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Topological subgraphs

Definition
Subdivision of a graph: replacing each edge by a path of length 1 or more.
Graph H is a topological subgraph of G (or topological minor of G , or
H ≤T G ) if a subdivision of H is a subgraph of G .

⇒

Equivalently, H ≤T G means that H can be obtained from G by removing
vertices, removing edges, and dissolving degree two vertices.
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A classical result

Theorem [Kuratowski 1930]
A graph G is planar if and only if K5 6≤T G and K3,3 6≤T G .

K5 K3,3
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Algorithms

Theorem [Robertson and Seymour]

Given graphs H and G , it can be tested in time f (|V (H)|) · |V (G )|O(V (H))

if H ≤T G (for some function f ).

⇒ Polynomial-time algorithm for every fixed H.

Main result
Given graphs H and G , it can be tested in time f (|V (H)|) · |V (G )|3 if
H ≤T G (for some function f ).

⇒ Cubic algorithm for every fixed H.
⇒ Topological subgraph testing is fixed-parameter tractable.

Answers an open question of [Downey and Fellows 1992].
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Minors

Definition
Graph H is a minor G (H ≤ G ) if H can be obtained from G by deleting
edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Note: H ≤T G ⇒ H ≤ G , but the converse is not necessarily true.
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Minors

Equivalent definition
Graph H is a minor of G if there is a mapping φ (the minor model) that
maps each vertex of H to a connected subset of G such that

φ(u) and φ(v) are disjoint if u 6= v , and
if uv ∈ E (G ), then there is an edge between φ(u) and φ(v).
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Algorithm for minor testing

Theorem [Robertson and Seymour]

Given graphs H and G , it can be tested in time f (|V (H)|) · |V (G )|3 if
H ≤ G (for some function f ).

In fact, they solve a more general rooted problem:
H has a special set R(H) of vertices (the roots),
for every v ∈ R(H), a vertex ρ(v) ∈ V (G ) is specified, and
the model φ should satisfy ρ(v) ∈ φ(v).

≤
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Algorithm for minor testing

Special case of rooted minor testing: k-Disjoint Paths problem (connect
(s1, t1), . . . , (sk , tk) with vertex-disjoint paths).

Corollary [Robertson and Seymour]

k-Disjoint Paths can be solved in time f (k) · |V (G )|3.

By guessing the image of every vertex of H, we get:

Corollary [Robertson and Seymour]

Given graphs H and G , it can be tested in time f (k) · |V (G )|O(V (H)) if H
is a topological subgraph of G .
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Algorithm for minor testing

A vertex v ∈ V (G ) is irrelevant if its removal does not change if H ≤ G .

Ingredients of minor testing by [Robertson and Seymour]
1 Solve the problem on bounded-treewidth graphs.
2 If treewidth is large, either find an irrelevant vertex or the model of a

large clique minor.
3 If we have a large clique minor, then either we are done (if the clique

minor is “close” to the roots), or a vertex of the clique minor is
irrelevant.

By iteratively removing irrelevant vertices, eventually we arrive to a graph
of bounded treewidth.
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Algorithm for minor testing
A vertex v ∈ V (G ) is irrelevant if its removal does not change if H ≤ G .

Ingredients of minor testing by [Robertson and Seymour]
1 Solve the problem on bounded-treewidth graphs.

By now, standard (e.g., Courcelle’s Theorem).
2 If treewidth is large, either find an irrelevant vertex or the model of a

large clique minor.
Really difficult part (even after the significant simplifications of
[Kawarabayashi and Wollan STOC 2010]).

3 If we have a large clique minor, then either we are done (if the clique
minor is “close” to the roots), or a vertex of the clique minor is
irrelevant.
Idea is to use the clique model as a “crossbar switch.”

By iteratively removing irrelevant vertices, eventually we arrive to a graph
of bounded treewidth.
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Algorithm for topological subgraphs

1 Solve the problem on bounded-treewidth graphs.
No problem!

2 If treewidth is large, either find an irrelevant vertex or the model of a
large clique minor.
Painful, but the techniques of Kawarabayashi-Wollan go though.

3 If we have a large clique minor, then either we are done (if the clique
minor is “close” to the roots), or a vertex of the clique minor is
irrelevant.
Approach completely fails: a large clique minor does not help in
finding a topological subgraph if the degrees are not good.

Note: we solve a more general rooted version of topological subgraph
testing.
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Ideas

New ideas:
Idea #1: Recursion and replacement on small separators.
Idea #2: Reduction to bounded-degree graphs
(high degree vertices + clique minor: topological clique).
Idea #3: Solution for the bounded-degree case
(distant vertices do not interfere).

Additionally, we are using a tool of Robertson and Seymour:
Using a clique minor as a “crossbar switch.”
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Idea #1: Recursion and replacement

Suppose we have found a “small” separator such that both sides are “large.”
We recursively “understand” the properties of one side, and replace it with
a smaller “equivalent” graph.

A B

What does “equivalent” mean exactly?
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Idea #1: Recursion and replacement

We want that H is a topological subgraph after the replacement if and only
if it was before the replacement:

G1 G2 G ′
1 G2

Thus G ′
1 should contain exactly the same partial graphs as G1, attached to

the separator exactly the same way.

Note: we need rooted topological subgraphs to express this, therefore we
solve the more general Rooted Topological Subgraph problem.
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Idea #2: Reduction to bounded degree

Suppose that there is a set S of |V (H)| vertices with huge degree.

Two possibilities:

(1) There are many disjoint paths from S to the clique minor
⇒ Using the clique minor as a crossbar, we can complete the paths
into a topological subgraph.
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Idea #3: The bounded-degree case

Suppose we are looking for a 4-regular graph H as topological subgraph.

If there are only few vertices of degree ≥ 4
⇒ We can guess the images of the vertices and use the disjoint paths
algorithm.
If there are many vertices if degree ≥ 4, then we can select a set S of
|V (H)| vertices of degree ≥ 4 that are very very far from each other
(because the graph has bounded degree).
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Immersion
A variant of topological subgraphs:

Definition
Immersion: The edges of H correspond to edge-disjoint paths between the
images of the vertices in G .

Theorem
Given graphs H and G , it can be tested in time f (|V (H)|) · |V (G )|3 if H
has an immersion in G (for some function f ).

An elementary reduction from immersion to topological subgraph testing.
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Conclusions

Main result: topological subgraph testing is FPT.
Immersion testing follows as a corollary.
Main new part: what to do with a large clique minor?
Very roughly: large clique minor + vertices of the correct degree =
topological subgraph.
Recursion, high-degree vertices.
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