
Tractable structures for constraint satisfaction with truth tables
∗

Dániel Marx†

September 22, 2009

Abstract

The way the graph structure of the constraints influences the complexity of constraint sat-
isfaction problems (CSP) is well understood for bounded-arity constraints. The situation is
less clear if there is no bound on the arities. In this case the answer depends also on how the
constraints are represented in the input. We study this question for the truth table represen-
tation of constraints. We introduce a new hypergraph measure adaptive width and show that
CSP with truth tables is polynomial-time solvable if restricted to a class of hypergraphs with
bounded adaptive width. Conversely, assuming a conjecture on the complexity of binary CSP,
there is no other polynomial-time solvable case. Finally, we present a class of hypergraphs with
bounded adaptive width and unbounded fractional hypertree width.
Keywords: computational complexity, constraint satisfaction, treewidth, adaptive width.

1 Introduction

Constraint satisfaction is a general framework that includes many standard algorithmic problems
such as satisfiability, graph coloring, database queries, etc. A constraint satisfaction problem (CSP)
consists of a set V of variables, a domain D, and a set C of constraints, where each constraint is a
relation on a subset of the variables. The task is to assign a value from D to each variable in such
a way that every constraint is satisfied (see Definition 4 for the formal definition). For example,
3SAT can be interpreted as a CSP problem where the domain is D = {0, 1} and the constraints in
C correspond to the clauses (thus the arity of each constraint is 3). For more background, see e.g.,
[12, 7].

In general, solving constraint satisfaction problems is NP-hard if there are no additional re-
strictions on the instances. The main goal of the research on CSP is to identify tractable special
cases of the general problem. The theoretical literature on CSP investigates two main types of
restrictions. The first type is to restrict the constraint language, that is, the type of constraints
that are allowed. This direction includes the classical work of Schaefer [22] and its many gener-
alizations [3, 2, 4, 7, 17]. The second type is to restrict the structure induced by the constraints
on the variables. The hypergraph of a CSP instance is defined to be a hypergraph on the variables
of the instance such that for each constraint c ∈ C there is a hyperedge Ec that contains all the
variables that appear in c. If the hypergraph of the CSP instance has very simple structure, then
the instance is easy to solve. For example, it is well-known that a CSP instance I with hypergraph
H can be solved in time ‖I‖O(tw(H)) [9], where tw(H) denotes the treewidth of H and ‖I‖ is the
size of the representation of I in the input. Thus if we restrict the problem to instances where the

∗Research supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány, Hungarian National Research Fund
(OTKA 67651), and ERC Advanced Grant DMMCA.

†Tel Aviv University, Tel Aviv, Israel, dmarx@cs.bme.hu

1

treewidth of the hypergraph is bounded by some constant w, then the problem is polynomial-time
solvable. The aim of this paper is to investigate whether there exists some other structural property
of the hypergraph besides bounded treewidth that makes the problem tractable. Formally, for a
class H of hypergraphs, let CSP(H) be the restriction of CSP where the hypergraph of the instance
is assumed to be in H. Our goal is to characterize the complexity of CSP(H) for every class H.

We investigate two notions of tractability. CSP(H) is polynomial-time solvable if there is an
algorithm solving every instance of CSP(H) in time (‖I‖)O(1), where ‖I‖ is the length of the
representation of I in the input. The following notion interprets tractability in a less restrictive
way: CSP(H) is fixed-parameter tractable (FPT) if there is an algorithm solving every instance
I of CSP(H) in time f(H)(‖I‖)O(1), where f is an arbitrary function and H is the hypergraph
of the instance. Equivalently, the factor f(H) in the definition can be replaced with a factor
f(k) depending only on the number k of vertices of H: as the number of hypergraphs on k vertices
(without parallel edges) is bounded by a function of k, the two definitions result in the same notion.
The motivation behind the definition of fixed-parameter tractability is that in certain applications
we expect the domain size to be much larger than the number of variables, hence a constant factor
in the running time depending only on the number of variables (or on the hypergraph) is acceptable.
For example, in the theory of database queries, we can assume that the query size (i.e., the size of
the hypergraph) is small, while the database relations are large (see [10, 15]). For a more general
treatment of fixed-parameter tractability, the reader is referred to the parameterized complexity
literature [6, 8].

Bounded arities. If the constraints have bounded arity (i.e., the edge size in H is bounded by
a constant), then the complexity of CSP(H) is well understood. In this case, bounded treewidth is
the only polynomial-time solvable case:

Theorem 1 ([13]). If H is a recursively enumerable class of hypergraphs with bounded edge size,
then (assuming FPT 6= W[1]) the following are equivalent:

1. CSP(H) is polynomial-time solvable.

2. CSP(H) is fixed-parameter tractable.

3. H has bounded treewidth.

The assumption FPT 6= W[1] is a standard hypothesis of parameterized complexity. Thus in
the bounded arity case bounded treewidth is the only property of the hypergraph that can make
the problem polynomial-time solvable. Furthermore, the following sharpening of Theorem 1 shows
that there is no algorithm whose running time is significantly better than the ‖I‖O(tw(H)) bound
of the treewidth based algorithm. The result is proved under the Exponential Time Hypothesis
(ETH) [16], a somewhat stronger assumption than FPT 6= W[1]: it is assumed that there is no
2o(n) time algorithm for n-variable 3SAT.

Theorem 2 ([19]). If there is a computable function f and a recursively enumerable class H of
hypergraphs with bounded edge size and unbounded treewidth such that the problem CSP(H) can be
solved in time f(H)‖I‖o(tw(H)/ log tw(H)) for instances I with hypergraph H ∈ H, then ETH fails.

This means that the treewidth-based algorithm is almost optimal: in the exponent only an
O(log tw(H)) factor improvement is possible. It is conjectured in [19] that Theorem 2 can be made
tight, i.e., the lower bound holds even if the logarithmic factor is removed from the exponent.

Conjecture 3 ([19]). If H is a class of hypergraphs with bounded edge size, then there is no
algorithm that solves CSP(H) in time f(H)‖I‖o(tw(H)) for instances I with hypergraph H ∈ H,
where f is an arbitrary computable function.

2

Unbounded arities. The situation is less understood in the unbounded arity case, i.e., when
there is no bound on the maximum edge size in H. First, the complexity in the unbounded-arity
case depends on how the constraints are represented. In the bounded-arity case, if each constraint
contains at most r variables (r being a fixed constant), then every reasonable representation of
a constraint has size |D|O(r). Therefore, the size of the different representations can differ only
by a polynomial factor. On the other hand, if there is no bound on the arity, then there can
be exponential difference between the size of succinct representations (e.g., formulas) and verbose
representations (e.g., truth tables). The running time of an algorithm is expressed as a function of
the input size, hence the complexity of the problem can depend on how the input is represented:
longer representation means that it is potentially easier to obtain a polynomial-time algorithm.

The most well-studied representation of constraints is listing all the tuples that satisfy the
constraint. For this representation, there are classes H with unbounded treewidth such that CSP
restricted to this class is polynomial-time solvable. For example, classes with bounded (generalized)
hypertree width [11], bounded fractional edge cover number [14], and bounded fractional hypertree
width [14, 20] are such classes. However, no classification theorem similar to Theorem 1 is known
for this version. More succinct representations were studied by Chen and Grohe [5]: constraints are
represented by generalized DNF formulas or by decision diagrams. The complexity of the problem
with these representations were fully characterized: it turns out that the complexity depends not on
the treewidth of the hypergraph (as in Theorem 1) but on the treewidth of the incidence structure
(in the case of generalized DNF representation) or on the treewidth of a structure describing the
decision diagrams (in the case of decision diagram representation).

Truth table representation. In this paper we study another natural representation: truth
tables. A constraint of arity r is represented by having one bit for each possible r-tuple that can
appear on the r variables of the constraint, and this bit determines whether this particular r-tuple
satisfies the constraint or not. This means that the representation of an r-ary constraint consists
of |D|r bits, if the domain of every variable is D. To increase the flexibility of the representation
and make it more natural, we allow that the variables have different domains, i.e., each variable
v has to be assigned a value from its domain Dom(v). Thus the size of the truth table of an
r-ary constraint is proportional to the size of the direct product of the domains of the r variables.
This representation is more verbose than listing satisfying tuples: the size of the representation is
proportional to the number of possible tuples even if only few tuples satisfy the constraint. While
the motivation for truth table representation is not as strong as for representation by listing all the
tuples (which is the natural representation in database-theoretic applications [18, 21]), we believe
that investigating truth-table representation is an important theoretical problem and the ideas
discovered in this paper will be useful in the study of more natural representations. In particular,
the main algorithmic message of the paper (“the decomposition should depend not only on the
hypergraph, but also on other properties of the instance”) might be relevant in other contexts
as well. Furthermore, any hardness result obtained for this representation immediately proves
hardness for every more succinct representation.

Formally, we define the variant of CSP considered in this paper as follows:

Definition 4. A CSP instance is a quadruple (V,D,Dom, C), where:

• V is a set of variables,

• D is a domain of values,

• Dom : V → 2D assigns a domain Dom(v) ⊆ D to each variable v ∈ V ,

• C is a set of constraints. Each ci ∈ C is a pair 〈si, Ri〉, where:

3

– si = (ui,1, . . . , ui,mi
) is a tuple of variables (the constraint scope), and

– Ri is a subset of
∏mi

j=1 Dom(ui,j) (the constraint relation).

For each constraint 〈si, Ri〉 the tuples of Ri indicate the allowed combinations of values for the
variables in si. The length mi of the tuple si is called the arity of the constraint. A solution to
a CSP instance is a function f : V → D such that f(v) ∈ Dom(v) for every v ∈ V and for each
constraint 〈si, Ri〉 with si = 〈ui,1, ui,2, . . . , ui,mi

〉, the tuple 〈f(ui,1), f(ui,2), . . . , f(ui,mi
)〉 is in Ri.

We denote by CSPtt the problem where each constraint 〈si, Ri〉 of arity mi is represented by
the truth table of the constraint relation Ri, that is, by a sequence of

∏mi

j=1 |Dom(ui,j)| bits that
describe this subset Ri of

∏mi

j=1 Dom(ui,j). For a class H, CSPtt(H) denotes the problem with truth
table representation, restricted to instances whose hypergraphs are in H.

Results. The main result of the paper is a complete characterization of the complexity of
CSPtt(H) (assuming Conjecture 3). We introduce a new hypergraph measure adaptive width; it
turns out the complexity of the problem depends on whether adaptive width is bounded:

Theorem 5 (Main). Assuming Conjecture 3, the following are equivalent:

1. CSPtt(H) is polynomial-time solvable.

2. CSPtt(H) is fixed-parameter tractable.

3. H has bounded adaptive width.

The assumption in Theorem 5 is nonstandard, so it is up to the reader to decide how strong this
evidence is. However, the message of Theorem 5 is the following: a new tractable class for CSPtt(H)
would imply surprising new results for binary CSP. Thus at this point it is not worth putting too
much effort in further studying CSPtt(H) with the hope of finding new tractable classes: as this
would disprove Conjecture 3, such an effort would be better spent trying to disprove Conjecture 3
directly, by beating the ‖I‖O(tw(H)) algorithm for binary CSP.

Listing the satisfying tuples is a more succinct representation of a constraint than a truth table.
Thus if CSP is polynomial-time solvable or fixed-parameter tractable for some class H with the
former representation, then this also holds for the latter representation as well. In particular, this
means that by the results of [14, 20], CSPtt(H) is polynomial-time solvable if H has bounded
fractional hypertree width. This raises the question whether Theorem 5 gives any new tractable
class H. In other words, is there a class H having bounded adaptive width but unbounded fractional
hypertree width? In Section 5, we answer this question by constructing such a class H. This means
that CSPtt(H) is polynomial-time solvable, but if the constraints are represented by listing the
satisfying tuples, then it is not even known whether the problem is FPT.

2 Width parameters

Treewidth and various variants are defined in this section. We follow the framework of width
functions introduced by Adler [1]. A tree decomposition of a hypergraph H is a tuple (T, (Bt)t∈V (T)),
where T is a tree and (Bt)t∈V (T) is a family of subsets of V (H) such that for each E ∈ E(H) there
is a node t ∈ V (T) such that E ⊆ Bt, and for each v ∈ V (H) the set {t ∈ V (T) | v ∈ Bt} is
connected in T . The sets Bt are called the bags of the decomposition. Let f : 2V (H) → R

+ be a
function that assigns a nonnegative real number to each nonempty subset of vertices. The f -width
of a tree-decomposition (T, (Bt)t∈V (T)) is max

{

f(Bt) | t ∈ V (T)}. The f -width of a hypergraph
H is the minimum of the f -widths of all its tree decompositions. Now treewidth can be defined as
follows:

4

Definition 6. Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Further width notions defined in the literature can also be conveniently defined using this setup.
A subset E′ ⊆ E(H) is an edge cover if

⋃

E′ = V (H). The edge cover number ρ(H) is the size
of the smallest edge cover (here we assume that H has no isolated vertices). For X ⊆ V (H), let
ρH(X) be the size of the smallest set of edges covering X.

Definition 7. The (generalized) hypertree width of H is hw(H) := ρH -width(H).

We also consider the linear relaxations of edge covers: a function γ : E(H) → [0, 1] is a fractional
edge cover of H if

∑

E:v∈E γ(E) ≥ 1 for every v ∈ V (H). The fractional cover number ρ∗(H) of
H is the minimum of

∑

E∈E(H) γ(E) taken over all fractional edge covers of H. We define ρ∗H(X)
analogously to ρH(X): the requirement

∑

E:v∈E γ(E) ≥ 1 is restricted to vertices v ∈ X.

Definition 8. The fractional hypertree width of H is fhw(H) := ρ∗H -width(H).

The dual of covering is independence. A subset X ⊆ V (H) is an independent set if |X ∩E| ≤ 1
for every E ∈ E(H). The independence number α(H) is the size of the largest independent set and
αH(X) is the size of the largest independent set that is a subset of X. A function φ : V (H) →
[0, 1] is a fractional independent set of the hypergraph H if

∑

v∈E φ(v) ≤ 1 for every E ∈ E(H).
The fractional independence number α∗(H) of H is the maximum of

∑

v∈V (H) φ(v) taken over all
fractional independent sets φ of H and α∗

H(X) is the maximum taken over all independent sets that
are zero outside X. It is well known that α(H) ≤ α∗(H) = ρ∗(H) ≤ ρ(H) for every hypergraph H
and hence α∗

H(X) = ρ∗H(X) for every X ⊆ V (H). Thus α∗
H -width gives us exactly the same notion

as fractional hypertree width. The main new definition of the paper uses fractional independent
sets, but in a different way. For a function f : V (H) → R

+, we define f(X) =
∑

v∈X f(v) for
X ⊆ V (H) and define f -width accordingly.

Definition 9. The adaptive width adw(H) of a hypergraph H is the maximum of φ-width(H)
taken over all fractional independent sets φ of H.

The difference between fractional hypertree width and adaptive width can be understood the
following way. As mentioned above, in Definition 8, ρ∗H-width can be replaced by α∗

H-width, i.e.,
we are interested in a tree decomposition where the size of the maximum fractional independent
set is bounded in every bag. In other words,

fhw(H) ≤ w
m

exists a tree decomposition T such that
for all fractional independent set φ,

φ(B) ≤ w for every bag B of T .

The definition of adaptive width exchanges the two quantifiers. Instead of requiring that there is a
tree decomposition that is “good” for every fractional independent set φ, we require that for every
fractional independent set φ, there is a tree decomposition that is “good.” More precisely,

adw(H) ≤ w
m

for all fractional independent set φ,
exists a tree decomposition T such that

φ(B) ≤ w for every bag B of T .

5

For constraint satisfaction problems, bounded fractional hypertree width means that for every
hypergraph H, there is a tree decomposition such that every instance has a bounded number of
solutions in each bag, thus we can use dynamic programming to solve the instance [14]. The main
conceptual contribution of this paper is the idea that we should look at the instance first and
use different tree decompositions for different instances. In the truth table setting, we look at the
distribution of the domain sizes in the input instance and derive a fractional independent set φ
based on these sizes. Bounded adaptive width means that there is a tree decomposition where this
particular φ is bounded on each bag, and, as we shall see in Section 3, this implies that there is only
a bounded number of solutions in each bag. Thus we are not using a single fixed decomposition for
each hypergraph, but we find the decomposition adaptively, taking into account the properties of
the actual instance. This paradigm (finding a decomposition after looking at the instance) is the
main message of the paper and might be of use in other settings as well.

Currently, we do not have an efficient algorithm for computing adaptive width. Fortunately, the
polynomial-time algorithm in Section 3 for instances with bounded adaptive width does not need to
determine the adaptive width of the input, it is sufficient that the adaptive width is promised to be
bounded. However, the technical details of the hardness proof of Section 4 require that the question
adw(H) ≥ w is decidable. The following lemma gives an algorithm for this decision problem.

Lemma 10. There is an algorithm that, given a hypergraph H and a rational number w, decides
if adw(H) ≥ w. If the answer is yes, then the algorithm returns a rational fractional independent
set α such that the α-width of H is at least w.

Proof. The hypergraph H has a finite number d of tree decompositions, let us fix an enumeration
of these decompositions. Let Bi be the set of bags of the i-th decomposition. If adw(H) ≥ w, then
there is a fractional independent set φ for H such that the φ-width of H is at least w. This means
that for every 1 ≤ i ≤ d, there is a bag Bi ∈ Bi such that φ(Bi) ≥ w. Conversely, if φ is a fractional
independent set of H such that for every 1 ≤ i ≤ d, there is a bag Bi ∈ Bi with φ(Bi) ≥ w, then
surely adw(H) ≥ w. Our algorithm tries every possible vector (B1, . . . , Bd) satisfying Bi ∈ Bi for
every 1 ≤ i ≤ d, and checks whether there is a suitable fractional independent set φ. Clearly,
there is only a finite number of such vectors. If there is a suitable φ for at least one vector, then
adw(H) ≥ w follows; if there is no such φ for any vector, then adw(H) < w.

For a given vector (B1, . . . , Bd), we have to check whether there exists an φ : V (H) → R
+ such

that

φ(E) ≤ 1 for every E ∈ E(H),

φ(Bi) ≥ w for every 1 ≤ i ≤ d

holds. This can be decided with the use of linear programming. If there is a suitable φ, then it
follows from well-known results in linear programming that there is a rational φ as well.

We finish the section with a combinatorial observation that will be useful later (recall that the
closed neighborhood of a vertex v is the union of all the edges containing v):

Lemma 11. Given a tree decomposition of hypergraph H, it can be transformed in polynomial time
into a tree decomposition satisfying the following property: if two adjacent vertices u and v have
the same closed neighborhood, then u and v appear in exactly the same bags. Furthermore, every
bag of the resulting decomposition is a subset of a bag of the original decomposition.

Proof. Consider a tree decomposition of H. If u and v are two vertices that do not satisfy the
requirements, then remove these vertices from those bags where only one of them appears (since u

6

and v are neighbors, they appear together in some bag Bt, hence both vertices appear in at least one
bag after the removals). The intersection of two subtrees is also a subtree, thus it remains true that
u and v appear in a connected subset of the bags. We have to show that for every edge E ∈ E(H),
there is a bag Bt that fully contains E even after the removals. If {u, v} ⊆ E or E ∩ {u, v} = ∅,
then this clearly follows from that fact that some bag fully contains E before the removals. Assume
without loss of generality that u ∈ E and v 6∈ E. We show that E ∪ {v} is fully contained in some
bag Bt before the removals, hence (as {u, v} ⊆ E ∪ {v}) Bt fully contains E ∪ {v} even after the
removals. Since u ∈ E, edge E is in the closed neighborhood of u. Thus by assumption, E is also
in the closed neighborhood of v, which means that E ∪ {v} is a clique in H (recall that a clique in
hypergraph is set K of vertices such that for any two x, y ∈ K, there is an edge containing both x
and y). It is well known that every clique is fully contained in some bag of the tree decomposition
(this follows from the fact that subtrees of a tree satisfy the Helly property), thus it follows that
E ∪ {v} ⊆ Bt for some bag Bt.

Let us repeat these removals until there are no pairs u, v that violate the requirements; eventually
we get a tree decomposition as required. Observe that the procedure terminates after a polynomial
number of steps: vertices are only removed from the bags.

3 Algorithm for bounded adaptive width

We prove that CSPtt(H) is polynomial-time solvable if H has bounded adaptive width. Bounded
adaptive width ensures that no matter what the distribution of the domain sizes in the input
instance is, there is a decomposition where the variables in each bag have only a polynomial
number of possible assignments. For such a decomposition, the instance can be solved by standard
techniques.

Lemma 12. There is an algorithm that, given an instance I of CSPtt, an integer C, and a tree
decomposition (T, (Bt)t∈V (T)) of the hypergraph H of the instance such that

∏

v∈Bt
|Dom(v)| ≤ C

for every bag Bt, solves the instance I in time polynomial in ‖I‖ · C.

Proof. If
∏

v∈Bt
|Dom(v)| ≤ C, then there are at most C possible assignments on the variables in

Bt. Using standard dynamic programming techniques, it is easy to check whether it is possible to
select one assignment ft for each bag Bt such that ft satisfies the instance restricted to the bag Bt

and these assignments are compatible. For completeness, we briefly describe how this can be done
by a reduction to binary CSP.

Let us construct a binary CSP instance I ′ as follows. The set of variables of I ′ is V (T), i.e., the
bags of the tree decomposition. For t ∈ V (T), let bt ≤ C be the number of assignments f to the
variables in Bt such that f(v) ∈ Dom(v) for every v ∈ Bt; denote by ft,i the i-th such assignment
on Bt (1 ≤ i ≤ bt). The domain of I ′ is D′ = {1, . . . , C}. For each edge t′t′′ ∈ E(T), we introduce
a constraint ct′,t′′ = 〈(t′, t′′), Rt′,t′′〉, where (i, j) ∈ Rt′,t′′ if and only if

• i ≤ bt′ and j ≤ bt′′ ,

• ft′,i and ft′′,j are compatible, i.e., ft′,i(v) = ft′′,j(v) for every v ∈ Bt′ ∩ Bt′′ .

• ft′,i satisfies every constraint of I whose scope is contained in Bt′ .

• ft′′,j satisfies every constraint of I whose scope is contained in Bt′′ .

It is easy to see that a solution of I ′ determines a solution of I. The size of I ′ is polynomial in C
and ‖I‖. Since the graph of I ′ is a tree, it can be solved in time ‖I ′‖O(1) = (‖I‖C)O(1).

7

Theorem 13. If H has bounded adaptive width, then CSPtt(H) is polynomial-time solvable.

Proof. Let I be an instance of CSPtt(H) with hypergraph H such that adw(H) ≤ c. Let N ≤ ‖I‖
be the size of the largest truth table in the input; we assume that N > 1, since the problem is
trivial if N = 1. We show that it is possible to find in time NO(c) a tree decomposition (T,Bt∈V (T))

of the instance such that
∏

v∈Bt
|Dom(v)| ≤ NO(c) holds for every bag Bt. By Lemma 12, this

means that the instance can be solved in time polynomial in ‖I‖ and NO(c), i.e., the running time
is ‖I‖O(c).

Let φ(v) = log2 |Dom(v)|/ log2 N . We claim that φ is a fractional independent set of H. Indeed,
if there is a constraint with (vi1 , vi2 , . . . , vir) such that

∑r
j=1 φ(vj) > 1, then the size of the truth

table describing the constraint is larger than N :

r
∏

j=1

|Dom(ij)| =

r
∏

j=1

2
φ(vij

)·log2 N
= 2

log2 N ·
∑r

j=1
φ(vij

)
> 2log2 N = N.

Define φ′(v) = ⌈φ(v) log2 N⌉. Observe that φ(v) ≥ 1/ log2 N , hence φ′(v) < 2φ(v) log2 N (if
|Dom(v)| = 1, then the instance can be simplified). Let H ′ be the hypergraph that is obtained
from H by replacing each vertex v with a set Xv of φ′(v) vertices; if an edge E contains some
vertex v in H, then E contains every vertex of Xv in H ′. We claim that H ′ has treewidth less than
2c log2 N . Since adw(H) ≤ c, H has a tree decomposition (T,Bt∈V (T)) such that

∑

v∈Bt
φ(v) ≤ c

holds for every bag Bt. Consider the analogous decomposition (T,B′
t∈V (T)) of H ′; i.e., if a bag

Bt contains a vertex v of H, then let bag B′
t contain every vertex of Xv . The size of a bag B′

t is
∑

v∈Bt
|Xv | =

∑

v∈Bt
φ′(v) ≤ 2 log2 N · ∑v∈Bt

φ(v) ≤ 2c log2 N , thus the treewidth of H ′ is indeed
less than 2c log2 N . Given a graph G with n vertices, it is possible to find a tree decomposition of
width at most 4 tw(G) + 1 in time 2O(tw(G))nO(1) (see e.g., [8, Prop. 11.14]). Thus we can a find a
tree decomposition (T,B′′

t∈V (T)) of width at most 8c log2 N for H ′ in time 2O(2c log
2

N)||H ′||O(1) =

NO(c)||H ′||O(1).
In H ′, every vertex of Xv is contained in the same set of edges. Therefore, by Lemma 11, it

can be assumed that each bag of the tree decomposition (T,B′′
t∈V (T)) contains either all or none of

Xv. Define the tree decomposition (T,B∗
t∈V (T)) of H where bag B∗

t contains v if and only Xv is

contained in B′′
t (it is easy to verify that this is indeed a tree decomposition of H). The φ-weight

of a bag B∗
t can be bounded as

∑

v∈B∗
t

φ(v) ≤ 1

log2 N

∑

v∈B∗
t

φ′(v) =
1

log2 N
|B′′

t | ≤ 8c.

Thus in the tree decomposition (T,B∗
t∈V (T)), the product of the domain sizes is

∏

v∈B∗
t

|Dom(v)| =
∏

v∈B∗
t

2φ(v)·log
2

N = 2
log2 N ·

∑

v∈B∗
t

φ(v) ≤ 2log
2

N ·8c = N8c,

in each bag B∗
t , as required.

4 Hardness result for unbounded adaptive width

We prove the main complexity result of the paper in this section. The main argument is the follow-
ing. Suppose that H is class of hypergraph with unbounded adaptive width such that CSPtt(H) is

8

fixed-parameter tractable. Let H ∈ H be a hypergraph with adw(H) ≥ k and let φ be a fractional
independent set such that the φ-width of H is at least k. Let us construct a graph G from the graph
underlying H by replacing each vertex v with a clique of size φ(v) · q, where q is an appropriate
constant. It is not difficult to show that the treewidth of G is roughly qk. In a natural way, any
binary CSP instance I1 whose primal graph is G and whose domain is D can be simulated by a
CSP instance I2 whose hypergraph is H: we set the domain of variable v of I2 to be (φ(v) ·q)-tuples
of D, that is, variable v of I2 simulates φ(v) · q variables of I1. If we estimate the cost of solving I1

by first transforming it to I2 and then solving it by the assumed algorithm for CSPtt(H), it turns
out that, compared to solving I1 directly by using the treewidth-based algorithm, we gain a factor
of k in the exponent. Since adaptive width can be arbitrarily large for hypergraphs in H, this gain
in the exponent can be arbitrarily large for graphs G arising this way. Thus Conjecture 3 does not
hold for the the class G of graphs constructed from the hypergraphs in H.

Theorem 14. Let H be a recursively enumerable class of hypergraphs with unbounded adaptive
width. Assuming Conjecture 3, CSPtt(H) is not fixed-parameter tractable.

Proof. Suppose that CSPtt(H) can be solved in time h1(H)‖I‖c for some constant c and computable
function h1. Let us fix an arbitrary computable enumeration of the hypergraphs in H. For every
k ≥ 1, let Hk be the first hypergraph in this enumeration with adw(Hk) ≥ k; as H has unbounded
adaptive width, there is such a graph for every k. For each k ≥ 1, let φk be the fractional
independent set returned by the algorithm of Lemma 10 for the question ‘adw(Hk) ≥ k?’. Clearly,
the φk-width of Hk is at least k.

Constructing the graph class G. For each k ≥ 1, we construct a graph Gk based on Hk

and φk. Let qk be the least common denominator of the rational values φk(v) for v ∈ V (Hk). The
graph Gk has a clique Kv of size qk · φ(v) for each v ∈ V (Hk) and if u and v are neighbors in Hk,
then every vertex of Ku is adjacent to every vertex of Kv. Let G = {Gk | k ≥ 1}.

We claim that tw(Gk) ≥ qkk − 1. Suppose for contradiction that Gk has a tree decomposition
(T, (Bt)t∈V (T)) of width less than qkk − 1, i.e., the size of every bag is smaller than qkk. By
Lemma 11, it can be assumed that for every v ∈ V (Hk) and bag Bt of the decomposition, either
Bt fully contains Kv or disjoint from it. Let us construct a tree decomposition (T, (B′

t)t∈V (T)) of
Hk such that B′

t contains v if and only if Bt fully contains Kv. It is easy to see that this is a
tree decomposition of Hk: for every E ∈ E(Hk), the set

⋃

v∈E Kv is a clique in Gk, hence there
is a bag Bt containing

⋃

v∈E Kv, i.e, B′
t contains E. Furthermore, φk(B

′
t) < k for every bag B′

t:
if φk(B

′
t) ≥ k, then |⋃v∈E Kv| ≥ qkk, contradicting the assumption that every bag Bt has size

strictly less than qkk. This would contradict the assumption adw(Hk) ≥ k, thus tw(Gk) ≥ qkk− 1.
Simulating Gk by Hk. We present an algorithm for CSP(G) violating Conjecture 3. We

show how a binary CSP(G) instance I1 with graph Gk can be reduced to a CSPtt(H) instance I2

with hypergraph Hk ∈ H. Then I2 can be solved with the assumed polynomial-time algorithm for
CSPtt(H). Let G ∈ G be the graph of the CSP instance I1. By enumerating the hypergraphs in
H, we can find the first value k such that G = Gk. We construct a CSPtt(H) instance I2 with
hypergraph Hk where every variable v ∈ V (Hk) simulates the variables in Kv.

The domain Dom(v) of v is D|Kv|, i.e., Dom(v) is the set of |Kv|-tuples of D. For every
v ∈ V (Hk), there is a natural bijection between the elements of Dom(v) and the |D||Kv| possible
assignments f : Kv → D. For each edge E = (v1, . . . , vr) ∈ E(Hk), we add a constraint cE =
〈(v1, . . . , vr), RE〉 to I2 as follows. Consider a tuple (x1, . . . , xr) ∈

∏r
i=1 Dom(vi). For 1 ≤ i ≤ r, let

gi be the assignment of Kvi
corresponding to xi ∈ Dom(vi). These r assignments together define

an assignment g :
⋃r

i=1 Kvi
→ D on the union of their domains. We define the relation RE such

that (x1, . . . , xr) is a member of RE if and only if the corresponding assignment g satisfies every

9

constraint of I1 whose scope is contained in
⋃r

i=1 Kvi
.

Assume that I1 has a solution f1 : V (Gk) → D. For every v ∈ V (Hk), define f2(v) to be the
member of Dom(v) corresponding to the assignment f1 restricted to Kv. It is easy to see that f2

is a solution of I2: this follows from the fact that for every edge E of Hk, assignment f1 restricted
to

⋃

v∈E Kv clearly satisfies every constraint of I1 whose scope is in
⋃

v∈E Kv.
Assume now that I2 has a solution f2 : V2 → D2. For every v ∈ V (Hk), there is an assignment

fv : Kv → D corresponding to the value f2(v). These assignments together define an assignment
f1 : V (Gk) → D. We claim that f1 is a solution of I1. Let c = 〈(u′, v′), R〉 be an arbitrary
constraint of I1. Assume that u′ ∈ Ku and v′ ∈ Kv for some u, v ∈ V (Hk). Since u′v′ ∈ E(Gk),
there is an edge E ∈ E(Hk) with u, v ∈ E. The definition of cE in I2 ensures that f1 restricted
to Ku ∪ Kv satisfies every constraint of I1 whose scope is contained in Ku ∪ Kv; in particular, f1

satisfies constraint c.
Running time. Assume that an instance I1 of CSP(G) is solved by first reducing it to an

instance I2 as above and then applying the algorithm for CSPtt(H). Let us determine the running
time of this algorithm. The first step of the algorithm is to enumerate the hypergraphs in H until
the correct value of k is found. The time required by this step depends only on the graph G ∈ G;
denote it by h2(G). Let us determine the time required to construct instance I2 and the size
of the representation of I2. As defined above, for each constraint cE in I2, we have to enumerate
every tuple (x1, . . . , xr) ∈

∏r
i=1 Dom(v) and check whether the corresponding assignment g satisfies

every constraint whose scope is in
⋃r

i=1 Kvi
. Checking a vector (x1, . . . , xr) can be done in time

polynomial in ‖I1‖. Moreover,

∣

∣

∣

∣

∣

r
∏

i=1

Dom(v)

∣

∣

∣

∣

∣

=

r
∏

i=1

|Dom(v)| =

r
∏

i=1

|D||Kv| =

r
∏

i=1

|D|qk·φk(v) = |D|qk

∑r
i=1

φk(v) ≤ |D|qk ,

where the last inequality follows from the facts that φk is a fractional independent set and {x1, . . . , xr}
is an edge of Hk. Every other step of the reduction can be done in time polynomial in ‖I1‖, hence
the reduction can be done in time h2(G)‖I1‖O(qk), which is also a bound on ‖I2‖. Thus the algo-
rithm for CSPtt(H) requires h1(Hk)(h2(G)‖I1‖)O(qkc) time, yielding a total time of h3(G)‖I1‖O(qkc)

for some computable function h3.
We show that ‖I1‖O(qkc) is ‖I1‖o(tw(Gk)), violating Conjecture 3. Let s(w) be the smallest k

such that tw(Gk) is greater than w (as tw(Gk) ≥ qkk−1, the function tw(Gk) is unbounded, hence
s(w) is well defined). Observe that s(w) is nondecreasing and unbounded. We have seen that
tw(G) ≥ qkk − 1. Thus

‖I1‖O(qkc) ≤ ‖I1‖O(c(tw(Gk)+1)/k) ≤ ‖I1‖O(c(tw(G)+1)/s(tw(G))) = ‖I1‖o(tw(G)),

where the second inequality follows from the definition of s. Thus the total running time is
h3(G)‖I1‖o(tw(G)), violating Conjecture 3.

5 Separation of bounded fractional hypertree width and bounded

adaptive width

We show that the class of sets of hypergraphs with bounded adaptive width strictly includes the
class of sets with bounded fractional hypertree width. First, fractional hypertree width is an upper
bound for adaptive width.

Proposition 15. For every hypergraph H, adw(H) ≤ fhw(H).

10

replacemen

v2,1 v2,3

v4,15

v3,7
v3,0

v4,11v4,8

v2,0

v1,0

v1,1

v0,0

v4,1v4,0 E5

Figure 1: The structure of the hypergraph H(4, 3), showing the large edge E5 and two small edges.
Every large edge is a root to leaf path in the binary tree shown by dashed edges.

Proof. Let (T,Bt∈V (T)) be a tree decomposition of H whose ρ∗H-width is fhw(H). If φ is a fractional
independent set, then φ(Bt) ≤ ρ∗H(Bt) ≤ fhw(H) for every bag Bt of the decomposition, i.e.,
φ-width(H) ≤ fhw(H). This is true for every fractional independent set φ, hence adw(H) ≤
fhw(H).

This implies that if a set of hypergraphs has bounded fractional hypertree width, then it has
bounded adaptive width as well. The converse is not true: the main result of this section is a set of
hypergraphs with bounded adaptive width (Corollary 25) that has unbounded fractional hypertree
width (Corollary 22).

Definition 16. The hypergraph H(d, c) has 2d+1 − 1 vertices vi,j (0 ≤ i ≤ d, 0 ≤ j < 2i) and the
following edges:

• For every 0 ≤ k < 2d, there is a large edge Ek of size d + 1 that contains vi,⌊k/2d−i⌋ for every
0 ≤ i ≤ d.

• For every i, j1, j2 with |j1 − j2| ≤ c, there is a small edge {vi,j1 , vi,j2}.

We say that vertex vi,j is on level i. Let us define χ(vi,j) = j2d−i. The set Hc contains every
hypergraph H(d, c) for d ≥ 1.

We can imagine the vertices of H(d, c) as nodes of a complete binary tree on d + 1 levels. For
each leaf vd,j of the tree, the large edge Eχ(vd,j) contains the path from the leaf to the root v0,0 (see
Figure 1). The small edges connect some vertices on the same level. The χ-value of a vertex is the
horizontal coordinate of the node in the figure.

The precise value of the parameter c is not very important to achieve the main result of the
section: everything will work if we replace c with the constant 5.

Definition 17. If vi,j and vi′,j′ are covered by the same large edge Ek and i ≤ i′, then vi,j is an
ancestor of vi′,j′; and vi′,j′ is a descendant of vi,j. We denote by A(vi,j) the set of ancestors of vi,j

(observe that vi,j ∈ A(vi,j) and |A(vi,j)| = i + 1).

11

Proposition 18. If vi,j is an ancestor of vi′,j′, then χ(vi,j) ≤ χ(vi′,j′) < χ(vi,j) + 2d−i.

Proof. The unique ancestor of vi′,j′ on level i is vi,⌊j′/2i′−i⌋. Therefore,

χ(vi,j) = ⌊j′/2i′−i⌋ · 2d−i ≤ j′ · 2d−i′ = χ(vi′,j′)

and

χ(vi,j) = ⌊j′/2i′−i⌋ · 2d−i > (j′/2i′−i − 1) · 2d−i = j′ · 2d−i′ − 2d−i = χ(vi′,j′) − 2d−i.

5.1 Lower bound on fractional hypertree width

Fractional hypertree width has various other characterizations that are equivalent up to a constant
factor [14]. Here we use the characterization by balanced separators to prove a lower bound on the
fractional hypertree width of H(d, c).

For a function γ : E(H) → R
+, we define weight(γ) :=

∑

E∈E(H) γ(E). For a set W ⊆ V (H),
we let weight(γ|W) =

∑

e∈EW
γ(e), where EW is the set of all edges intersecting W . For λ > 0, a

set S ⊆ V (H) is a λ-balanced separator for γ if weight(γ|C) ≤ λ ·weight(γ) for every component C
of H \ S.

Theorem 19 ([14]). Let H be a hypergraph and γ : E(H) → R
+. There is a 1

2-balanced separator
S for γ such that ρ∗H(S) ≤ fhw(H).

Theorem 19 can be generalized to obtain λ-balanced separators with arbitrary λ > 0:

Corollary 20. Let H be a hypergraph and γ : E(H) → R
+. For every λ > 0, there is a λ-balanced

separator S for γ such that ρ∗H(S) ≤ 2 fhw(H)/λ.

Proof. For λ ≥ 1, there is nothing to prove. We show that if the statement is true for 2λ, then it
is also true for λ; this implies the validity of the statement for every λ > 0.

Let H be a hypergraph and γ : E(H) → R
+. If the statement is true for 2λ, then there is

a 2λ-balanced separator S with fractional cover number at most 2 fhw(H)/(2λ). Let C1, . . . , Ct

be the components of H \ S with weight(γ|Ci) > λ · weight(γ); the weights imply that t < 1/λ.
By Theorem 19, for each i, there is a 1

2 -balanced separator Si of H[Ci] for γ restricted to Ci. As
weight(γ|Ci) ≤ 2λ · weight(γ), every component C of H[Ci \ Si] has weight(γ|C) ≤ λ · weight(γ).
Thus S ∪ S1 ∪ · · · ∪ St is a λ-balanced separator of H for γ with fractional cover number at most

fhw(H)/λ + t fhw(H) < fhw(H)/λ + fhw(H)/λ = 2 fhw(H)/λ,

as required.

We prove the lower bound on the fractional hypertree width of H(d, c) by presenting a function
γ having no suitable λ-separator.

Proposition 21. For every c ≥ 5 and d > 2 log2 c, we have fhw(H(d, c)) ≥
√

d/(8c).

Proof. Let γ be a weight function on the edges that assigns 1 to each large edge and 0 to the small
edges. We show that every 1

2c -balanced separator of H(d, c) for γ has fractional cover number at

least
√

d/2. By Corollary 20, this means that the fractional hypertree width is at least
√

d/(8c).
Suppose that S is a 1

2c -balanced separator of H(d, c) for γ. Observe that on level ⌈d/2⌉, there

are at least c vertices: 2⌈d/2⌉ ≥ c. We claim that there is a ⌈d/2⌉ ≤ i ≤ d for which there is

12

no 0 ≤ ai ≤ 2i − c such that vi,j ∈ S for every ai ≤ j < ai + c. Suppose that there is such
an ai for every ⌈d/2⌉ ≤ i ≤ d. Let bi = ai + c − 1. It follows from the definition of ai that
vi,ai

, vi,bi
∈ S for every ⌈d/2⌉ ≤ i ≤ d. We claim that the set X = {vi,ai

, vi,bi
: ⌈d/2⌉ ≤ i ≤ d}

contains an independent set of size at least
√

d/2, proving that the fractional cover number ρ∗(S)
is at least

√
d/2 (recall that αH(S) ≤ ρ∗H(S) holds). First we show that if a large edge Ek covers

vi,ai
and vi′,ai′

then vi,bi
and vi′,bi′

are independent. Assume without loss of generality that i < i′.

By Prop. 18, |χ(vi,ai
) − χ(vi′,ai′

)| < 2d−i. Since χ(vi,bi
) = χ(vi,ai

) + (c − 1)2d−i and χ(vi′,bi′
) =

χ(vi′,ai′
) + (c − 1)2d−i′ ,

|χ(vi,bi
) − χ(vi′,bi′

)| ≥ |χ(vi,ai
) − χ(vi,bi

)| − |χ(vi′,ai′
) − χ(vi,ai

)| − |χ(vi′,bi′
) − χ(vi′,ai′

)|

> (c − 1)2d−i − 2d−i − (c − 1)2d−i′ ≥ (c − 1)2d−i − 2d−i − c − 1

2
· 2d−i = (c/2 − 3/2)2d−i ≥ 2d−i,

if c ≥ 5. Therefore, vi,bi
and vi′,bi′

are independent (Prop. 18). Similarly, if a large edge Ek covers
both vbj ,j and vbj′ ,j

′ then vaj ,j and vaj′ ,j
′ are independent.

The size of X is 2(⌊d/2⌋ + 1) ≥ d. Therefore, if X can be covered with weight less than
√

d/2,
then there has to be an edge that covers at least |X|/(

√
d/2) = 2

√
d vertices of X. Denote by Y ⊆ X

this set of vertices, and let Ya = {vi,ai
∈ Y : ⌈d/2⌉ ≤ i ≤ d} and Yb = {vi,bi

∈ Y : ⌈d/2⌉ ≤ i ≤ d}.
Now either |Ya| ≥

√
d or |Yb| ≥

√
d. For each vertex vi,ai

, we call the vertex vi,bi
the partner of

vi,ai
and vice versa. If |Ya| ≥

√
d, then we have seen that the partners of the vertices in Ya form

an independent set of size |Ya|, thus X cannot be covered with weight less than
√

d. Similarly,
if |Yb| ≥

√
d, then the partners of the vertices in Yb give an independent set of size

√
d. This

contradicts the assumption that S can be covered with weight strictly less than
√

d/2.
Thus there is a d/2 ≤ i ≤ d such that for every 0 ≤ j ≤ 2i − c, at least one of vi,j, . . . ,

vi,j+c−1 is not in S. Therefore, if Ci is the set of vertices on level i not in S, then Ci is a connected
set (there are at least c vertices on level i ≥ d/2, hence Ci is nonempty). This means that Ci

contains more than 1/(2c) fraction of the vertices on level i, i.e., more than 2i/(2c) vertices. Each
vertex on level i is contained in 2d−i large edges, hence the vertices in Ci are covered by more
than 2d/(2c) large edges. For the component C of H(d, c) containing the connected set C, we have
weight(γ|C) > weight(γ)/2c, contradicting the assumption that S is a 1

2c -balanced separator for
γ.

Corollary 22. Hc has unbounded fractional hypertree width for every c ≥ 5.

5.2 Upper bound on adaptive width

To show that H(d, c) has small adaptive width, we have to show that it has small φ-width for every
fractional independent set φ. The following lemma gives an upper bound on the f -width if certain
balanced separators exist.

Lemma 23. Let H be a hypergraph, 0 < λ < 1, w > 0 constants, and f : 2V (H) → R
+ a function

such that

• f(X) ≤ f(Y) for every X ⊆ Y (i.e., f is monotone) and

• f(X ∪ Y) ≤ f(X) + f(Y) for arbitrary X,Y (i.e., f is subadditive).

Assume that for every subset W ⊆ V (H) there is a subset S ⊆ V (H) with f(S) ≤ w such that every
component C of H \S has f(C ∩W) ≤ λf(W). Then the f -width of H is at most 2w/(1−λ) + w.

13

Proof. We prove that if H and f satisfy the requirements, then H has a tree decomposition of
f -width at most 2w(1 − λ) + w. More precisely, we prove the following stronger statement:

For every subset X ⊆ V (H) with f(X) ≤ 2w/(1 − λ), the hypergraph H has a tree
decomposition T of f -width at most 2w/(1 − λ) + w where X ⊆ Bt for some bag Bt of
T .

The proof is by induction on |V (H)|. Assume that the statement is true for every hypergraph with
fewer vertices than H. If f(V (H)) ≤ 2w/(1 − λ) + w, then we are done, as a tree composition
consisting of a single bag B = V (H) satisfies the requirements. The requirements on H and f imply
that f(v) ≤ w for every v ∈ V (H) (consider the set W := {v}). Therefore, by adding new vertices
to X one by one, we can obtain a superset X ′ ⊇ X with 2w/(1−λ) < f(X ′) ≤ 2w/(1−λ)+w (here
we are using both monotonicity and subadditivity). By assumption, there is a set S ⊆ V (H) with
f(S) ≤ w such that if C1, . . . , Cd are the components of V (H) \ S, then f(Ci ∩ X ′) ≤ λf(X ′) ≤
λw(2/(1 − λ) + 1) for every 1 ≤ i ≤ d. Note that d = 0 is not possible, since that would imply
f(V (H)) ≤ w, which we have already excluded. For every 1 ≤ i ≤ d, we have

f(Ci ∩ X ′) + f(S) ≤ λw(2/(1 − λ) + 1) + w

= w(2λ + λ(1 − λ) + (1 − λ))/(1 − λ) = w(2 − (1 − λ)2)/(1 − λ) < 2w/(1 − λ).

If d = 1, then f(X ′) ≤ f(C1 ∩ X ′) + f(S) < 2w/(1 − λ) is a contradiction. Thus d > 1, and hence
H[Ci ∪ S] has strictly fewer vertices than H for every 1 ≤ i ≤ d. Set Xi := (Ci ∩ X) ∪ S and
observe that f(Xi) ≤ f(Ci∩X)+f(S) ≤ f(Ci∩X ′)+f(S) < 2w/(1−λ) (using that f is monotone
and subadditive). By the induction hypothesis, for every 1 ≤ i ≤ d, the hypergraph H[Ci ∪ S]
has a tree decomposition Ti of f -width at most 2w/(1 − λ) + w such that some bag Bi of Ti fully
contains Xi. We connect these d tree decompositions by introducing a new bag B0 := X ∪ S that
is the neighbor of bag Bi of Ti for every 1 ≤ i ≤ d. It is easy to check that tree decomposition T
obtained this way is a proper tree decomposition of H with f -width at most 2w/(1 − λ) + w (note
that f(B0) ≤ f(X) + f(S) ≤ 2w(1 − λ) + w).

To obtain the upper bound on adaptive width using Lemma 23, we have to show that the
required separator S exists for every fractional independent set. We say that a set S is closed if the
set S contains every ancestor of every vertex of S, i.e., A(S) ⊆ S. For future use, we show that
even a closed separator exists for H(d, c). This will imply that the proof of Lemma 23 can actually
give a tree decomposition with the additional property that each bag is closed (Corollary 26).

Lemma 24. Let φ be a fractional independent set of H(d, c) and let W be a subset of vertices.
Then there is a closed set S with φ(S) ≤ 4c2 +8c+6 such that for every component C of H(d, c)\S
we have φ(C ∩ W) ≤ 3φ(W)/4.

Proof. Let M(a, b) be the set of vertices vi,j with a ≤ χ(vi,j) < b. Our strategy is to find appropriate
values t1, t2 such that separating M(t1, t2) from the rest of the hypergraph gives a a balanced
separator. We need to show that M(t1, t2) can be separated by a set S such that φ(S) is small
and φ(M(t1, t2) ∩ W) is between φ(W)/4 and 3φ(W)/4. The values t1 and t2 are found by an
averaging argument: we argue that there have to be values where it is cheap to cut the hypergraph.
An additional complication is that we have to treat the first few levels in a different way: roughly
speaking, we can apply the averaging argument only if the neighborhood reachable by the small
edges is small compared to the set of vertices we want to separate.

Let x and y be integers such that φ(M(x, x + y) ∩ W) ≥ φ(W)/4 and y is as small as possible.
Let d0 = d − ⌈log2 y⌉; clearly, we have y ≤ 2d−d0 ≤ 2y. Let A(t) := {vi,j : χ(vi,j) ≥ t and i ≥ d0}.

14

Denote by S(t) the set of those vertices v that have a descendant vi,j with χ(vi,j) < t such that vi,j

has a neighbor in A(t). (Note that having a descendant vi,j with χ(vi,j) < t immediately implies
that χ(v) < t as well.) We show that φ(S(t1)) ≤ 2c2 + 4c + 1 for some x − y < t1 ≤ x.

Let S1(t) be those vertices of S(t) that are on level less than d0 and let S2(t) be those vertices
that are on level at least d0. First we bound φ(S1(t)). Let X be the set of vertices vd0,j with
χ(vd0,j) ∈ (t− (c + 1)2d−d0 , t). As the difference of the χ-values of any two vertices in X is at least
2d−d0 , there can be at most c + 1 such values in an open interval of length (c + 1)2d−d0 and hence
|X| ≤ c + 1 follows. We show that every vertex of S1(t) has a descendant in X. This means that
if we cover the c + 1 vertices in X with c + 1 large edges, then every vertex of S1(t) is covered. As
φ(Ek) ≤ 1 for every large edge (since φ is a fractional independent set), φ(S1(t)) ≤ c + 1 follows.

To show that every vertex vi′,j′ ∈ S1(t) has a descendant in X, we need to consider two cases.
Suppose first that vi′,j′ itself has a descendant in u ∈ A(t). By Prop 18, the ancestor of u on level d0

has χ-value greater than t−2d−d0 , thus vi′,j′ has a descendant on level d0 with χ-value greater than
t−2d−d0 . Furthermore, χ(vi′,j′) < t implies that vi′,j′ has a descendant on level d0 with χ-value less
than t. Thus if u′ is the descendant of vi′,j′ on level d0 with χ(u′) < t having maximum χ-value,
then χ(u′) is in the interval [t − 2d−d0 , t), which means that u′ ∈ X.

If vi′,j′ has no descendant in A(t), then it has a descendant vi,j with χ(vi,j) < t that is connected
to a vertex of A(t) with a small edge. This means that χ(vi,j) ≥ t − c2d−i. If u is the ancestor of
vi,j on level d0, then by Prop. 18,

χ(u) > χ(vi′,j′) − 2d−d0 ≥ t − c(2d−i) − 2d−d0 ≥ t − (c + 1)2d−d0 ,

implying vd0,j′′ ∈ X. Thus we showed that every vertex of S1(t) has a descendant in X and
φ(S1(t)) ≤ c + 1 is proved.

We cannot bound φ(S2(t)) uniformly for every value of t, but we show that it is small on average.
We claim that

x
∑

t=x−y+1

φ(S2(t)) ≤ c

min{2d−1,x+2d−d0−1}
∑

t=max{0,(x−y−c2d−d0)}

φ(Et) ≤ c
(

(c + 1)2d−d0 + y
)

≤ 2c(c + 1)y + cy.

holds, implying that φ(S2(t)) ≤ 2c(c + 1) + c = 2c2 + 3c and hence φ(S(t)) ≤ 2c2 + 4c + 1
for at least one value of t. To see the first inequality, observe that vi,j with i ≥ d0 is in S2(t)
only if t − c2d−i ≤ χ(vi,j) < t. Thus such a vertex contributes to the first sum for at most
c2d−i values of t. However, if vi,j contributes at all to the first sum (which is only possible if
x − y − c2d−i ≤ χ(vi,j) < x), then it contributes to the second sum for exactly 2d−i values of t,
as every large edge containing vi,j is counted. Thus every vertex vi,j contributes φ(vi,j) at most
c times more to the first sum than to the second, which is taken care by the factor c before the
second sum. The second inequality follows from the fact that φ is a fractional independent set, i.e,
φ(Et) ≤ 1. The last inequality follows from the definition of d0.

Similarly, we can show that there is a value x+y ≤ t2 < x+2y such that φ(S2(t2)) ≤ 2c2+4c+1.
Denote by T (t1, t2) the vertices of M(t1, t2) on levels less than d0. We claim that φ(T (t1, t2)) ≤ 3
(if d0 = 0, then there is nothing to show). First, T (t1, t2) can contain at most 3 vertices on each
level: if vi,j, vi,j′ ∈ T (t1, t2) and j′ ≥ j + 3, then |χ(vi,j) − χ(vi,j′)| ≥ 3 · 2d−i > 3 · 2d−d0 ≥ 3y ≥
t2 − t1, contradicting the assumption on the χ-values. Every vi,j ∈ T (t1, t2) has a descendant
vi′,j′ ∈ T (t1, t2) for every i ≤ i′ < d0, namely vi′,j′ with j′ = j2i′−i. In particular, this means that
every vertex of T (t1, t2) is an ancestor of one of the at most 3 vertices of T (t1, t2) on level d0 − 1.
Therefore, if we cover these vertices on level d0 − 1 with at most 3 large edges, then the whole set
T (t1, t2) is covered. As φ(Et) ≤ 1 for every large edge Et, it follows that φ(T (t1, t2)) ≤ 3.

15

We obtain the set S required by lemma by setting

S := S(t1) ∪ S(t2) ∪ T (t1, t2) ∪ Ex+y.

Clearly, φ(S) ≤ 2(2c2 + 4c + 1) + 3 + 1 = 4c2 + 8c + 6, as required by the lemma. We show that S
separates M(t1, t2) from the rest of the vertices. Suppose that vi,j, vi′,j′ 6∈ S are adjacent vertices
such that vi,j ∈ M(t1, t2) and vi′,j′ 6∈ M(t1, t2). We have i ≥ d0 (otherwise vi,j ∈ T (t1, t2) ⊆ S),
hence vi,j ∈ A(t1). If χ(vi′,j′) < t1, then vi′,j′ ∈ S(t1) ⊆ S, a contradiction. Moreover, if χ(vi′,j′) >
t2, then i′ ≥ d0 as vi,j and vi′,j′ are not neighbors if χ(vi,j) < χ(vi′,j′) and i > i′. Thus vi′,j′ ∈ A(t2)
and vi,j ∈ S(t2) ⊆ S, a contradiction.

By the definition of x and y, we have φ(M(t1, t2) ∩ W) ≥ φ(M(x, x + y) ∩ W) ≥ φ(W)/4. To
complete the proof that φ(W ∩ C) ≤ 3φ(W)/4 for every component C of H(d, c) \ S, we need to
show that φ((M(t1, t2) \ S) ∩ W) ≤ 3φ(W)/4: as we have seen that every such component C is
either fully contained in M(t1, t2) or disjoint from M(t1, t2), this means that no component C can
have φ(W ∩ C) > 3φ(W)/4. Since x − t1 < y, the minimality of y implies φ(M(t1, x) ∩ W) ≤
φ(W)/4. Similarly, it follows from t2 − (x + y) < y that φ(M(x + y, t2) ∩ W) ≤ φ(W)/4. The set
Ex+y ⊆ S fully covers every vertex v with χ(v) = x + y and (again by the minimality of y), we
have φ(M(x, x + y − 1)) ≤ φ(W)/4. Now

φ((M(t1, t2)\S)∩W) ≤ φ(M(t1, x)∩W)+φ(M(x, x+y−1)∩W)+φ(M(x+y, t2)∩W) ≤ 3

4
φ(W).

By Lemma 24, the requirements of Lemma 23 hold for H(d, c) with w := 4c2 + 8c + 6 and
λ := 3/4, hence adw(H(d, c)) ≤ 9w = 36c2 + 72c + 54, i.e., it can be bounded by a constant
depending only on c, but not on d.

Corollary 25. The class Hc has bounded adaptive width for every fixed c ≥ 1.

For future use, we argue that the width 36c2+72c+54 can be reached with a tree decomposition
where each bag is closed.

Corollary 26. For every fractional independent set φ of H(d, c), the hypergraph H(d, c) has a tree
decomposition with φ-width at most 36c2 + 54c + 72 such that every bag is closed.

Proof. Let us go through the proof of Lemma 23 and show what further arguments are needed
to claim that every bag is closed in the resulting tree decomposition. We change the induction
statement to

For every closed subset X ⊆ V (H) with f(X) ≤ 2w/(1 − λ), hypergraph H has a tree
decomposition T of f -width at most 2w/(1 − λ) + w where X ⊆ Bt for some bag Bt of
T and every bag of T is closed.

We can assume that S is closed. We claim that Xi := (Ci ∩X)∪ S is closed. Since X is closed, we
have A(Ci ∩X) ⊆ X. Every vertex of A(Ci ∩X) \ (Ci ∩X) is adjacent to Ci ∩X, thus it is either
in S or in Ci ∩X. It follows that A(Ci ∩X) ⊆ (Ci ∩X) ∪ S and A(Xi) ⊆ Xi. This means that Xi

is closed and hence the induction hypothesis can be applied on Xi. Finally, B0 := X ∪ S is closed
(the union of two closed set is closed), and by the induction statement, every other bag is closed
as well.

16

References

[1] I. Adler. Width functions for hypertree decompositions. PhD thesis, Albert-Ludwigs-
Universität Freiburg, 2006.

[2] A. A. Bulatov. Tractable conservative constraint satisfaction problems. In 18th Annual IEEE
Symposium on Logic in Computer Science (LICS’03), page 321, Los Alamitos, CA, USA, 2003.
IEEE Computer Society.

[3] A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
J. ACM, 53(1):66–120, 2006.

[4] A. A. Bulatov, A. A. Krokhin, and P. Jeavons. The complexity of maximal constraint lan-
guages. In Proceedings of the 33rd ACM Symposium on Theory of Computing, pages 667–674,
2001.

[5] H. Chen and M. Grohe. Constraint satisfaction problems with succinctly specified relations,
2006. Manuscript. Preliminary version in Dagstuhl Seminar Proceedings 06401: Complexity of
Constraints.

[6] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer, New York, 1999.

[7] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and con-
straint satisfaction: a study through Datalog and group theory. SIAM J. Comput., 28(1):57–
104, 1999.

[8] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin, 2006.

[9] E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In Proc. of
AAAI-90, pages 4–9, Boston, MA, 1990.

[10] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.
Journal of Computer and System Sciences, 64:579–627, 2002.

[11] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and nonmonotonic
reasoning. Artificial Intelligence, 138(1-2):55–86, 2002.

[12] M. Grohe. The structure of tractable constraint satisfaction problems. In MFCS 2006, pages
58–72, 2006.

[13] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from
the other side. J. ACM, 54(1):1, 2007.

[14] M. Grohe and D. Marx. Constraint solving via fractional edge covers. In SODA ’06: Proceed-
ings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 289–298, New
York, NY, USA, 2006. ACM Press.

[15] M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive queries
tractable? In STOC ’01: Proceedings of the thirty-third annual ACM symposium on Theory
of computing, pages 657–666, New York, NY, USA, 2001. ACM Press.

[16] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
J. Comput. System Sci., 63(4):512–530, 2001.

17

[17] P. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44(4):527–548, 1997.

[18] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction.
J. Comput. Syst. Sci., 61(2):302–332, 2000.

[19] D. Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 169–179, 2007.

[20] D. Marx. Approximating fractional hypetree width. In Proceedings of the 20th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’09), 2009.

[21] F. Scarcello, G. Gottlob, and G. Greco. Uniform constraint satisfaction problems and database
theory. In Complexity of Constraints, pages 156–195, 2008.

[22] T. J. Schaefer. The complexity of satisfiability problems. In Conference Record of the Tenth
Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages 216–226.
ACM, New York, 1978.

18

