form O(2k ·n) would make it possible to search the k-change neighborhood
for, say, k = 10.

The hardness of searching the k-change neighborhood can be studied very
naturally in the framework of parameterized complexity, as suggested in [3]. In
classical complexity theory, the hardness of a problem is usually analyzed as a
function of the input size. Parameterized complexity studies the hardness of a
problem in finer detail: certain parameters of the problem instances are defined,
and the running time is expressed not only as a function of the input size, but
also as a function of these parameters. For example, in classical complexity, the
problems Maximum Clique and Minimum Vertex Cover have the same
complexity: both are NP-hard. In the decision version of these problems, each
instance has a very natural parameter: the size k of the clique/vertex cover
that we are looking for. Both problems can be solved in nO(k) time by complete
enumeration. This means that the problems are polynomial-time solvable for
every fixed value of k, but the algorithms become practically useless for large
values of n, even if k is as small as 10. The problem is that k appears in the
exponent of n, which means that the polynomial degree increases as k increases.
However, Minimum Vertex Cover has better algorithms, for example it can
be solved in O(2k · n2) time. It follows that Minimum Vertex Cover has a
quadratic algorithm for every fixed value of k. The central issue of parameterized
complexity is the question whether it is possible to find algorithms where the
exponent of the input size does not increase as parameter k increases. We say
that a parameterized problem is fixed-parameter tractable if it can be solved in
time f(k) · nc, where c is a constant and f is a (possibly exponential) function
depending only on k. This means that the exponential increase of the running
time can be restricted to the parameter k. It turns out that several NP-hard
problems are fixed-parameter tractable, for example Minimum Vertex Cover,
Longest Path, and Disjoint Triangles. Analogously to NP-completeness
in classical complexity, the theory of W[1]-hardness can be used to show that
a problem is unlikely to be fixed-parameter tractable, i.e., for every algorithm
the parameter has to appear in the exponent of n.

Returning to the TSP problem, what we would like to have is an algorithm
that, given a tour T , finds the best tour in the k-neighborhood of T . If k is part
of the input, then this problem is clearly NP-hard: if k = n, then the problem is
equivalent to finding the best possible tour. On the other hand, the problem is
polynomial-time solvable for every fixed value of k (in nO(k) time by complete
search). In this paper we investigate whether the brute force search can be
improved to an algorithm where the degree of n does not depend on k, i.e.,
whether the problem is fixed-parameter tractable. The main result of the paper
is that finding the best tour in the k-change neighborhood is W[1]-hard, which
implies that the problem is not fixed-parameter tractable, unless W[1] = FPT.
This answers an open question of Fellows [3]. The hardness result holds even if
the distance matrix is symmetric and satisfies the triangle inequality. However,
our result does not say anything about the important special case when the
cities are points in the plane, and the distance is Euclidean distance. It remains

2

an interesting open question whether the hardness result can be extended to
this case as well.

2 Parameterized complexity

We follow [5] for the standard definitions of parameterized complexity. Let Σ be
a finite alphabet. A decision problem is represented by a set Q ⊆ Σ∗ of strings
over Σ. A parameterization of a problem is a polynomial-time computable
function κ : Σ∗ → N. A parameterized decision problem is a pair (Q, κ), where
Q ⊆ Σ∗ is an arbitrary decision problem and κ is a parameterization. Intuitively,
we can imagine a parameterized problem as a decision problem where each input
instance x ∈ Σ∗ has a positive integer κ(x) associated with it. A parameterized
problem (Q, κ) is fixed-parameter tractable (FPT) if there is an algorithm that
decides whether x ∈ Q in time f(κ(x)) · |x|c for some constant c and computable
function f . An algorithm with such running time is called an fpt-time algorithm
or simply fpt-algorithm.

Many NP-hard problems were investigated in the parameterized complex-
ity literature, with the goal of identifying fixed-parameter tractable problems.
There is a powerful toolbox of techniques for designing fpt-algorithms: kernel-
ization, bounded search trees, color coding, well-quasi ordering—just to name
some of the more important ones. On the other hand, certain problems resisted
every attempt at obtaining fpt-algorithms. Analogously to NP-completeness in
classical complexity, the theory of W[1]-hardness can be used to give strong ev-
idence that certain problems are unlikely to be fixed-parameter tractable. We
omit the somewhat technical definition of the complexity class W[1], see [2, 5]
for details. Here it will be sufficient to know that there are several problems,
including Maximum Clique, that were proved to be W[1]-hard. Furthermore,
we also expect that there is no no(k) (or even f(k) · no(k)) algorithm for Maxi-

mum Clique: recently it was shown that if there exists an f(k) ·no(k) algorithm
for n-vertex Maximum Clique, then n-variable 3-Sat can be solved in time
2o(n) (see [1] and [4]).

To prove that a parameterized problem (Q′, κ′) is W[1]-hard, we have to
present a parameterized reduction from a known W[1]-hard problem (Q, κ) to
(Q′, κ′). A parameterized reduction from problem (Q, κ) to problem (Q′, κ′) is
a function that transforms a problem instance x of Q into a problem instance
x′ of Q′ in such a way that

• x′ ∈ Q′ if and only if x ∈ Q,

• κ′(x) can be bounded by a function of κ(x), and

• the transformation can be computed in time f(κ(k))·|x|c for some constant
c and function f(k).

It is easy to see that if there is a parameterized reduction from (Q, κ) to (Q′, κ′),
and (Q′, κ′) is fixed-parameter tractable, then it follows that (Q, κ) is fixed-
parameter tractable as well. The most important difference between parame-

3

terized reductions and classical polynomial-time many-to-one reductions is the
second requirement: in most NP-completeness proofs the new parameter is not
a function of the old parameter. Therefore, finding parameterized reductions
is usually more difficult, and the constructions have somewhat different flavor
than classical reductions.

3 Hardness result

The input of the Traveling Salesperson Problem (TSP) consists of a set V of
cities and a distance matrix. The distance matrix contains a positive integer
d(u, v) for each ordered pair (u, v) of cities. For convenience, we allow d(u, v) =
∞. The task is to find a tour of minimal length that visits all the cities. That
is, we have to find an ordering v1, . . . , vn of the cities such that the total length

n−1
∑

i=1

d(vi, vi+1) + d(vn, v1)

is minimal (where n = |V |). A tour can be also considered as a set of n ordered
pairs of cities; this interpretation will be more convenient for our purposes. If
X and Y are two tours on the same set of cities, then the distance of X and Y

is |X \ Y | = |Y \ X |. We study the parameterized complexity of the following
problem:

k-change TSP
Input: A set V of cities, a distance matrix, a

tour C, and an integer k.
Parameter: k

Question: Is there a tour C′ that has length
strictly less than C, and is at distance
at most k from C?

In the symmetric version of the problem it is assumed that d(x, y) = d(y, x)
for every x, y ∈ V . In the asymmetrical version of the problem we do not make
this assumption. In the metric version of the problem, the distance matrix
satisfies the triangle inequality, i.e., d(x, y) ≤ d(x, z) + d(z, y) for any three
cities x, y, z.

It will be more convenient to consider the problem in terms of graphs, es-
pecially if the distance matrix contains many infinite values. An instance of
the symmetric TSP problem can be transformed into a graph where the cities
are the vertices, and if d(x, y) is finite, then there is an edge of weight d(x, y)
between x and y. In the asymmetrical case the graph is directed and there is a
directed edge from x to y with weight d(x, y) if d(x, y) is finite. It is clear that
the finite-weight tours correspond to the (directed) Hamiltonian cycles in the
graph.

We show that k-change TSP is W[1]-hard (Theorem 3.2). The W[1]-
hardness proof is given for the asymmetrical version of the problem. However,

4

the asymmetrical problem can be reduced to the symmetric case, thus W[1]-
hardness follows for the symmetric problem as well (Lemma 3.1). The reduc-
tion is the same as the standard reduction from the directed Hamiltonian cycle
problem to the undirected version (c.f., [6])

Lemma 3.1. Given a directed graph D, one can construct in polynomial time
an undirected graph G such that there is a one-to-one correspondence between the
Hamiltonian cycles of the two graphs. Moreover, this correspondence preserves
the weight of the cycles, and the distance between the cycles.

Proof. Each vertex v in D is be replaced by three vertices vin, v∗, vout. There is
a zero-weight edge between vin and v∗, and between vout and v∗. Furthermore,
if there is a directed edge from a to b in D, then G has an edge between aout

and bin with the same weight. Now assume that there is a directed Hamiltonian
cycle v1, v2, . . . , vn, v1 in D. The corresponding cycle in G is vout

1 , vin
2 , v∗2 ,

vout
2 , vin

3 , . . . , vout
n , vin

1 , v∗1 , vout
1 ; clearly it has the same weight. On the other

hand, assume that there is a Hamiltonian cycle C in G. For every v, the two
neighbors of v∗ in C have to be vin and vout. Now a Hamiltonian cycle C′ of
D can be defined as follows: if the edge between aout and bin is used in C, then
C′ uses the directed edge from a to b. It can be easily verified that this results
in a Hamiltonian cycle with the same weight. Moreover, this correspondence
preserves the distance between the cycles, since every tour in G contains the
edges vinv∗ and v∗vout, and there is a one-to-one correspondence between the

edges
−→
ab and aoutbin.

Theorem 3.2. Given a directed weighted graph D with a Hamiltonian cycle
C, it is W[1]-hard to decide whether there is a Hamilton cycle C′ such that the
weight of C′ is strictly less than the weight of C and the distance between C and
C′ is at most k.

Proof. The proof is by reduction from Maximum Clique. Given a graph G

where we have to find a clique of size t, we construct an equivalent instance of
k-change TSP on a directed graph D.

The switch gadget. The constructed graph is built from several copies of
the switch gadget shown in Figure 1. The gadget is connected to the rest of
the graph at the vertices α, β, γ, δ: there are edges entering α and γ; there
are edges leaving β and δ. It is easy to see that if a switch gadget is part of
a larger graph, and there is Hamiltonian cycle in the larger graph, then this
cycle traverses the gadget in one of the three ways presented in Figure 1b–d.
Either the cycle enters at α and leaves at β (b); or it enters at γ and leaves at
δ (c); or it visits the gadget twice: once entering at α and leaving at β, and
once entering at γ and leaving at δ (d). In the first two cases, only one edge of
weight 1 is used, while in the third cases both of these edges are in the cycle.
The parameters of the reduction will be set in such a way that if a Hamilton
cycle C′ uses two edges with weight 1 from a gadget, then the total weight of
the cycle will be too large. Thus only cases (b) and (c) have to be considered for

5

the Hamiltonian cycle that we are looking for. Therefore, the gadget effectively
acts as a switch: either it is used as a α → β path or as a γ → δ path. In the
first case, we say that the cycle uses the upper path of the gadget, in the second
case we say that the cycle uses the lower path.

(a) (d)(c)(b)
γ γ γγ δ δ δδ

β β ββ

0 0 00 0 00 0 0 0 00 0 00 0

1 1 11

1 1 11 α α αα

Figure 1: The switch gadget.

Vertex and edge segments. Let n be number of vertices in G, and let m

be the number of edges. We construct a directed graph D that consists of
(2n + m)t(t − 1) copies of the switch gadget and some additional vertices. We
have the following switch gadgets:

• vertex gadget V 1
i,(j1,j2)

for each 1 ≤ i ≤ n and 1 ≤ j1, j2 ≤ t with j1 6= j2,

• vertex gadget V 2
i,(j1,j2) for each 1 ≤ i ≤ n and 1 ≤ j1, j2 ≤ t with j1 6= j2,

and

• edge gadget Si,(j1,j2) for each 1 ≤ i ≤ m and 1 ≤ j1, j2 ≤ t with j1 6= j2.

We form segments from one or more gadgets. The vertex segment Vi,j (1 ≤ i ≤ n,
1 ≤ j ≤ t) consists of the entrance vertex ai,j , the exit vertex bi,j , the (t − 1)
gadgets V 1

i,(j,j′) (for j′ 6= j), and the (t − 1) gadgets V 2
i,(j′,j) (for j′ 6= j) (see

Figure 2). To simplify the notation, let W1, . . . , W2(t−1) be an arbitrary ordering
of these gadgets. For every 1 ≤ ` < 2(t − 1), there is a zero-weight edge from
vertex β of W` to vertex α of W`+1. Furthermore, there is a zero-weight edge
from ai,j to vertex α of gadget W1, and there is a zero-weight edge from vertex
β of gadget W2(t−1) to bi,j . Finally, there is a bypass edge with zero weight from
ai,j to bi,j .

The edge segment Ei,(j1,j2) (1 ≤ i ≤ m, 1 ≤ j1, j2 ≤ t with j1 6= j2) contains
two vertices zi,(j1,j2) (the entrance), qi,(j1,j2) (the exit), and the gadget Si,(j1,j2)

a7,1 b7,1

V 1
7,(1,4)V 1

7,(1,3)V 1
7,(1,2) V 2

7,(2,1) V 2
7,(3,1) V 2

7,(4,1)

Figure 2: The vertex segment V7,1 for t = 4.

6

zi,(j1,j2) qi,(j1,j2)

Si,(j1,j2)

Figure 3: The edge segment Ei,(j1,j2).

(see Figure 3). There is a zero-weight edge from zi,(j1,j2) to vertex α of Si,(j1,j2),
and a zero-weight edge from vertex β of Si,(j1,j2) to qi,(j1,j2). Moreover, there is
a bypass edge with zero weight from zi,(j1,j2) to qi,(j1,j2).

Consider an arbitrary ordering of the nt+mt(t−1) segments defined above.
Add a zero-weight edge from the exit of each segment to the entrance of the
next segment. Moreover, add an edge of weight 1 that goes from the exit of the
last segment (denote it by vlast) to the entrance of the first segment (denote it
by vfirst). There will be some more edges in the graph D, but before completing
the description of D, we first define the Hamiltonian cycle C. The cycle starts at
vfirst, goes through the upper path of the gadget(s) in the first segment, leaves
the segment at the exit, enters the second segment at its entrance, etc. The
cycle does not use the bypass edges, thus it visits every vertex of every gadget.
Finally, when C reaches the exit of the last segment (vlast), it goes back to the
entrance of the first segment (vfirst) using the edge with weight 1. The cycle
traverses one edge of weight 1 in each gadget, hence the total weight of C is
(2n + m)t(t − 1) + 1.

Encoding the graph. For convenience, we identify the vertices with the
integers {1, . . . , n} and the edges with the integers {1, . . . , m}. Consider the
ordered pairs (j1, j2) (1 ≤ j1, j2 ≤ t, j1 6= j2), and let P1, P2, . . . , Pt(t−1) be an
ordering of these pairs such that the second element of a pair is the same as the
first element of the next pair, that is, P` = (p`, p`+1) for every 1 ≤ ` < t(t− 1).
It is clear that such an ordering exists.

As discussed above, we will ensure that the cycle C′ traverses every gadget
as either (b) or (c) in Figure 1. In the latter case, we say that the gadget is
active. We will show that the active gadgets describe a t-clique of graph G.
If gadget Si,(j1,j2) in edge segment Ei,(j1,j2) is active, then this means that the
edge i is the edge econnecting the j1-th and j2-th vertex of the clique. If gadget
V 1

i,(j1,j2) (resp., V 2
i,(j1,j2)

) is active, then this means that vertex i is the j1-th

(resp., j2-th) vertex of the clique. We connect the γ and δ vertices of gadgets
in a way that enforces that the active gadgets describe a clique.

For every 1 ≤ ` < t(t − 1), we add edges as follows. There is a zero-weight
edge from vertex δ of gadget V 2

i,(p`,p`+1)
to vertex γ of gadget V 1

i,(p`+1,p`+2)
. If

vertex i is an endpoint of edge r, then there is a zero-weight edge from vertex
δ of V 1

i,(p`,p`+1)
to vertex γ of Er,(p`,p`+1), and there is a zero-weight edge from

vertex δ of Er,(p`,p`+1) to vertex γ of V 2
i,(p`,p`+1)

. Note that only one edge enters

7

Se,(p`,p`+1)

vfirst vlast

Vx,p`
Vy,p`+1

by,p`+1
ay,p`+1ax,p` bx,p`

Ee,(p`,p`+1)V 2
x,(p`−1,p`)

V 1
x,(p`,p`+1) V 1

y,(p`+1,p`+2)V 2
y,(p`,p`+1)

Figure 4: If x and y are the two end points of edge e, then segments Vx,p`
,

Vy,p`
, and Se,(p`,p`+1) are connected as shown above. The dotted lines represent

missing sequences of gadgets and segments.

gadget Er,(p`,p`+1) at γ and leaves at δ, thus if this gadget is active, then gadgets
V 1

i,(p`,p`+1)
and V 2

i,(p`,p`+1)
have to be active as well. This is compatible with the

intended meaning of the gadgets: if edge r is in the clique, then both endpoints
are in the clique. Furthermore, for every 1 ≤ i ≤ n, there is a zero-weight edge
from vlast to vertex γ of gadget V 1

i,(p1,p2), and there is a zero-weight edge from

vertex δ of V 2
i,(pt(t−1) ,pt(t−1)+1) to vfirst. This completes the description of the

directed graph D.

k-change TSP⇒Maximum Clique. We claim that if there is a Hamiltonian
cycle C′ having weight strictly less than (2n + m)t(t− 1)+ 1 that is at distance
at most k := 4t2(t− 1) + t + 5t(t− 1) from C, then there is a t-clique in G. As
shown in Figure 1, C′ has to traverse at least one edge with weight 1 in each
gadget, hence the only way the total weight is at most (2n + m)t(t − 1) if C′

does not use the edge of weight 1 that goes from vlast to vfirst. Furthermore,
every gadget has to be traversed either as (b) or (c) of Figure 1, the case of (d)
is not allowed.

Let us think about the cycle C′ as a path that starts from and returns to
vfirst. Similarly to C, the cycle C′ has to go through the segments one by one.
It is clear that if C′ enters a segment at its entrance, then it has to leave it via
its exit. However, inside a segment, C′ can do two things: either it goes through
the gadget(s) (similarly to C), or it skips the gadget(s) using the bypass edge.
In the latter case, we say that the segment is active. If vertex segment Vi,j is
active, then we will take it as an indication that vertex i should be the j-th
vertex of the clique. If edge segment Ei,(j1,j2) is active, then this will mean that
the j1-th and the j2-th vertices of the clique are connected by edge i. By the
time C′ reaches vlast, every gadget is completely traversed, or not visited at all.
The cycle has to return to vfirst by visiting all the skipped gadgets.

We argue that if the distance between C and C′ is at most k, then for every
1 ≤ j ≤ t, there is exactly one i such that Vi,j is active. This means that
there are k selected vertex segments, and these segments can be interpreted
as k vertices. We also show that for every pair (j1, j2) with j1 6= j2, there is
exactly one 1 ≤ i ≤ m such that edge segment Ei,(j1,j2) is active. After vlast,
cycle C′ goes to vertex γ of a gadget V 1

i,(p1,p2) for some 1 ≤ i ≤ n. This implies
that the lower path is used for this gadget; therefore, the bypass edge is used
in segment Vi,p1 for some i, i.e., Vi,pi

is active. After leaving gadget V 1
i,(p1,p2)

8

at vertex δ, cycle C′ goes to a gadget Si′,(p1,p2) for some i′, implying that the
bypass edge is used in segment Ei′,(p1,p2) for this i′. The next visited gadget is
V 2

i′′,(p1,p2)
for some i′′, and the gadget after that is V 1

i′′,(p2,p3) for the same i′′. In

a similar fashion, we can show that for every 1 ≤ ` < t(t − 1) there is an active
vertex segment Vi,p`

for some i and an active edge segment Ei′,(p`,p`+1) for some
i′. What remains to be shown is the uniqueness of these i’s. To show this, we
make use of the fact that the distance of C and C′ is at most k. How does
the distance between C and C′ increase if we make a segment active? We will
count |C \C′| to determine the distance. Cycle C uses the upper path in every
gadget, thus if C′ uses the lower path of a gadget, then we have to delete 3 edges
from C. Furthermore, to make a vertex segment active, we have to remove the
edges between the gadgets, the edge going from the entrance to the first gadget,
and the edge going from the last gadget to the exit. In total, an active vertex
segment increases the distance by 4t(t − 1) + 1. Similarly, 5 edges have to be
removed from C to make an edge segment active. We have seen that there are
at least t active vertex segments and at least t(t − 1) active edge segments. It
follows that the distance can be at most k only if there are exactly t active
vertex segments and exactly t(t − 1) active edge segments. Now it is clear that
for every j (resp., (j1, j2)) there is exactly one active Vi,j (resp., Ei,(j1,j2)).

Define vj = i, if segment Vi,j is active, and let ej1,j2 = i if segment Ei,(j1,j2)

is active. We show that v1, v2, . . . , vt is a clique of size t in G, which proves
the first direction of the reduction. Suppose that x = vj1 and y = vj2 are not
neighbors. We arrive to a contradiction by showing that edge ej1,j2 connects
these two vertices. By the definition of vj1 , cycle C′ uses the lower path in
every gadget of vertex segment Vx,j1 . In particular, this is true for the gadget
V 1

x,(j1,j2). Thus C′ leaves V 1
x,(j1,j2)

at vertex δ, and goes to vertex γ of edge

gadget Si,(j1,j2) for some i. Therefore, C′ uses the lower path in Si,(j1,j2), and it
follows by the definition of ej1,j2 that i = ej1,j2 . Now the construction implies
that ej1,j2 is incident to vj1 (otherwise vertex δ of the vertex gadget would not
be connected with vertex γ of the edge gadget). After leaving Si,(j1,j2) at vertex
δ, cycle C′ goes to vertex γ of V 2

i,(j1,j2)
for some 1 ≤ i ≤ n. This implies that

segment Vi,j2 is active, hence i = vj2 . Therefore, ej1,j2 is incident to vj2 as well,
thus vi1 and vi2 are indeed connected.

Maximum Clique⇒k-change TSP. To prove the other direction, we have
to show that if there is a clique K of size t in G, then there is Hamiltonian cycle
C′ having weight (2n + m)t(t − 1) that is at distance at most k from V . Let
v1, v2, . . . , vt be the vertices in K, and let ej1,j2 be the edge connecting vj1

and vj2 . Cycle C′ starts from vfirst and goes through the segments, similarly
to C. However, for every 1 ≤ j ≤ t, cycle C′ traverses vertex segment Vvj ,j

in a way different from C: after the entrance avj ,j, the cycle goes to exit bvj ,j

on the bypass edge, completely avoiding the gadgets in the segment. Similarly,
for j1 6= j2, in segment Eej1 ,j1 ,(j1,j2) the cycle C′ uses the bypass edge from the
entrance to the exit, and the gadget Sej1,j2 ,(j1,j2) is avoided. After the cycle
reaches vlast, it has to return to vfirst by visiting the skipped gadgets. We do

9

it as follows. First we go from vlast to vertex γ of the gadget V 1
vp1 ,(p1,p2)

. Now

assume that we are at vertex γ of V 1
vp`

,(p`,p`+1)
for some 1 ≤ ` < t(t − 1). The

cycle uses the lower path to visit V 1
vp`

,(p`,p`+1)
, leaves the gadget at vertex δ and

goes to vertex γ of edge gadget Eep`,p`+1
,(p`,p`+1). After going through this edge

gadget on the lower path, the cycle goes to vertex γ of V 2
vp`+1

,(p`,p`+1)
(recall

that edge ep`,p`+1
is incident to both vp`

and vp`+1
), goes through this gadget,

and goes to vertex γ of gadget V 1
vp`+1

,(p`+1,p`+2)
. We continue this way until

vertex δ of gadget V 2
p`,(p`,p`+1)

is reached for ` = t(t−1). At that point the cycle

C′ is terminated by an edge going to vfirst. It is clear that every skipped gadget
is visited exactly once. By the discussion in the first direction of the proof, the
distance of C′ from C is exactly k. Moreover, cycle C′ uses one edge with weight
1 in each gadget, and it does not use the edge from vlast to vfirst, hence its total
weight is (2n + m)t(t − 1), which is strictly smaller than the weight of C.

Putting together Theorem 3.2 and Lemma 3.1, it follows:

Theorem 3.3. k-change TSP is W[1]-hard, even if the distance matrix is
symmetric.

The hardness result of Theorem 3.3 applies even if the distance matrix con-
tains only the values 0, 1, and ∞. However, the distance matrix constructed by
Theorem 3.2 is not metric. In particular, d(x, z) + d(z, y) can be finite even if
d(x, y) = ∞. However, this can be easily fixed:

Corollary 3.4. k-change TSP is W[1]-hard, even if the distance matrix is
metric and symmetric.

Proof. Let d be a distance matrix on n cities, containing only the values 0, 1,
and ∞. Let us define a new distance matrix d′:

d′(x, y) =

2n if d(x, y) = 0,

2n + 1 if d(x, y) = 1,

4n if d(x, y) = ∞.

Clearly, d′ satisfies the triangle inequality. Furthermore, if an instance of k-

change TSP is given with distance matrix d and a tour C of finite length,
then the answer does not change if we replace d with d′. To see this, observe
that new length of any infinite-length tour will be greater than the new weight
of any finite-length tour, and the relative ordering of the finite-length tours will
remain the same.

Corollary 3.4 implies that there is no f(k) · nO(1) time algorithm for k-

change TSP (unless W[1] = FPT); k has to appear in the exponent of n.
If we make a stronger complexity-theoretic assumption, then we can actually
prove a lower bound on the exponent of n:

10

Corollary 3.5. There is no f(k) ·no(3√
k) time algorithm for metric k-change

TSP with n cities, unless n-variable 3-SAT can be solved in 2o(n) time.

Proof. The proof in Theorem 3.2 takes an instance (G, t) of Maximum Clique,
and turns it into an equivalent instance of k-change TSP with k = O(t3).

Therefore, an f(k) ·no(3√
k) time algorithm for k-change TSP would be able to

solve Maximum Clique in time f ′(t) · no(t). As shown in [1], this would imply
that n-variable 3-SAT can be solved in time 2o(n).

The assumption that n-variable 3-SAT cannot be solved in time 2o(n) is
also known as the Exponential Time Hypothesis [7], and is equivalent to the
parameterized complexity conjecture M[1] 6= FPT (see [4].

Acknowledgments

I’m grateful to Mike Fellows for directing my attention to the problem.

References

[1] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia.
Tight lower bounds for certain parameterized NP-hard problems. In Pro-
ceedings of 19th Annual IEEE Conference on Computational Complexity,
pages 150–160, 2004.

[2] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer-Verlag, New York, 1999.

[3] M. R. Fellows. Parameterized complexity: new developments and research
frontiers. In Aspects of Complexity (Kaikoura, 2000), volume 4 of de Gruyter
Ser. Log. Appl., pages 51–72. de Gruyter, Berlin, 2001.

[4] J. Flum and M. Grohe. Parameterized complexity and subexponential time.
Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (84):71–100, 2004.

[5] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag,
Berlin, 2006.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman and Co., San Francisco, Calif., 1979.

[7] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly ex-
ponential complexity? J. Comput. System Sci., 63(4):512–530, 2001. Special
issue on FOCS 98 (Palo Alto, CA).

[8] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a case
study. In Local search in combinatorial optimization, Wiley-Intersci. Ser.
Discrete Math. Optim., pages 215–310. Wiley, Chichester, 1997.

11

[9] D. S. Johnson and L. A. McGeoch. Experimental analysis of heuristics for
the STSP. In The traveling salesman problem and its variations, volume 12
of Comb. Optim., pages 369–443. Kluwer Acad. Publ., Dordrecht, 2002.

12

