# Finding topological subgraphs is fixed-parameter tractable

#### Martin Grohe<sup>1</sup> Ken-ichi Kawarabayashi<sup>2</sup> <u>Dániel Marx</u><sup>1</sup> Paul Wollan<sup>3</sup>

<sup>1</sup>Humboldt-Universität zu Berlin, Germany

<sup>2</sup>National Institute of Informatics, Tokyo, Japan

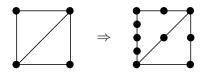
<sup>3</sup>University of Rome, *La Sapienza*, Italy

43th ACM Symposium on Theory of Computing (STOC 2011) San Jose, CA June 7, 2011

43th ACM Symposium on Theory of Co

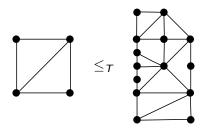
#### Definition

Subdivision of a graph: replacing each edge by a path of length 1 or more. Graph H is a topological subgraph of G (or topological minor of G, or  $H \leq_T G$ ) if a subdivision of H is a subgraph of G.



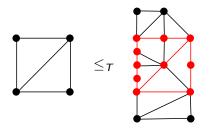
#### Definition

Subdivision of a graph: replacing each edge by a path of length 1 or more. Graph H is a topological subgraph of G (or topological minor of G, or  $H \leq_T G$ ) if a subdivision of H is a subgraph of G.



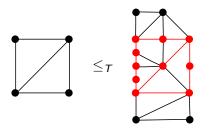
#### Definition

Subdivision of a graph: replacing each edge by a path of length 1 or more. Graph H is a topological subgraph of G (or topological minor of G, or  $H \leq_T G$ ) if a subdivision of H is a subgraph of G.



#### Definition

Subdivision of a graph: replacing each edge by a path of length 1 or more. Graph *H* is a topological subgraph of *G* (or topological minor of *G*, or  $H \leq_T G$ ) if a subdivision of *H* is a subgraph of *G*.



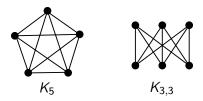
Equivalently,  $H \leq_T G$  means that H can be obtained from G by removing vertices, removing edges, and dissolving degree two vertices.

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

#### A classical result

Theorem [Kuratowski 1930]

A graph G is planar if and only if  $K_5 \not\leq_T G$  and  $K_{3,3} \not\leq_T G$ .



・ 何 ト ・ ヨ ト ・ ヨ ト

## Algorithms

#### Theorem [Robertson and Seymour]

Given graphs H and G, it can be tested in time  $f(|V(H)|) \cdot |V(G)|^{O(V(H))}$ if  $H \leq_T G$  (for some function f).

 $\Rightarrow$  Polynomial-time algorithm for every fixed *H*.

#### Main result

Given graphs H and G, it can be tested in time  $f(|V(H)|) \cdot |V(G)|^3$  if  $H \leq_T G$  (for some function f).

 $\Rightarrow$  Cubic algorithm for every fixed *H*.

 $\Rightarrow$  Topological subgraph testing is fixed-parameter tractable.

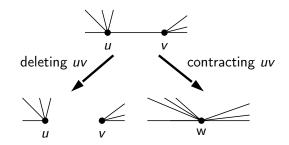
Answers an open question of [Downey and Fellows 1992].

(人間) トイヨト イヨト

#### Minors

#### Definition

Graph H is a minor G  $(H \le G)$  if H can be obtained from G by deleting edges, deleting vertices, and contracting edges.



Note:  $H \leq_T G \Rightarrow H \leq G$ , but the converse is not necessarily true.

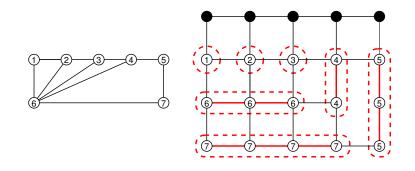
イロト イポト イヨト イヨト

#### Minors

#### Equivalent definition

Graph H is a minor of G if there is a mapping  $\phi$  (the minor model) that maps each vertex of H to a connected subset of G such that

- $\phi(u)$  and  $\phi(v)$  are disjoint if  $u \neq v$ , and
- if  $uv \in E(G)$ , then there is an edge between  $\phi(u)$  and  $\phi(v)$ .



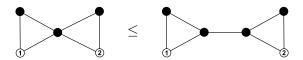
#### Theorem [Robertson and Seymour]

Given graphs H and G, it can be tested in time  $f(|V(H)|) \cdot |V(G)|^3$  if  $H \le G$  (for some function f).

In fact, they solve a more general rooted problem:

- *H* has a special set R(H) of vertices (the roots),
- for every  $v \in R(H)$ , a vertex  $\rho(v) \in V(G)$  is specified, and

• the model  $\phi$  should satisfy  $\rho(\mathbf{v}) \in \phi(\mathbf{v})$ .



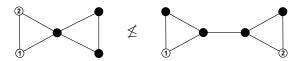
#### Theorem [Robertson and Seymour]

Given graphs H and G, it can be tested in time  $f(|V(H)|) \cdot |V(G)|^3$  if  $H \le G$  (for some function f).

In fact, they solve a more general rooted problem:

- H has a special set R(H) of vertices (the roots),
- for every  $v \in R(H)$ , a vertex  $\rho(v) \in V(G)$  is specified, and

• the model  $\phi$  should satisfy  $\rho(\mathbf{v}) \in \phi(\mathbf{v})$ .



Special case of rooted minor testing: k-Disjoint Paths problem (connect  $(s_1, t_1), \ldots, (s_k, t_k)$  with vertex-disjoint paths).

Corollary [Robertson and Seymour]

k-Disjoint Paths can be solved in time  $f(k) \cdot |V(G)|^3$ .

By guessing the image of every vertex of H, we get:

#### Corollary [Robertson and Seymour]

Given graphs H and G, it can be tested in time  $f(k) \cdot |V(G)|^{O(V(H))}$  if H is a topological subgraph of G.

・ 戸 ト ・ ヨ ト ・ ヨ ト

A vertex  $v \in V(G)$  is irrelevant if its removal does not change if  $H \leq G$ .

Ingredients of minor testing by [Robertson and Seymour]

- Solve the problem on bounded-treewidth graphs.
- If treewidth is large, either find an irrelevant vertex or the model of a large clique minor.
- If we have a large clique minor, then either we are done (if the clique minor is "close" to the roots), or a vertex of the clique minor is irrelevant.

By iteratively removing irrelevant vertices, eventually we arrive to a graph of bounded treewidth.

• • = • • = •

A vertex  $v \in V(G)$  is irrelevant if its removal does not change if  $H \leq G$ .

#### Ingredients of minor testing by [Robertson and Seymour]

- Solve the problem on bounded-treewidth graphs. By now, standard (e.g., Courcelle's Theorem).
- If treewidth is large, either find an irrelevant vertex or the model of a large clique minor.
  Really difficult part (even after the significant simplifications of

[Kawarabayashi and Wollan STOC 2010]).

If we have a large clique minor, then either we are done (if the clique minor is "close" to the roots), or a vertex of the clique minor is irrelevant.

Idea is to use the clique model as a "crossbar switch."

By iteratively removing irrelevant vertices, eventually we arrive to a graph of bounded treewidth.

## Algorithm for topological subgraphs

- Solve the problem on bounded-treewidth graphs. No problem!
- If treewidth is large, either find an irrelevant vertex or the model of a large clique minor.
  Painful, but the techniques of Kawarabayashi-Wollan go though.
- If we have a large clique minor, then either we are done (if the clique minor is "close" to the roots), or a vertex of the clique minor is irrelevant.

Approach completely fails: a large clique minor does not help in finding a topological subgraph if the degrees are not good.

Note: we solve a more general rooted version of topological subgraph testing.

・ 戸 ト ・ ヨ ト ・ ヨ ト

## Ideas

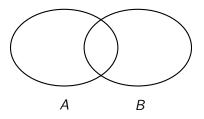
New ideas:

- Idea #1: Recursion and replacement on small separators.
- Idea #2: Reduction to bounded-degree graphs (high degree vertices + clique minor: topological clique).
- Idea #3: Solution for the bounded-degree case (distant vertices do not interfere).

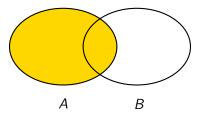
Additionally, we are using a tool of Robertson and Seymour:

• Using a clique minor as a "crossbar switch."

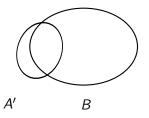
Suppose we have found a "small" separator such that both sides are "large." We recursively "understand" the properties of one side, and replace it with a smaller "equivalent" graph.



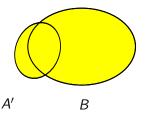
Suppose we have found a "small" separator such that both sides are "large." We recursively "understand" the properties of one side, and replace it with a smaller "equivalent" graph.



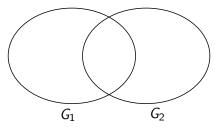
Suppose we have found a "small" separator such that both sides are "large." We recursively "understand" the properties of one side, and replace it with a smaller "equivalent" graph.

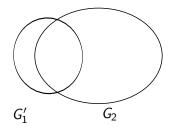


Suppose we have found a "small" separator such that both sides are "large." We recursively "understand" the properties of one side, and replace it with a smaller "equivalent" graph.

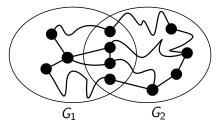


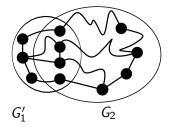
We want that H is a topological subgraph after the replacement if and only if it was before the replacement:



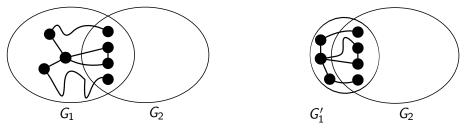


We want that H is a topological subgraph after the replacement if and only if it was before the replacement:



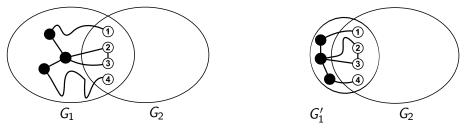


We want that H is a topological subgraph after the replacement if and only if it was before the replacement:



Thus  $G'_1$  should contain exactly the same partial graphs as  $G_1$ , attached to the separator exactly the same way.

We want that H is a topological subgraph after the replacement if and only if it was before the replacement:



Thus  $G'_1$  should contain exactly the same partial graphs as  $G_1$ , attached to the separator exactly the same way.

Note: we need rooted topological subgraphs to express this, therefore we solve the more general Rooted Topological Subgraph problem.

Suppose that there is a set S of |V(H)| vertices with huge degree.





Two possibilities:

(1) There are many disjoint paths from S to the clique minor
⇒ Using the clique minor as a crossbar, we can complete the paths into a topological subgraph.

・何・ ・ヨト ・ヨト

Suppose that there is a set S of |V(H)| vertices with huge degree.



Two possibilities:

(1) There are many disjoint paths from S to the clique minor
⇒ Using the clique minor as a crossbar, we can complete the paths into a topological subgraph.

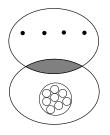
Suppose that there is a set S of |V(H)| vertices with huge degree.



Two possibilities:

(1) There are many disjoint paths from S to the clique minor
⇒ Using the clique minor as a crossbar, we can complete the paths into a topological subgraph.

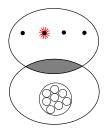
Suppose that there is a set S of |V(H)| vertices with huge degree.



Two possibilities:

- (2) There is a small separator between S and the clique minor
  - $\Rightarrow$  Small separator with both sides large  $\Rightarrow$  Recurse and replace.

Suppose that there is a set S of |V(H)| vertices with huge degree.

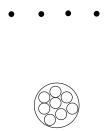


Two possibilities:

- (2) There is a small separator between S and the clique minor
  - $\Rightarrow$  Small separator with both sides large  $\Rightarrow$  Recurse and replace.

Suppose we are looking for a 4-regular graph H as topological subgraph.

- If there are only few vertices of degree  $\geq$  4
  - $\Rightarrow$  We can guess the images of the vertices and use the disjoint paths algorithm.
- If there are many vertices if degree ≥ 4, then we can select a set S of |V(H)| vertices of degree ≥ 4 that are very very far from each other (because the graph has bounded degree).



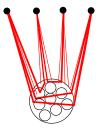
Two possibilities:

(1) There are many disjoint paths from S to the clique minor  $\Rightarrow$  Using the clique minor as a crossbar, we can complete the paths into a topological subgraph.



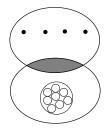
Two possibilities:

(1) There are many disjoint paths from S to the clique minor  $\Rightarrow$  Using the clique minor as a crossbar, we can complete the paths into a topological subgraph.



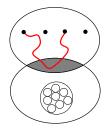
Two possibilities:

(1) There are many disjoint paths from S to the clique minor  $\Rightarrow$  Using the clique minor as a crossbar, we can complete the paths into a topological subgraph.



Two possibilities:

(2) There is a small separator between S and the clique minor  $\Rightarrow$  Small separator with both sides large  $\Rightarrow$  Recurse and replace.



Two possibilities:

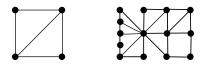
(2) There is a small separator between S and the clique minor  $\Rightarrow$  Small separator with both sides large  $\Rightarrow$  Recurse and replace.

#### Immersion

A variant of topological subgraphs:

#### Definition

Immersion: The edges of H correspond to edge-disjoint paths between the images of the vertices in G.

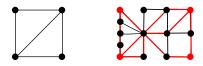


#### Immersion

A variant of topological subgraphs:

#### Definition

Immersion: The edges of H correspond to edge-disjoint paths between the images of the vertices in G.



#### Immersion

A variant of topological subgraphs:

#### Definition

**Immersion**: The edges of H correspond to edge-disjoint paths between the images of the vertices in G.



#### Theorem

Given graphs H and G, it can be tested in time  $f(|V(H)|) \cdot |V(G)|^3$  if H has an immersion in G (for some function f).

An elementary reduction from immersion to topological subgraph testing.

#### Conclusions

- Main result: topological subgraph testing is FPT.
- Immersion testing follows as a corollary.
- Main new part: what to do with a large clique minor?
- Very roughly: large clique minor + vertices of the correct degree = topological subgraph.
- Recursion, high-degree vertices.